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Abstract 
This paper studies the theory and design of a class of 

linear-phase (LP) nonuniform filter-banks (FBs) called 
recombination nonuniform FBs (RNFBs). It is based on a 
recombination structure, where certain channels of an M-channel 
uniform FB are merged by synthesis filters of transmultiplexer 
(TMUX). It is assumed that the numbers of channels of the FB 
and TMUX are coprime to each other so that it is possible to 
obtain linear-time invariant (LTI) analysishynthesis filters, 
instead of linear periodic time varying (LPTV) filters. The 
spectral supports of the analysis filters are analyzed, and the 
existence and matching conditions to obtain LP RNFBs with 
good frequency characteristics are then derived. The LTI 
representation of the analysis filters and the use of cosine-roll-off 
characteristics allow us to design the analysis filters by the 
REMEZ exchange algorithm. Design examples of LP nearly 
perfect reconstruction (NPR) RNFBs are given to demonstrate 
the effectiveness of the proposed method. 

I. Introduction 
The theory and design of uniform perfect recombination 

(PR) filter-banks (FBs) has been widely studied [I]. In certain 
applications such as image, audio and speech analysis and 
coding, PR FBs with nonuniform frequency spacing usually offer 
considerable flexibility in frequency partitioning. This has 
attracted considerable interests in designing nonuniform FBs [3- 
61. One popular method is the direct structure proposed in [4]. 
However, the design usually involves nonlinear optimization with 
considerable number of parameters. Another useful approach is 
the indirect method proposed in [ 5 ] ,  where certain channels of a 
uniform FB are merged using the synthesis filters of a 
recombination FB or transmultiplexer (TMUX). It was shown 
recently in [6] that it is possible to achieve PR in recombination 
nonuniform FB (RNFB). Moreover, if the number of channels of 
the uniform FB and recombination TMUX are coprime, then the 
analysis filters of the resulting RNFB admit an equivalent linear 
time invariant (LTI) representation. In other words, the frequency 
responses of the analysis filters can be optimized directly, which 
considerably simplifies the design procedure. A class of RNFBs 
based on the cosine modulation FBs (CMFBs) was also proposed. 
By imposing a simple matching. condition on the filter length, 
RN-CMFB with low design and implementation complexities 
and good frequency characteristics can be obtained. One 
advantage of the RNFB is that the PR property is structurally 
imposed as long as the original uniform FB and recombination 
TMUXs are PR. Further, dynamic recombination of consecutive 
channels in the original uniform FB by pre-designed TMUXs is 
possible [9]. The method in [2] is also based on the merging 
approach. However, the recombination FB is a simple 
transformation. It is useh1 in coding application where it is 
unnecessary to create a single subband with good frequency 
characteristic. In array processing and other applications 
involving partial spectrum reconstruction, then a general 
recombination TMUX has to be used. 

In this paper, the theory and design of a class of RNFBs 
with linear-phase (LP) filters are proposed. The LP property is 
attractive because it does not introduce phase distortion in the 
subband signals. For simplicity, we also assume that the numbers 
of channels of the uniform FB and recombination TMUX are 

coprime to each other so that it is possible to obtain LTI 
analysishynthesis filters, instead of linear periodic time varying 
(LPTV) filters. This simplifies the design procedure while 
offering reasonable flexibility in choosing the sampling factors. 
For example, the number of channels in the uniform FB can be 
chosen as an even number, while those for the recombination 
TMUXs can be chosen as odd numbers. It should be noted that 
PR RNFB without the coprime condition is also feasible. 
However their analysis is rather involved and it will not be 
considered in this paper. Rather than the LP paraunitary FB in [7] 
and the LP FBs by cosine and sine modulation in [8], the LP 
uniform FBs we introduced are obtained by using REMEZ 
algorithm and transition band being cosine roll-off. This allows a 
simple design and ideal-bandwidth of the LP filters. Finally, 
design examples are given to show that nearly perfect 
reconstruction LP RNFBs with good filter quality can be 
achieved by the proposed method. 

The organization of the paper is as follows: the spectral 
supports of the analysis filters are first analyzed in section I11 
after an overview of the principle of RNFBs in section 11. Based 
on this analysis, the conditions for obtaining LP RNFBs with 
good frequency characteristics are then derived in Section IV. 
The LTI representation of the analysis filters and the use of 
cosine-roll-off characteristic allow us to design the analysis filters 
by the REMEZ exchange algorithm. Design examples of LP 
nearly perfect reconstruction (NPR) RNFBs are given in Section 
V. Finally, conclusions are drawn in section VI. 

11. Principle of RNFBs 
The recombination structure for an L-band nonuniform FB 

is shown in Fig. 1. In this structure, rn, sub-channels of an M- 
channel uniform FB are merged by rn, -channel TMUXs, where 
I = 0,. . . , L - 1 , producing nonuniform subbands with a sampling 
rate of rnl / M  . At the synthesis section, the analysis filters of the 
TMUX are used to produce the rn, subbands for the M-channel 
uniform FB. Similar merging can be performed for other 
consecutive channels. It was observed in [6] that if the uniform 
FB and the TMUXs are PR, then the nonuniform FB would also 
be PR. This is because if the input signal of the TMUX can be 
approximately reconstructed at the synthesis side (enclosed by 
the dotted line in Fig. I ) ,  the merging operation is equivalent to 
the introduction of a certain delay in the rn, channels. If these 
delays are compensated in other branches, the whole structure 
can be treated as an M-channel uniform PR FB and the PR 
condition is ensured. This structural PR property simplifies the 
design of the nonuniform FB, which was already demonstrated 
by the RN-CMFBs in [6,9]. Because the analysis filters of the 
RNFB are in general LPTV, their design can be complicated. 
Fortunately, if M and rn, are coprime, it is possible to come up 
with an LTI representation of the analysishynthesis filters by 
interchanging the order of the decimator and interpolator [6]. 
This will be given in the next section where the spectral support 
of the analysis filters will be studied. 

111. Spectral Support of the Analysis Filters 

To begin with, let us study the equivalent LTI 
representation of the RNFB. Consider the merging of the 
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subbands in Fig. 1 .  For the time being, let us ignore the 
multiplication with the constant co - cM-l , which does not affect 

the PR condition. It is known that if m, and M are coprime, then 
the decimator (M) and the interpolator ( m, ) can be interchanged. 

Moreover, using the noble identity, H,i+j (z )  and G,,,(z) can be 

moved across the interpolator and decimator, where 
i = O ,  ..., m, -1  and tj are the starting index of the merged 
channels of the M-channel uniform FB. It gives the following 
equivalent LTI representation of the analysis filter: 

m l  

4 ( 2 )  = 2 H,+i (2"' w,., ( 2  1 . (1)  
,=O 

For notational convenience, we shall use H ( w )  to denote 

H(e 'O) .  Hence 
m,-l 

H , W =  p , , + i ( m , w ) G , . , ( M o )  
r=O 

m,-1 

=e-Jw xH, , , ,h ,o)G, , ,  -FB(Mw)  =e-JWD(w) ,  ( 2 )  
,=O 

m,-1 

wheie D(w)= zHq+,(m/w)G/,c - .FR(MO) . (3) 
1 4  

Here, the TMUX with synthesis filters G,,,(w) is obtained from 
an 1-skewed FB with synthesis filters G , , , - F B ( ~ ) ,  where 

G,,i(w) = e-'mG,,i-w(w) . Let 

H , , + i ( m P )  = A,i+, ( U )  = A;+, (U)+ A,,+, (0)  , 
GI.; -FB (Mu) = 5, (w) = 5: (0) + 5,-(0) . (4) 

Since the periods of H, j+ , (w)  and G,,, are 2 w ,  the period 

of A,+ , (o )  is 27r/m, and that of 5 , ( w )  is 2 z / M .  A,T+,(w) and 

A,;+; (U) correspond to the responses of A,i+, (w)  for positive and 

negative values of w in [ - R , L ] ,  respectively. Similarly, 

5,+(w) and B;(w) correspond to the responses of B,(UI) in 

[ - - - . - l ~  

m, m, 

X X  

M M  
Our objective is to study the conditions on H o + , ( w )  and 

G,(o) such that k , ( w )  will possess the desirable frequency 
characteristics. To simplify the analysis, we assume that (i) the 
stopband cutoff frequencies of H,,+,(w) lie within 

A A  X X  [((r, +i)---), ((r, +i+l)-+-)], (ii) the stopband 
M 2M M 2M 

attenuation is sufficiently high that it can be treated as zero 
outside the region. Thence, only adjacent channels overlap in 
their magnitude responses. This also applies to G,,# -FB(w) with 
the stopband cutoff frequencies inside the range 

[(iz - z), ((i + I$ + L)]. Denote the frequency support of 

a function Q(w)  as Supp(Q) . In other words, if 0 6  Supp(Q) ,  

then Q(w) = 0 . It can be shown that 

s ~ ~ H H , , , ,  (0)) = [ 2 p n  + ((r,  +i)5---5) ,2prr  +( ( r ,  + r  + I ) - + - ) ]  

u [ 2 p ~  -((r, + i +  I ) - - + - ) , 2 p ~  -((r, +;)-----)I, 

mi 2 4  m, 2m, 

X X  

M 2M M 2M 
X X  X X  

M 2M M 2M 
X X  X H  

Supp(G,., - F B ( ~ ) )  = [ 2 q n  + (i- - -), 2 q a  + ( ( I  + 1)- +-)I 

m, 2m, mi 2mi 

m/ 2m, mi 2m, 
a n  X X  

u [ 2 q I r  -((;+I)-+-), 2q7r- ( i - - - ) ] .  

wherep and q are integers. Since the period of 
H,!+i(m,w)Gi 

-X 5 w 5 x . Inside which,p and q satisfy 
(Mu) is 2 ~ ,  we need only focus on the range 

(5) 
Here, 1x1 denotes the nearest integer less than or equal to x. 
Similarly, we have 
SUPP(A,,+, (U)) = SUPP(A,++, (0)) U SUPP(A,;+, (U)) 

+;--)- 1 R -+(r, 2pR 
2 m,M' m, 

We now turn to D(w)  in (3). Substituting (4) into (3), we 
4 

get D(o) = c D ,  (U) where 
,=I 

mi -I mi -I 

4(w) = c .q+, (0)4(w) ,  4(0) = C4;+!(0)5:(0) ; 

4(@ = Cq;,,(w)53@, D4(w) = c4;+,(w)5;(0) . 

r=O 

"',-I m,-l (6) 

r=O ,=O 

Only the terms Dl (w)  and D,(o) need to be studied as D,(w) 

and D 4 ( w )  are their conjugates. 
m,-I 

D, (0) : Careful examination show that D, (w)  = C A;+, (0)~: (0) 
i=O 

constitutes the desired passband of h, (w)  and A,++8 (w)B: ( w )  has 

a length of I = 2 x / ( m , M ) .  Detailed derivation can be found in 

[91. 
m, -1 

D,(w) : On the other hand, D2(w)  = A,:+,(o)B;(o) in (6) give 

rise to undesirable spurious response from the overlapping of the 
transition bands of A,:+, and 5,- . There are two such supports in 

D2(w) ,  denoted by F,+ and e-,  each having a length of I /  2 .  

Further, it can be shown that FIl = F , - .  By introducing the 

I =O 

, we have 
if OP F 

indicator function of F as E , ,  i.e. E F ( w )  = 

E e:, =E,-  and 

+A;+",,-lB;,-F,,,, , ' (7) 

m,-2 

The term, C (Ar;+,5;E, + A,:+,+15,;lEe~,) , which we call it the 
*=O 

"cross-term", is the source of the spurious response. It causes 
bumpings in the stopband of h,(w) , which was first observed in 
[6] for RN-CMFB. Next, we will establish the condition such that 
the spurious response in (7) can be forced to zero, by imposing 
appropriate conditions on the constant c,,,, and a matching 

condition of the two filters A,,+,(m) and B , ( w )  in LP RNFB. The 

analysis above is similar to that of RN-CMFB and more details of 
the derivation can be found in [9]. Apart from the assumptions in 
( i )  and (ii), the analysis is valid for any filters, H ( . )  and G(. )  , i.e. 
LP or nonlinear, FIR or IIR. 
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IV. Linear-Phase RNFBs 
Before proceeding to the selection of cq+, and the matching 

conditions, let us briefly review the basic property of LP filters: 
for a LP filter H(eJm) with a symmetric (anti-symmetric) 
impulse response h(n) , then we say H(e'") is symmetric (anti- 

symmetric). In addition, we have for symmetric H(e'") , 
H ( e J m )  = e-Jdv/2(HR(m)I ; ( 8 4  

and for anti-symmetric H ( e J m )  , 

where H , ( w )  is a real-valued function called the amplitude 
response of H(e'") . N is the filter length of h ( n )  . In addition, 
H R ( w ) =  H R ( - w )  for symmetric and H , ( w ) = - i f , ( - @ )  for anti- 
symmetric filters. 

If A,,+,(w) and B , ( o )  are symmetric, we have from (8a): 

Here, A:+,@) and @ ( w )  are the ampIitude responses, 

a = m i  N ,  /2 and p = MN,, /2 . 
Here, we consider two types of LP FBs: (i) analysis filters 

having same  symmetry (i.e. all symmetric) and (ii) analysis filter 
having alternate symmetry (i.e. alternative symmetric and anti- 
symmetric). In the case of alternate symmetry,  for simplicity, we 
assume that A,,,, (U )  and E, ( w )  are symmetric when i is even, 
and anti-symmetric when i is odd. In the following, we will 
establish the condition on c., +, in the above FBs for the existence 

of LP LTI FBs with good frequency characteristics. Although the 
constant err+; do not affect the PR condition, they are very 

important for achieving a good frequency response as we shall 
show in the following section. Our investigation starts from the 
analysis of D, (0) . 
Passband Flatness: 

Dl (U)  = c,,+, A;,; (w) 
mi-1 

I =O 

=c,~ A,: (U)Bl(N +c,;+lA,;+I(U)B;(U) +~, ,+2A1+2(0)B;(w) . . '  

e-""+piO(c,i lA:(@ll@(~j  + c,~+, b:+l (w)(IB,%] +5,+21A:+2 ( ~ j I @ ( w j  + -1 
for same symmetry 
e-J(a+p'O(c,! IA: - C,,+~\A:+~ (WI~EP + c ~ + ~ ~ A : + ~ ( w ) ( I B !  -.. .I 
for oppositesymmetry. 

(10) 
=I 
As mentioned earlier, DI(o) constitutes the passband of si(o) . 
Therefore, at the transition band of the magnitude responses, the 
term inside the bracket of (10) should add up to a constant. To 
this end, cq+, and cl+,+, should satisfy 

(1 1) 
c ~ + ,  = c,+,+, , 

c,,+, = - c ~ + , + ~ ,  

for same symmetry 
for alternativ e symmetry. { 

Spurious Resuonse Suuuression: 
As mentioned earlier, D 2 ( w ) ,  other than F,f and F,-I, 

should correspond to the stopband of H i ( w ) ,  and the cross-term 

might be appeared. Let us rewrite D 2 ( o ) ,  after including the 
constant c , ,+~ ,  as 

m,-l 

D 2 ( 0 )  = CC,,+,A,=,B, = c,; A ; B P F ;  
k=O 

m,-2 
+ (~r,+r+l~;+:+r+l~;+I~c;:,  +cr ,+ iAl+iK, -~ ,c- )  

,=o 

+ct)+m,-l A;+m,-lEi)- l  'F;,., ' (12) 

CO+, A;+;';EE;- + Cr,+i+lA;+i+lBii,,-Ep, 

= ~ - J ( N + P ) ~  k q + c  [A;+, ( W I ~ ~ R  (U)[+ cr,+,+I IA;+i+I (m)lki~,I (~11) 9 (13) 

The term inside the bracket (.) can be written as 

for both same and alternate symmetries. In order to eliminate the 
cross-term, we need to choose 

(11) and (14) together suggest that filters in the LP RNFB must 
have alternate symmetry and c,+, should satisfy (14). This is a 

necessary condition for LP LTI RNFBs to have good frequency 
characteristics. Hence, we call it existence condition. 

CO+, = - cq+ ,+I  . (14) 

Having satisfied the condition in (14), (13) becomes 
Cq+iA,:+,4-E,- + C,,+r+lA;+,+IKIE,c:, 

Obviously, if [A:+, (w)lk: (o)l= ]A;+,+, (o)llB,R,, (U)/ , then the cross- 

term will be zero. This additional condition on A,+, (o)  and 

E ,  (0) can be realized as the following matching condition: 

A,+, (0) = 4 (U) 9 

(15) or equivalently Hq+, ( m p )  = G, (MO). 

Due to page limitation, the proof is omitted, and interested 
readers can refer to [9] for a similar analysis using the RN- 
CMFB. 

With the cross-term eliminated, D2(w)  in (12) reduces to 

D 2 ( W ) = c , , A : B , E & +  + 'q+m, - IA~+m, - IBm, - lEF~, - ,  ' (16) 

It can be proved that W E  F: and W E  F;-l belongs to the transition 

band of s i ( w ) .  
1, for even i 
- 1, for odd i 

in the Finally, for simplicity, we choose c,+, = 

design examples to be followed. Hence, the equivalent LTI filters 
can be written simply as follows: 

m,-1 

si@)= C ( - l ) ' H , + , ( z m ' ) G i , , ( Z M )  . (17) 
,=o 

V. Design Method 

In the recombination structure, the original and the 
recombination FBs can be designed separately (first for the 
uniform FB and then the recombination TMUXs) as long as they 
satisfy the matching condition above. For the current examples, 
the uniform LP FBs have equal filter lengths. The filters have 
alternate symmetry. The transition band of the analysis filters 
follow a cosine roll-off characteristic so that the FB is 
approximately power complementary and is NPR. Because of 
this simplification, the desired responses of the analysis filters are 
completely determined, the REMEZ algorithm in MATLAB can 
be employed to minimize the maximum approximation error. 
Therefore, the design of the proposed NPR LP RNFBs is very 
simple and good filter quality can be achieved, as we shall 
demonstrate below. 

Consider an LP RNFB with sampling factors (3/4, 114). It is 
constructed by merging the first three channels of an 4-channel 
uniform LP FB with an 3-channel recombination LP TMUX. In 
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the original FB, H,( z )  and H 2 ( z )  are chosen to be symmetric 

and H , ( z )  and H , ( z )  are anti-symmetric. In the recombination 
TMUX, G,(z) and GZ(z) are chosen to be symmetric, while 

G,(z) is anti-symmetric. The lengths of the 3- and 4-channel FBs 
are 63 and 84, respectively. As mentioned earlier, the use of a 
cosine-roll-off transition band allows us to solve the problem as a 
filter design problem, which in turn can be solved using the 
REMEZ algorithm. Also, the matching condition in (15) is much 
easier to be satisfied by choosing N , / M  = N , , / m ,  . In this 

example, the passband and stopband cutoff frequencies of the 
analysis filters are: H , ( z )  : w,,, =O.Ix(2n), w , ~ ~  =0.15x(2n) ; 

H I @ ) :  q, =0.1x(2n), U,,, =0.15x(2n), U,,, =0.225x(2n) and 

ws3 =0.275x(2n) . The cutoff frequencies of the other analysis 

filters can are similarly defined. Here, wp, and q, are 

respectively the passband and stopband cutoff frequencies of the 
filters. The relative weighting of the passband and stopband 
errors are chosen to be identical. The equivalent structure of the 
FB with LTI analysis filters is shown in Fig. 2(a). The magnitude 
responses of the equivalent LTI analysis filters are shown in Fig. 
2(b). This system is approximately PR and the reconstruction and 
aliasing errors are 10” . 

The second example is an LP RNFB with sampling factors 
(2/5, 3/5). By using (15) and (17), we get the equivalent LTI 
analysis filters shown in Fig. 3. The lengths of the 2-, 3- and 5-  
channel FBs are 50, 75 and 125 respectively. The reconstruciion 
and aliasing errors of the system are . 

VI. Conclusion 

This paper presents the theory and design of a class of LP 
nonuniform FBs called RNFBs. The spectral supports of the 
analysis filters are analyzed, and the existence and matching 
conditions to obtain LP RNFBs with good frequency 
characteristics are derived. Design examples of the LP NPR 
RNFBs are given to demonstrate the effectiveness of the 
proposed method. 
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Fig. I .  Structure of recombination nonunifom filter-bank 

I - 4 0  I -- f -5” 1 I- 
N o r n l r l l z s d  F..quPncy 

(a) (b) 
Fig. 2. LP RNFB with sampling factors (314,114). (a) Equivalent structure of the analysis banks with LTI analysis filter. (b) Magnitude responses. 

(a) (b) 
Fig. 3. LP RNFB with sampling factors (2/5,3/5). (a) Equivalent structure of the analysis banks with LTI analysis filters. (b) Magnitude responses 
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