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ABSTR4CT 

This paper studies the design and multiplier-less realization 
of variable fractional delay matched filters (VFD-MFs), which 
provide matching filtering and variable fractional delay of the 
filter output. It offers greater flexibility and lower delay in 
symbol-timing adjustment than directly cascading a match filter 
with a fractional delayer. The design of VFD-MFs, which can 
be viewed as a variable digital filter (VDF) design problem 
subject to the matched filtering condition, is formulated as a 
second order cone programming (SOCP) problem with least 
square design criteria. The proposed VFD-MFs can be 
efficiently implemented using the Farrow structure. By 
employing sum-of-power-of-two (SOPOT) coefficients and the 
multiplier block (MB) technique, very efficient multiplier-less 
realization of the VFD-MF with low hardware complexity is 
obtained. A design example is given to demonstrate the 
effectiveness of the proposed approach. 

I. INTRODUCTION 
In a conventional linear modulation receiver, match 

filtering (or correlation demodulator) is performed on the 
received signal and its output is sampled at the end of each 
symbol interval. The output is then fed to a symbol timing 
recovery circuit to recover the symbol timing. A fractional 
delay digital filter (FDDF) is usually employed to interpolate 
the match filter output so that the demodulated signal can be 
sampled at the right timing instant to minimize inter-symbol 
interference (ISI) [ l ] .  If the IF is implemented digitally, 
channelization using a cascade of band-limiting filters and 
sampling rate conversion might be required before feeding to 
the digital receiver [2] .  Conventionally, the match filter and 
FDDF are implemented separately. More recently, there is an 
interest in combining these components together [3-51. There 
are two potential advantages of the latter approach: 1) the 
overall system delay can be reduced as we shall demonstrate 
later in the design example, 2) the specifications of the match 
filter and FDDF can be jointly optimized to reduce the 
implementation complexities for a given specification. In [3], a 
polyphase filter approach is employed where a number of 
fractional sample delayed versions of the match filter are pre- 
calculated and stored. On the other hand, the combined match 
filter-interpolator in [4,5] is designed using the least square 
approach and implemented using the Farrow structure 161. For 
convenience, we shall call such filters variable fractional delay 
matched filters (VFD-MFs). VDFs are filters whose frequency 
characteristics can be varied on-line by a set control 
parameters. FDDFs are VDFs with variable fractional sample 
delay [6-81. 

In this paper, the design and multiplier-less realization of 
VFD-MFs with lower system delay are studied. The design of 
VFD-MFs is considered as the design of a VDF subject to the 
matched filtering condition, and it is formulated as a second 
order cone programming (SOCP) [9,10] problem with least 
square design criterion with peak stopband constraints. For 
illustrative purpose, we shall consider the design of a pair of 
transmit and receive filters which form a Nyquist channel. 
Since it is difficult to satisfy exactly the zero IS1 condition [ I ]  
for all fractional delay of the MF output over which the spectral 
parameter is to varied, the Nyquist condition is approximated 
by assuming that the transmit filter and the VFD-MF constitute 

a raised cosine response with variable fractional sample delay. 
The SOCP framework is more flexible than the method in [3-51 
in that additional convex quadratic inequality constraints such 
as peak error constraints in the stopband can be incorporated 
readily. Since SOCP is a convex optimization problem, the 
optimal solution, if it exists, is guaranteed. The proposed VFD- 
MFs is also implemented using the Farrow structure. Since the 
subfilter coefficients in the Farrow structure are fixed, they can 
be implemented efficiently using canonical signed digits (CSD) 
or sum-of-power-of-two (SOPOT) coefficients [ 1 11, which can 
be implemented as limited number of shifters and adders, 
giving rise to multiplier-less realization with very low 
implementation complexity. A number of methods [ I  1-14] 
have been proposed to determine the SOPOT approximation in 
such multiplier-less implementation. Here, the random search 
algorithm reported in [I21 is employed, because of its 
flexibility in accommodating a wide variety of constraints. To 
reduce the arithmetic complexity further, the subfilters are 
implemented in their transposed form and realized as multiplier 
block (MB) [14]. Using the MB technique [15], the total 
number of additions can be kept to minimal by reusing the 
intermediate results generated. Consequently, apart from the 
limited number of multipliers required in the Farrow structure, 
the proposed VFD-MFs can be implemented without any 
multiplications. 

The paper is organized as follows: Section I1 is devoted to 
the properties of the Nyquist filters and the zero inter-symbol 
interference condition. The formulation of the VFD-MFs 
design problem using SOCP is introduced in section 111. The 
incorporation of peak error constraints on the VFD-MFs will 
also be considered. Section IV describes the multiplier-less 
implementation of the VFD-MF. Design examples are given in 
Section V to demonstrate the effectiveness of the proposed 
approach, and finally, conclusion is drawn in Section VI. 

11. PROPERTIES OF THE NYQUIST FILTERS 
In digital communication systems, it is often required that 

the cascade of transmit and receive filters form a Nyquist filter 
in order to avoid intersymbol interference (ISI) [ I ] .  In general, 
Nyquist filters are lowpass filters and their desired frequency 
responses are given by: 

where r = ( L - 1 ) / 2 - D  is the group delay, D is the 
prescribed delay reduction parameter, which is assumed to be a 
positive integer, over a linear-phase filter of odd length L, 
wp = (1 - p)z / M and w, = (1 + p)z I M are the passband 

and stopband cutoff frequencies respectively; A4 is the 
oversampling factor and 0 < p < 1 is the rolloff factor. On the 
other hand, the impulse response of a Nyquist filter satisfies the 
following zero IS1 or zero-crossing conditions [16]: 

n = T k kM, k = 42, ... d n )  = 

For linear-phase Nyquist filter (i.e. D = 0 ) ,  T is the centre of 
symmetry of its impulse response. Alternatively, the desired 
frequency response can be approximated in the frequency 
domain as the following raised cosine response: 
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e-'"', O < O < W ,  

G,(w) = . cos2[(w - wp)M/4p], wp < w < w, . (2-3) 
I O ?  w T < w < ? z  

111. PROBLEM FORMULATION 
In a VDF [14], the desired response Hd(w,4)  is a function 

of a spectral parameter 4. The spectral characteristics of a VDF 
can therefore be continuously varied by changing 4. The 
impulse response of the VDF under consideration is assumed to 
be a linear combination of a polynomial basis function of the 
spectral parameter 4 and subfilter coefficients h,(n),  and it is 
given by: 

W , 4 )  = Y h / ( 4 4  /=O 1 (3-1) 

where 4 is assumed to vary linearly over a finite interval. The 
z-transform of the polynomial-based VDF is then given by: '-'[ A-' ] 

~ ( z , $ )  = c xhr (n ) z - "  = Y H / ( Z ) . ~ / ,  (3-2) 
/ =o  ,r=O 

where H,( z )  = Cr=:h/(n)z-" is the I-th FIR subfilter. (3-2) 
suggests a very useful structure for implementing VDF called 
the Farrow structure, which is shown in figure 1. To simplify 
the notation, substitute m = n + NI and z = elw into (3-2), one 
gets: 

H(eJ" ,4 )  = LFIam4'e-'" m=O , (3-3) 

where n = mod(m, N )  and I = (m - n)  I N . 
As mentioned earlier, the combination of the receive filter 

and the FDDF can be viewed as a VDF. More precisely, 
transmit filter H,(z) and receive VDF, H(z ,@)  together 
approximate the raised cosine response with the following 
tunable fractional delay: 

e - J W ' t l )  O < W < W n  

Gd(w,4) = e-'wr'%os2[(w -w, , )M/4p] ,  w p  < w < 0, (3-4) 
I O ?  ' w , < w < 7 t  

where r ( 4 ) = ( N + N T - 2 ) / 2 - D + 4  is the group delay of the 
VDF; N ,  is the length of the transmit filter. Without loss of 
generality, the transmit filter is assumed to be a linear-phase 
square-root raised cosine filter. On the other hand, the overall 
system response G(e/",#) in term of H ( z , 4 )  is: 

G(e'",&= HT(e"" ) .H(e ' " ,4 ) .  (3-5) 

G(e'",@) = a'{c(w,i)  - ~ w d ) }  , 

Using (3-3), (3-5) can be rewritten more compactly in matrix 
form of the design parameters a as follows: 

(3-6) 
T T  u = [ u ,  ,..., u~,~- , I '  =[it,,' ,..., hL-, 1 , 

h, =[h,(O) ,..., h/ (N-I )] '  for Z = O , I  ,..., L - I ,  
where c(w,@) = Re[el(w,4)], s(w,4) = Im[el(w,@)l; 

el(@,#)= H,(eJ'").[e(w)7.4'.e(w)7,.,.,4'-' .e(w)']' ; 

e(w) = [I,e ""...,e~"'~'""]' 
where Re[*] and Im[*] denote respectively the real and 
imaginary parts of the elements inside the square bracket. Here, 
we shall approximate the desired response G,,(w) by G(z)  in 
the least-square sense. That is: 

E , ~ ~  = ~ w ( o , 4 ) . l G ( e ' ~ ~ , 4 )  - ~ ~ w , 4 f d & 4 ,  (3-7) 
(a,@) E 0 

where W(w,4)  is a positive weighting function, and R is the 
(frequency, tuning range) of interest. The advantage of 
minimizing E,, is that it can be written as a quadratic function 
of a: 

(3-8) 

where Q = hW(w,4).[c(w,4)c(w,4)' + s(w,4)s(w,4)'ldwd4, 

and k = hW(w,4)IGd(w,4)12dwd4 . The optimal LS solution is 

given by aLs = Q-'p  . Next, we shall formulate these problems 
as a convex programming problem and solved using second 
order cone programming (SOCP) [9-10]. The advantage of 
formulating the objective function as a convex problem such as 
SOCP or semidefinite programming (SDP) is that the resulting 
problem is convex and the optimal solution, if it exists, can be 
found. In addition, other linear equalities or convex quadratic 
constraints can easily be incorporated, as we shall illustrate 
later in this section. By defining 3 =[ON Q"2] , p = Q-'/'p,  

k =  p T Q - ' p - k  , x = [ S  aTIT and c = [1,0 ,.... 01' , one can 
reformulate (3-8) as the following SOCP: 

min S subject to 6 2 a'Qa - 2 d p  + k , 

P = I,W(w,4){c(w,4)Re[G,(w,4)1+ S(W,4)Im[G,(W,4)l}d&4 

- -  
min c T x  subject to c'x-k 2 Qx-p . 

x ll (Iz (3-9) 
where 0, is a N row zero vector. 

To avoid excessive sidelobe of the LS solution, additional 
peak constraints are imposed on the stopband. Let sp be the 

peak ripple to be imposed in a frequency band ~ E [ W , , W ~ ]  (a 
collection of frequency bands is also feasible). Then, the peak 
error constraint can be written as: 

IH(e'W,4)I 5 E n ,  E [U, ,U, I 3 (w,4) E Q . (3-10) 
Digitizing the frequency variable w and control parameter 4 
over a dense set of frequencies {w,J S i 5  K , }  and control 
parameters {4k,l S k S  K 2 }  in the range of interests, the 
constraints in (3-10) becomes: 

Er -[a:(W,,4,)+a:(w,,4,)1"2 2 0  5 (3-1 1) 

a , (w ,  A4 1 = la'cI(w,,4, >I 1 a, (w, 44) = JaTSI(W,,4, >I ; 
where ~l(w,,4~)=Re[e2(w,,4,)1, sl (w, ,4 , )=lm[e2(w, ,4 , )1  ; 

e2(w,,4, 1 = [e(w,)',4; -e(w,)',. . .&I . e(q)'l' . 
Or equivalently 

E,, 2 ((R, (3-12) 

The resulting constraints on the peak ripples can then be 
augmented to the existing constraints in (3-9). 

Iv. MULTIPLIER-LESS REALIZATION 

In this section, the multiplier-less realization of the 
proposed MF-VFD is described. As mentioned earlier, the 
VDF is implemented as a Farrow structure with the subfilter 
coefficients being represented as SOPOT coefficients [ I  I]. To 
further reduce the implementation complexity, the multiplier- 
block (MB) technique is also used. The basic idea of MB is to 
reduce the redundancies found in implementing all SOPOT 
coefficients by removing any possible common sub- 
expressions in their representations. More precisely, the 
coefficients h,(n) in the I-th subfilter H , ( z )  are represented in 
the following SOPOT form: 
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(4-1) 

with U ,,",, E {-l,l} and a, E {-g ,..., -l,O,l,..., g }  , where g is a 

positive integer and its value determines the range of the 
coefficients, and R is the number of terms used in the 
coefficient approximation. The coefficient multiplication can 
then be implemented as limited number of shifts and additions, 
giving rise to multiplier-less realization. These SOPOT 
coefficients can be obtained by a number of methods [l l-141. 
Here, we shall employ the random search algorithm reported in 
[12]. One advantage of this algorithm is that different types of 
constraints can be easily incorporated. In particular, the 
constraints for the peak passband error, peak stopband error, 
peak group delay error and peak distortion error are 
incorporated in our design. To determine the SOPOT 
coefficients, the following objective function is minimized for 
4 E [-0.5,0.5] : 

is the peak passband error, 

is the peak stopband error, 

(4-2) 

(4-3a) 

(4-3b) 

(4-3c) 

is the peak group delay error, and 

is the peak distortion error, which is used to measure the IS1 
error; LI = [ r / M ]  , L2 = l (L - 1 - z ) / M ]  and la] denotes 

the integer just less than or equal to a . T,,,,, is the total 
number of SOPOT terms used to implement all the SOPOT 

coefficients. k(e'",+) and t(q5) are respectively the 
frequency and group delay responses of the candidate 
multiplier-less MF-VFD. i ( n )  is the impulse response 
obtained by cascading the candidate multiplier-less MF-VFD 
and the transmit filter with different fractional sample delays. 
6,,-,nay , 6,_,,,, , and 6(.ma, are the maximum tolerance 
of the passband, stopband, group delay and distortion errors, 
respectively. It should be noted that other meaningful 
measures, say other performance measure of the match filter or 
power consumption, can also be used instead. In the random 
search algorithm, the real-valued coefficients are first obtained 
as described in section 111. Let b be the vector containing these 
real-valued coefficients. Then, the algorithm repetitively 
calculates a candidate SOPOT vector b< which is given by: 

bc = lb + azb, I,,,,,, ' (4-4) 
where b, is a random vector with elements chosen in the range 

It1 , A is a user-defined variable used to control the size of the 
neighborhood to be searched, and [.]SOPOT is the rounding 
operator that converts every element inside the input vector to 
its closest SOPOT value for a given value of g. The 

performance measures 8, ,6 , ,  6, and 6, of the new SOPOT 
coefficients are then calculated. The set that yields the 
minimum number of terms for implementing the SOPOT 
coefficient while satisQing the given specifications is declared 
as the solution. Since this is a random search algorithm, the 
longer the searching time, the higher the chance of finding the 
optimal solution. To implement this multiplier-less VFD-MF 
using MB, let's consider its implementation in figure 2. It can 
be seen that each subfilter is implemented in their transposed 
form, where the input signal x(n)  is multiplied with a large 
number of constant coefficients in SOPOT form. The 
redundant additions in these SOPOT products can be reduced 
using a MB, which greatly reduces the arithmetic complexity. 
Interested readers are referred to [ 151 for more details. We now 
present a design example. 

V. DESIGN EXAMPLES 
In this example, variable fractional delay match filters with 

low system delay are designed using the proposed approach. 
The design problem was solved by the SeDuMi Matlab 
Toolbox [17] on a Pentium 4 PC. The specifications are: 
N = 1 7 ,  L = 5 ,  M = 4 ,  p=O.5 and 4~[-0.5,0.5].Thedelay 
reduction parameter D is chosen to be 2 so that the group 
delay of the proposed MF-VFD ranges from 5.5 to 6.5. The 
transmit filter is assumed to be a linear-phase square-root raised 
cosine filter of length N ,  = 17 . The peak error constraint is 
imposed to limit the sidelode in the stopband to 20 dB with 
K, = 50 and K,  = 50 . The passband, stopband, group delay 
and IS1 error over the entire range of the tuning parameter 4 
are plotted as dash-dotted line in figure 2. It can be seen that 
the corresponding worst-case passband, stopband, group delay 
and IS1 errors are respectively 0.003499, 0.1, 0.02643 and 
0.015 1. The computational time is about 45.828 seconds. 

As mentioned earlier, the subfilter coefficients, which are 
fixed, can be implemented using SOPOT coefficients. These 
SOPOT coefficients are determined as described in section IV. 
As an illustration, the passband specification is relaxed so that a 
tighter group delay specification can be achieved. The target 
specifications of the proposed multiplier-less MF-VFD are: 
6pp-mar =0.00577 (0.05 dB), S,-,, =0.106 (19.5 dB), 

6,-- = 0.02 and 6,-,,,ay = 0.01 5 . It can be seen from the solid 
line in figure 2 that the worst-case group delay is improved at 
the expense of slightly increase in passband error. This 
substantiates the usefulness of the proposed multiplier-less 
realization method. It should be noted that the total number of 
multipliers required to implement all the real-valued 
coefficients of the MF-VFD is 86. On the other hand, the 
realization using SOPOT coefficients requires only 202 adders. 
After using the MB technique, the number of adders is further 
reduced to 74, which is about 36.6% of the hardware resources 
required for directly implementing all the SOPOT coefficients. 
The frequency and group delay responses of the proposed 
multiplier-less MF-VFD are shown in figures 3a and 3b 
respectively. Table 1 summarizes the design results in this 
example. 

V. CONCLUSION 
The design of variable fractional delay matched filters 

(VFD-MFs) with lower system delay using second order cone 
programming and its multiplier-less implementation have been 
represented. It is implemented as a Farrow structure with the 
subfilter coeficients being SOPOT coefficients and 
implemented as MB. A design example is given to demonstrate 
the effectiveness of the proposed approach. 
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Table 1. Design results of the variable fractional delay match filters. 

1 b) 

Figure 1: Implementation of the variable digital filter (VDF) (a) Farrow 
structure (b) transposed form of sub-filters. 
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2C) 2 4  
Figure 2: a) Passband errors, b) stopband errors, c) group delay errors and d) 
peak distortion errors of the VFD-DFs with real-valued (dash-dotted line) 
and SOPOT (solid line) coefficients. 
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3b) 
Figure 3: a) Frequency response and b) group delay response of the 
multiplier-less VFD-MF with evenly sampled tunable parameter 4 . 
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