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A RATIONAL SUBDIVISION SCHEME USING COSINE-

MODULATED WAVELETS 

S. C. Chan and X. M. Xie

Department of Electrical and Electronic Engineering 

University of Hong Kong, Pokfulam Road, Hong Kong. 

ABSTRACT

This paper proposes a rational subdivision scheme using 

cosine-modulated wavelets. Subdivision schemes constructed 

from iterated filter banks can be used to generate wavelets and 

limit functions for multiresolution analysis.  The proposed 

subdivision scheme is based on a kind of nonuniform filter

banks called recombination nonuniform filterbanks (RN FB).  It 

is shown that if the component FBs in a RNFB are wavelet FBs, 

then the necessary condition for convergence to limit functions 

in the subdivision scheme is also satisfied.  Therefore, the

design of different rational subdivision schemes is considerably

simplified.  An efficient RNFB, called RN cosine modulated 

FBs (CMFB), constructed from uniform CMFBs and cosine-

modulated transmultiplexers (TMUX) are further investigated.

Using a design technique for designing RN CMFB and cosine

modulated wavelets (CMW) previously reported by the authors,

very smooth limit functions can be generated from the rational 

subdivision scheme.  A design example is given to illustrate the

proposed method.

I. INTRODUCTION 

Rational subdivision schemes based on iterated filtering

with nonuniform filter banks (FBs) can be used to generate

wavelets and limit functions for multiresolution analysis. The

theory and properties of this subdivision scheme with integer

subdivision was studied in [14]. It is closely related to the 

generation of M-adic (or M-band wavelets). The rational case

was first studied by Blu [2] and then in more detailed by Rioul 

and Blu [10].  Rational subdivision schemes present many

interesting properties which are quite different from the M-adic

case.  For example, unlike the M-adic case, the shift property of

the limit functions no longer hold, and it involves an infinite set 

dilated functions.  The design and convergence analysis of the

rational case are more involved than the integer case. The

design of two-band orthonormal rational filter banks and 

wavelets were further studied in a recent article [3], where

nonlinear optimization is employed to achieve perfect

reconstruction and imposing the regularity condition. 

In this paper, we consider a rational subdivision scheme 

constructed from a kind of nonuniform filter banks called 

recombination nonuniform filterbanks (RN FB) [4].  In RNFBs,

consecutive subchannels of a uniform FB are merged together to

yield different rational sampling rates. The advantages of 

RNFBs are their simplicity in imposing the perfect

reconstruction (PR) condition, and their ability to perform

dynamic recombination [5,11,13]. It is shown in this paper that

if the component FBs in a RNFB are wavelet FBs, then the

necessary condition for convergence to limit functions in the

subdivision scheme is also satisfied.  Therefore, the design of 

different rational subdivision scheme is considerably simplified. 

An efficient RNFB, called RN cosine modulated FBs (CMFB),

constructed from uniform CMFBs and cosine-modulated

transmultiplexers (TMUX) are further investigated.  The

advantages of using CMFBs in RNFB are that the design and

implementation complexities can be drastically reduced,

because the analysis and synthesis filters are generated from a

single prototype filter.  Further, in RN CMFBs, the uniform 

CMFB and recombination TMUXs can be designed separately

by imposing a simple matching condition. Using a technique for

designing RN CMFB [5,13] and cosine modulated wavelets

(CMW) [1] previously reported by the authors, very smooth

limit functions can be generated from the rational subdivision

scheme.  A design example is given to illustrate the proposed

method.  Not only can multiresolution analysis with different

sampling factors be generated by combination of these basic

filterbanks, it can also be made dynamic reconfigurable. 

The paper is organized as follows: Section II reviews the 

theory of rational subdivision schemes. The new cosine-

modulated wavelets-based subdivision scheme is given in 

section III. Further information on the pseudo wavelet series

generated from this subdivision scheme is examined in section 

IV, followed by a simple example in section V. Finally,

conclusions are drawn in section IV.

       II. THEORY OF RATIONAL SUBDIVISION 

SCHEMES

A. Rational Subdivision Schemes

Consider a “p/q-adic” subdivision scheme, which is an

infinite collection of sequences g , , labeled by

 and is computed using a recursion of form 
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where is an linear operator, which interpolates its input by

a factor of p following by the filtering with g  and a

decimation by a factor q.  That is
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where is called the subdivision mask.  This is illustrated

diagrammatically in Figure 1. This subdivision, also known as 

iterated filterbanks, can be used to generate wavelets and limit

functions (as l ) for performing multi-resolution analysis.

For dyadic subdivision scheme where p  and , (2)

reduces to 
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In the dyadic case, an integer shift of s in the input gives rise to

an integer shift of   at the l-th stage output.  That is sl2
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Because of this shift property, it is only necessary to study the

limit functions for g .  For the rational case, a 

similar shift property does not hold and it is necessary to 

consider the convergence of the sequence 
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i.e. the impulse response g of the LPTV system

to an impulse at .  Under certain conditions,

, if plotted against x , will converge to a

function .  In the dyadic case, =  is the

integer shifts of the scaling function. For the rational case, it

consists of an infinite set of distinct compactly supported limit 
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function . Fortunately, the shift error can be made to a 

small value by increasing the regularity imposed.

)()( xs

)()( ns

(|sup )(s x

x(  a l

(G

pG )1(

(| ),(g sl

l

n
g ,(|max

0k

q

B. Necessary and Sufficient Condition for Convergence 

For a given shift parameter s , the p/q-adic

subdivision scheme g converges uniformly to a limit

function  if, for any sequence of integers  satisfying

Z
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where c is constant, we have 
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This definition was introduced in [10].  The meaning of this

definition is that, by choosing n as in (6) with c a given but 

small enough constant, then n will be arbitrarily close to

s . In this case, condition (7) implies that the 

discrete sequence g will approach the limit function

. The reason for including the factor  for x in (6)

is that because of the upsampling and downsampling in the

LPTV system, each stage will interpolator the input by a factor

of p/q.  To compensate for this expansion, the factor ( is

multiplied to x in computing the sup function in (7). A 

necessary and sufficient for convergence is [10]:
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A p/q-adic subdivision scheme g  converges

uniformly, for all , to (continuous) limit functions 

if and only if  satisfies the basic conditions
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1
 is a factor

of .  In [2,3], many designs based on the necessary

condition (8) alone do converge.  This is also true in our cosine

modulated subdivision scheme. Therefore, we shall only focus

on this necessary condition later in this paper.  If g(n) is 

obtained from (the 1

)(zG

p

st branch ) a two-

band nonuniform PR filterbank (Fig. 2, with L=2, and q ,

, and ) then the limits functions

are biorthonormal and they generate a wavelet-like expansion or

multiresolution analysis, although the condition for expanding

every square integrable function is still an open question.
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In the next section, we shall show that the necessary

condition (8) are automatically satisfied for a class of 

nonuniform FBs called recombination FB (RNFB), when the

component FBs are all wavelet FBs.

III. SUBDIVISION SCHEME BASED ON RNFB 

A. Principle of Recombination Nonuniform Filter Bank

Fig. 3 shows the structure of a recombination nonuniform

filter bank, which was first proposed in [4].  It is obtained by

merging certain consecutive subbands of an M-channel uniform 

FB by sets of m -channel TMUXs.  Each merged output

represents one output of the nonuniform FB with sampling rate 

, where m is the number of TMUXs used to produce 

this subband (l-th subband in this case).

l
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It was shown in [5] that if the M-channel FB and the m -

channel TMUXs are all PR, the whole system will be PR,

provided that the delays introduced by the inserted TMUXs are 

compensated in other branches. If m  and M are coprime, then

the decimator (M) and interpolator ( ) can be interchanged.

Moreover, by using the noble identity [9], H , and

can be moved across the interpolator and decimator and

it gives rise to an equivalent LTI representation of the analysis

filter as shown in Fig. 2, where ,

with  and . In other word, the l-th equivalent

analysis filter of the nonuniform filter bank is the sum of the

product filters between H ’s and G ’s with the powers in the z

variables raised appropriately.
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Likewise, the 1st branch of the RNFB can be used to 

generate limits function in a rational sub-division scheme if the

necessary and sufficient condition in (8) and (9) are satisfied. 

For reason mentioned earlier, we shall focus on (8), which is

equivalent to saying that p

kj 2

e , , are roots of G .

Suppose that both the uniform FB and the TMUX are derived

from wavelet FBs satisfying the K-regularity condition. That is: 

, k , are K-th order roots of ;0

and , k , are K-th order roots of . Substituting0

 into gives
~

0H

2 (i

j eHe .
(11)

From the admissibility condition of wavelet filter banks, we

have G , , and (11) reduces to 0

~
(00 HH .

Since , , are K-th order roots of H , sok e ,

is also a root of H , since m  and M are coprime.

Hence the necessary condition (8) is satisfied.
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B. Sub-division Scheme based on RN CMFB 

Here, we consider an efficient RNFB called the RN cosine

modulated FB (RN CMFB), where the uniform FB and TMUXs 

are derived from CMFBs.  The analysis filters h  and 

synthesis filters  are given by
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, where h is the impulse response of the

prototype filter and N is the filter length. For simplicity, we

shall consider the case of N . Let

be the type-I polyphase decomposition

of the prototype filter, it can be shown that the PR conditions of

the CMFB are given by
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where is a nonzero constant and is a positive integer.

Since the analysis and synthesis filters are frequency shifted

version of the prototype filter, it is only necessary to minimize 

the passband and stopband ripples of the prototype filter. More

precisely, the design problem can be formulated as the 

following constrained optimization problem 
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subject to the PR constraint in (13), 

(14)

The theory and design of RN CMFB have been discussed in 

[5,11].  The design procedure is summarized as follows: Given

the sampling factors { ,  with 

.
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1. Design an M-channel uniform CMFB with prototype filter

, filter length N , and cutoff frequency 

 using  (14).
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2N

3. Design the m -channel uniform recombination CMFB with 

length , cutoff frequency , and

prototype filter G using (4). The weighting in the 

passband and stopband should be identical to the M-channel

CMFB.
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Interested readers are referred to [5,11] for more details.  RN

CMFBs are attractive because of their low design and

implementation complexities and good frequency

characteristics. Moreover, the uniform FB and TMUXs can be

designed separately, so that dynamic recombination is feasible

[13].  The construction of cosine modulated wavelets is also 

very simple, which amounts to imposing certain zeros in the

prototype filters [1].  By imposing this additional condition, the

RN CMFB can be used to generate limit functions for rational

multiresolution analysis.

IV. PSEUDO-WAVELET SERIES 

It has been shown in [2] that the limit functions satisfy
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This is different from the M-adic case, where

, or in the Fourier transform domain: 
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In Cohen and Daubechies’s approach for M  [12], and

Chan, et al [1] for positive integer M, the infinite product in

(16), if it exists, is used to define the Fourier Transform of the 

scaling function in the M-band wavelets. In the biorthogonal

case, we also have a similar recursion for the dual scaling

function:
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Note, the FT of (19) leads to a convolution instead of a product 

of the two Fourier transforms.  For the more general case of 

biorthogonal rational subdivision scheme, the dual scaling

function will be generated by the mirror image of the

synthesis filters of G , . It satisfies the

recursion:
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In M-band wavelets, the spaces are generated by
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Denote the space generated by , , as V , because

of the dilation equation, we have V . Similarly, define

the space generated by
~

, , as V . We have 

.  This is called the nested subspaces generated by the

scaling functions. And V . The gap between

is filled in by the space W  generated by

, . That is, V . Similar

relations apply to the dual. In biorthogonal wavelets, W  and 

 are not orthogonal to each other, but they are all orthogonal 

to their duals (hence the name biorthogonal). The sum W  is 

the gap between: 
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And those of its dual V  and

.

l
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In the subdivision scheme constructed by biorthogonal

RN CMFB, the scaling functions are combination of the M-band

scaling function and some of the wavelet functions.  Although

they satisfy the dilation equation in the form of (16), after

recombination, the new scaling function, like the rational

subdivision scheme only obeys (15). Depending on how the

remaining channels are treated, the space can exhibit a wide 

variety of structure. If the rest of the channels are not merged,

then we have: V , with L being the number of

the nonuniform bands of the rational filter bank. And, the

property of W is inherent from the original M-band wavelets.

If the rest of the channels are also merged, then it is expected

that the shift-invariant property like the new scaling function of 

the rational subdivision scheme will very likely be lost. A set of 

wavelet functions can also be constructed from  and
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where  and are the analysis and mirror

synthesis filters of the merged filter bank.  It was shown that [2]

the PR property of the FB will induce the biorthonormality of 

, , , and ~ . It is also possible to 

expand a function into a pseudo wavelet series to form a 

multiresolution analysis.  However, whether the set of functions

span the whole  space is still an open question. 

)s )() xs

V. EXAMPLE

Fig. 4 shows an example RN cosine modulated wavelet 

FB with sampling factors (¾, ¼) and its corresponding limit 

scaling and wavelet functions with s=0 (Fig. 4(c)-(f)).  The

frequency responses of the 3-channel and 4-channel CMFBs are 

shown in Fig. 4(a) and (b). The lengths of them are respectively

30 and 40. Combining the first three channels in the original 4-

channel CMFB by the synthesis filters of the 3-channel CMFB

gives a 2-band (¾, ¼) nonuniform FB. It can be seen that the

limit functions are very smooth.

IV. CONCLUSION 

A rational subdivision scheme based on cosine-modulated

wavelets is presented. It is based on a kind of nonuniform filter

banks called recombination nonuniform filterbanks (RN FB).  It 

has been shown that if the component FBs in a RNFB are 

wavelet FBs, then the necessary condition for convergence to

limit functions in the subdivision scheme is also satisfied, which 

considerably simplifies the design of different rational 



subdivision schemes.  An efficient RNFB, called RN cosine 

modulated FBs (CMFB), constructed from uniform CMFBs and 

TMUX are proposed together with its design procedure.  Very

smooth limit functions can be readily generated from this 

rational subdivision scheme. Another interesting property of

using RNFB is that they can be recombined dynamically to

yield multiresolution analysis with different sampling factors.
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