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TRANSFORMATION (ML-FFT)

K. M. Tsui, S. C. Chan and K. W. Tse 

Department of Electrical and Electronic Engineering, 

The University of Hong Kong, Pokfulam Road, Hong Kong. 

ABSTRACT

This paper studies the effect of the signal round-off errors 

on the accuracies of the multiplier-less Fast Fourier Transform-

like transformation (ML-FFT). The idea of the ML-FFT is to 

parameterize the twiddle factors in the conventional FFT 

algorithm as certain rotation-like matrices and approximate the 

associated parameters inside these matrices by the sum-of-

power-of-two (SOPOT) or canonical signed digits (CSD) 

representations. The error due to the SOPOT approximation is 

called the coefficient round-off error. Apart from this error, 

signal round-off error also occurs because of insufficient 

wordlengths.  Using a recursive noise model of these errors, the 

minimum hardware to realize the ML-FFT subject to the 

prescribed output bit accuracy can be obtained using a random 

search algorithm. A design example is given to demonstrate the 

effectiveness of the proposed approach.

I.   INTRODUCTION

The Discrete Fourier Transform (DFT) is an important tool 

in digital signal processing [1]. A treasure of fast algorithms 

such as the Cooley-Tukey Fast Fourier Transform (FFT) and the 

prime factor algorithm (PFA) FFT are available to compute 

efficiently DFT of different lengths. Recently, the efficient 

realization of the multiplier-less FFT based on the integer [2,3] 

or SOPOT representation [4], and its extension to the multiplier-

less sinusoidal transforms [5] have been proposed. The main 

objective is to avoid the expensive general-purpose multipliers 

which are replaced with limited number of shifters and adders. 

However, this approximation will unavoidably introduce errors 

which are referred to the coefficient round-off errors. 

Fortunately, as proposed in [4], tradeoffs between the arithmetic 

complexities and the output accuracies can be made so that the 

minimum arithmetic complexities can be obtained for different 

applications, which require different degree of the error 

tolerance. Due to finite wordlength of internal representation, 

another source of error, called signal round-off error [1], occurs 

when rounding is performed for the intermediate data after 

complex multiplication with the twiddle factor.  Moreover, 

overflow can occur due to insufficient internal wordlength when 

fixed-point arithmetic is used. Unfortunately, most design 

methods for the multiplier-less FFT only focus on the effect of 

the coefficient round-off errors. In order to satisfy the prescribed 

output accuracy, one usually employs fixed but rather long 

wordlength for all intermediate data, which means increased 

hardware complexity.  Therefore, it is necessary to design a 

general model to determine the minimum hardware complexity, 

subject to a given output accuracy.

In this paper, we propose a new recursive round-off noise 

model for computing the output bit accuracies of the ML-FFT 

under finite wordlength effect. Without loss of generality, the 

decimation-in-time (DIT) radix-p ML-FFT is used as an 

example. The noise sources due to the rounding operations 

performed after multiplications are first identified at each stage, 

based on the structure of the DIT radix-p FFT, where the size of 

the transformation N is the integer power of p. For each output 

point at any stage, its noise powers are determined statistically 

by its associated noise sources, using the commonly used 

uncorrelated white noise model. Together with the noise powers 

coming from the previous stage, the total noise powers of all the 

output points can be calculated, and propagate to the next stage. 

Eventually, the final output bit accuracy of each output point 

can be obtained by summing the total noise powers accumulated 

at this output point. Using these results, the internal wordlength 

of each intermediate data can then be optimized subject to 

prescribed output accuracy using a random search algorithm 

[8,9]. As an illustration, the number of adder cells and registers 

used, which is related to the exact wordlength used for each 

intermediate data, is chosen as a measure of the hardware 

complexity. Design result shows that our proposed approach can 

efficiently determine the minimum hardware complexity subject 

to prescribed output bit accuracy.  The rest of this paper is 

organized as follows: Section II describes the ML-FFT 

algorithm based on the DIT radix-p FFT. Section III is devoted 

to the error analysis of the ML-FFT and the wordlength 

determination method. A design example demonstrating the 

effectiveness of the proposed approach is given in Section VI.  

Finally, conclusion is drawn in Section VII. 

II.   THE ML-FFT ALGORITHM

A. — The decimation-in-time (DIT) radix-p FFT

The discrete Fourier transform (DFT) of an N-point

sequence {x(n)} is given by: 
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formula of the DIT radix-p FFT as follow: 
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for 110and1/,...,1,0 ,...,p,rpNk . Figure 1 shows the 

block diagram of the DIT radix-p FFT for computing a DFT of 

length mpN . Using the above decomposition, the DFT can be 

reduced successively to pN / p-point DFTs. In general, this 

process can be repeated m times and therefore there are totally 

m stages in the implementation of the DFT.

B. — Mulitplier-less realization

The ML-FFT algorithm [4] approximates the twiddle factor 

multiplications jk

NW  and jr

pW  in (2-2) by representing the 

coefficients of a certain factorization of the rotation using 

SOPOT coefficients. To start with, let )( yixc be any 

complex number. The multiplication of c with 

)exp( i , )exp( icp  can be written as: 
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where
cossin

sincos
R  is the rotation-like matrix and 

Njk /2  for jk

NW  or pjr /2  for jr

pW . However, cos  

and sin  in (2-3) are not suitable for directly conversion to the 

SOPOT representation since the inverse of R  cannot in 

general be expressed in terms of SOPOT coefficients. To cope 

with this, R  is re-written as follows: 
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Since the forward and inverse of the matrices involve the same 

set of coefficients, i.e. sin  and )2/tan( .  They can be 

quantized to the SOPOT coefficients to from
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where  and  are respectively the SOPOT approximations 

to sin  and )2/tan(  having the form: 
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where 1,1ka , rrbk ,1,0,1,, ; r is the range of the 

coefficients and t is the number of terms used in each 

coefficient. Using these results, the number of SOPOT terms 

can then be optimized using the random search algorithm [7] 

subject to the specified errors between the candidate transform 

and its ideal counterpart. These errors due to the SOPOT 

approximation are called coefficient round-off errors, which can 

be reduced by using more SOPOT terms. Interested readers can 

refer to [4] for more details. In next section, we shall present the 

analysis of another noise source called signal round-off error, 

which will also affect the output accuracy of the ML-FFT.

III.   ROUND-OFF ANALYSIS OF THE ML-FFT

A. — Signal round-off analysis

Signal round-off errors occur due to rounding of the 

intermediate signal after multiplications. Since the exact round-

off errors are difficult to analyze, they are usually treated as 

uncorrelated white noises. For rounding operation, the 

quantization noise will have zero mean with variance  equal 

to 12/2 , where  is the quantization step-size. In other 

words, the variance is determined by the number of fractional 

bits that is retained after multiplication. In fixed-point 

arithmetic, each intermediate signal can be represented in the 

form of FI / , where I is the number of integer bits 

including the sign bit and F is the number of fractional bits. In 

general, if F bits are rounded to B bits, where FB , then the 

noise variance will be given by:

12/212/ )1(22 B . (3-1)

Without loss of generality, consider the computation of an N-

point ( mpN ) FFT using the DIT radix-p FFT algorithm as 

shown in the figure 2.

1,...,1,0and1/,...,1,0for)()1( pjpNkke m

j are the 

signal round-off noises introduced at the k-th output of the j-th

(N/p)-point DFT. The superscript (v) indicates the v-th stage of 

the FFT structure, for v = 0,1,…,m. Hence, v = 0 and v = m

correspond to the input and the output of the radix-p FFT 

respectively. That is )()( )0( aXax  and )()( )( aXaX m for

1,...,1,0 Na . In general, )()1( ke m

j  are white and identically 

distributed, by symmetry consideration.

)()( kn m

j ’s are the additional signal round-off noises 

introduced by the multiplication with the “approximated” 

twiddle factors jk

NŴ . They are modeled as zero mean white 

Gaussian noise with noise power depending on the finite word 

length after performing the multiplications.  It should be noted 

that details for the other noise sources due to the multiplication 

with the twiddle factors jr

pŴ are omitted in the figure 2 for 

simplicity. These errors only exist in the radix-8 or higher 

radices FFT algorithm. In the radix-2 and radix-4 FFT 

algorithms, the twiddle factors jr

pŴ  are 1 or i only, so the 

DFT does not require any multiplications and there is no 

rounding error in their implementation. In the rest of this 

section, p is assumed to be equal to 2 or 4. However, it can 

easily be generalized to higher radices or split-radix FFT 

algorithms. Next we will discuss the determination of )()( kn m

j .

The round-off noise introduced by the rotation-like matrix R  in 

(2-4) can be computed as in the figure 3. If rounding is 

performed after each multiplication, three additive noise sources 

will be introduced as shown in the figure. Let 2

i be the 

variances of the noise sources 2.1,0,for iri Assume 2

i are

uncorrelated, white and zero mean, it follows that the output 

noise variances are given by: 
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Thus, the noise variance of )()( kn m

j  can be written as follows: 
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(3-2) and (3-3) can also apply to the ML-FFT with )2/tan(

and sin  replaced by their SOPOT approximations.  

By interchanging the summation signs in (2-2), we can see 

that the real and imaginary parts of the output signal increase by 

no more than a factor of p from stage to stage, assuming that 

both real and imaginary part of the output signal are less than 

one. Therefore, to avoid overflow of the immediate data, the 

outputs of the p-point DFT are usually scaled by a factor of 1/p.

However, another noise sources )()( qs m , where )/( pNrkq

due to the scaling is introduced. More precisely, if all the 

precision in multiplying the SOPOT coefficients are retained 

and only the real part of the final result is rounded to RL  bits, 

then the noise source for ))(Re( )( qX m  have variance equal to 

12/212/))}({Re(
)1(22)( RLm qXVAR . (3-5a)

Similarly, when the imaginary part of the final result is rounded 

to IL  bits, then the variance of the noise source for 

))(Im( )( qX m  is given by: 

12/212/))}({Im(
)1(22)( ILm qXVAR . (3-5b)

Hence, we have 

))}(({Im))}({Re()}({ )()()( qXVARqXVARqsVAR mmm , (3-6)

assuming that the round-off noises are uncorrelated. For other 

radices, the DFT might introduce additional noise sources, 

which depend on the exact implementation. Another point worth 

mentioning is that another scaling factor of N at the final output 

is needed in order to obtain the correct DFTs, but this matter 

would not be taken into account for our noise model.

)()1( ke m

j , )()( kn m

j and )()( ks m together constitute signal 

round-off noise at each output )(qX and is denoted by )()( qe m ,

which is also zero mean and Gaussian distributed. Assuming 

that the various noise sources are uncorrelated, the variance of 

)()( qe m at the m-th stage is given by: 
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Further, if we assume )()1( ke m

j are identically distributed with 

variance )},({ )1( keVAR m  then (3-7) simplifies to
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Hence, the output accuracy qA at the q-th output, in terms of the 

number of fractional bits, is approximately given by:



bits6]3log)})({([log10 10
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q . (3-9)

Using (3-8), it is possible to recursively compute the noise 

power at each output of the different stage, given the values of 
jk

NŴ and jr

pŴ , and the noise powers at the previous stage. Note 

that the noise powers will be accumulated and eventually 

propagate to the final stage. In order to satisfy the required 

output accuracy, the noise power at each output should be 

reduced by increasing the internal wordlengths for the fractional 

bits at different stages in the FFT structure. 

B. — Overflow handling

Signal overflows occur when the allocated wordlength of 

the integer bits is insufficient to handle the increase in the 

integer bits of the output signal after additions. More bits should 

be allocated to the integer part of the adder output and the 

register holding it so as to avoid signal overflow. There are two 

approaches to deal with this situation. The number of bits in the 

fractional part can either be retained or decreased, depending on 

the required output accuracy. Obviously, the latter one will 

introduce additional round-off noise. To determine whether 

overflow will occur at a particular adder, a conservative 

measure is used. In this approach, the addition operates in a way 

that all the signs of the signals will be ignored. Therefore, the 

worst-case wordlength format at the adder output can always be 

found. This can ensure that no overflow will occur at any adder 

output, at the expense of slightly increased hardware 

complexity. In the next subsection, we will describe the 

approach to determine the internal wordlength with prescribed 

output accuracy. 

C. — Wordlength determination

For a given output accuracy, the idea of the random search 

is explored to minimize the hardware complexity [8,9] using the 

proposed noise model of the FFT algorithm. To start with, an 

objective function regarding the hardware complexity has to be 

set up. As an illustration, the number of adder cells and/or 

registers is employed as a measure of the hardware complexity 

since it is always the major resources in the hardware 

environment. Also, it is related to the internal wordlengths for 

the intermediate signals which are the variables that we want to 

optimize. Note that other meaningful measures can also be used 

instead. In general, the determination of the internal wordlength 

can be done in three steps. First of all, the SOPOT 

approximation of the twiddle factors is found as discussed in 

section II-B. Secondly, the format of maximum wordlengths for 

the intermediate signals, including both real and imaginary parts 

can be obtained by assuming all the inputs are in their maximum 

values and the precisions of all the signals are retained. Finally, 

from the sections III-A and III-B, the noise powers introduced 

by the rounding operation as well as the output bit accuracies 

can be statistically calculated, with respect to the proposed 

wordlengths which are found by the random search algorithm. 

These proposed wordlengths are stored in the vector f  which 

will be optimized together with the other vectors  storing all 

the intermediate signal formats. The one with the minimum 

number of adder cells, while satisfying the prescribed output 

accuracy, will be declared as the solution of the problem. More 

precisely, we can formulate the problem as follows: 

,),(min
),(

spectotalf PPtosubjectC
f

(3-10)

where totalP  and specP  are respectively the total noise power and 

the specified output accuracy at the DFT output, and )(C  is the 

objective function in this problem. There are two ways to speed 

up the search process. The first one is to identify the symmetries 

stage by stage because of the fact that all the input signals are 

assumed to be the maximum so that the number of variables can 

be largely reduced. For instance, to calculate the wordlengths 

for all the intermediate signals within a radix-2 64-point FFT, 

only the first two output points at the first stage are required to 

examine, rather than all 64 output points. The second one is to 

make a reasonable initial guess in order to shorten the search 

time. Higher noise power, say, is allowed at the earlier stage. 

Thus, shorter wordlength is allocated at the earlier stage such 

that the overall output bit accuracies at the final stage still 

satisfy the requirement. 

IV.   DESIGN EXAMPLE

This example shows the effectiveness of the round-off noise 

model as proposed in the section III. To start with, let’s consider 

the 64-point radix-2 (i.e. p = 2) FFT with the prescribed 

accuracy at each output equal to 16. As mentioned earlier, the 2-

point DFT can be implemented without any multiplications and 

its outputs at each stage are scaled by a factor of 1/2. The input 

sequence {x(n)}, n = 0,1,…,63 are complex values with both 

real and imaginary parts having the format of <1/13>. i.e. 14 

bits with the maximum value equal to 0.99988. After the 

wordlength optimization as discussed in section III, the entire 

FFT structure requires 36070 adder cells. Table 1 and 2 show a 

summary of results and internal wordlength formats at the 6-th 

stage of the ML-FFT. The output formats at the remaining 

stages are omitted due to page limitation. To give an idea of the 

hardware savings of the proposed structure, a comparison with 

the structure using fixed wordlength is considered below. For 

the sake of the comparison, the internal wordlengths for all 

intermediate signals are fixed to 19 bits. The corresponding 

number of adder cells is 36936 which is slightly higher than that 

of the proposed one. For simulation purpose, we use Matlab to 

model the hardware implementation of the ML-FFT and assume 

that both structures are free from the coefficient round-off 

errors. Figure 4 shows the output bit accuracies of the radix-2 

64-point ML-FFT using proposed wordlength (solid line) and 

fixed wordlength (dotted line), taking an average over 10000 

random generated binary data with the format of <1/13>. Result 

shows that our proposed structure meets the required bit 

accuracy quite well with slight deviation upon the 16-bit 

accuracy. Also, it shows that the output accuracies of the 

proposed structure are in general higher than that of the 

structure using fixed wordlength, except for those at output 

point 0, 15, 31 and 47. The reason is trivial due to the fact that 

there is no non-trivial multiplication when tracing the data path 

associated with those 4 output points from the first stage to the 

final stage. On the other hand, figure 4 also reveals that the 

more the multiplications with the twiddle factors, the lower the 

bit accuracies or the higher the round-off errors for that output 

point are suffered. As we expected, our proposed approach can 

efficiently control round-off errors by adjusting the internal 

wordlengths so that the prescribed output bit accuracies are 

satisfied without any overflow. 

V.   CONCLUSION

An error analysis of ML-FFT, using the DIT radix-p FFT as 

an example with N being an integer power of p, is presented. 

ML-FFT parameterizes the twiddle factors in the conventional 

radix-p FFT algorithm as certain rotation-like matrices and 

approximates the associated parameters by sum-of-power-of-

two (SOPOT) or canonical signed digits (CSD) representations. 

Apart from the error due to the SOPOT approximation, there is 

another error called signal round-off error which also affects the 

output bit accuracy of the ML-FFT. A recursive noise model is 

developed to model the statistics properties of these errors.  By 

using this model, a random search algorithm is proposed to 

efficiently determine the minimum hardware complexity to 

realize the ML-FFT subject to the prescribed output bit 

accuracy.  Simulation results show good agreement with the 

theoretical results. 
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Figure 4: Output bit accuracies for a) real part storage and b) imaginary part 

storage of the DIT radix-2 64-point FFT. 

TF Real. Imag. TF Real. Imag.
1

64W <3/19> <3/19> 2

64W <3/18> <3/18> 

3

64W <3/19> <3/19> 4

64W <3/18> <2/19> 

5

64W <4/18> <3/19> 6

64W <3/18> <3/18> 

7

64W <4/18> <3/19> 8

64W <3/18> <2/18> 

9

64W <4/18> <3/19> 
10

64W <3/18> <3/18> 

11

64W <4/18> <3/19> 12

64W <3/18> <2/19> 

13

64W <3/19> <3/19> 14

64W <3/18> <3/18> 

15

64W <3/19> <3/19> 17

64W <3/19> <3/19> 

18

64W <3/18> <3/18> 19

64W <3/19> <3/19> 

20

64W <3/18> <2/19> 21

64W <4/18> <3/19> 

22

64W <3/18> <3/18> 23

64W <4/18> <3/19> 
24

64W <3/18> <2/18> 25

64W <4/18> <3/19> 

26

64W <3/18> <3/18> 27

64W <4/18> <3/19> 
28

64W <3/18> <2/19> 29

64W <3/19> <3/19> 

30

64W <3/18> <3/18> 31

64W <3/19> <3/19> 

Table 1: Proposed wordlengths of the output formats after the non-trivial 

multiplications at the 6-th stage (TF = Twiddle Factor, Real. = Real 

Storage and Imag. = Imaginary Storage). 

O/P Real. Imag. O/P Real. Imag.

0 <1/17> <1/18> 32 <1/17> <1/18> 

1 <3/18> <3/19> 33 <3/19> <3/18> 

2 <3/18> <3/19> 34 <3/19> <3/18> 

3 <3/19> <3/18> 35 <3/19> <3/18> 

4 <2/18> <2/18> 36 <2/18> <2/18> 

5 <3/18> <3/19> 37 <3/18> <3/19> 

6 <3/19> <3/18> 38 <3/19> <3/18> 

7 <3/19> <3/18> 39 <3/18> <3/19> 

8 <2/17> <2/18> 40 <2/17> <2/18> 

9 <3/18> <3/19> 41 <3/19> <3/18> 

10 <3/18> <3/19> 42 <3/19> <3/18> 

11 <3/19> <3/18> 43 <3/19> <3/18> 

12 <2/18> <2/18> 44 <2/18> <2/18> 

13 <3/19> <3/18> 45 <3/19> <3/18> 

14 <3/19> <3/18> 46 <3/18> <3/19> 

15 <3/19> <3/18> 47 <3/19> <3/18> 

16 <1/18> <1/18> 48 <1/18> <1/18> 

17 <3/18> <3/18> 49 <3/18> <3/18> 

18 <3/17> <3/18> 50 <3/17> <3/18> 

19 <3/19> <3/18> 51 <3/18> <3/19> 

20 <2/18> <2/18> 52 <2/18> <2/18> 

21 <3/18> <3/18> 53 <3/18> <3/18> 

22 <3/18> <3/17> 54 <3/17> <3/18> 

23 <3/19> <3/18> 55 <3/19> <3/18> 

24 <2/17> <2/18> 56 <2/18> <2/17> 

25 <3/18> <3/18> 57 <3/18> <3/18> 

26 <3/18> <3/17> 58 <3/17> <3/18> 

27 <3/19> <3/18> 59 <3/18> <3/19> 

28 <2/18> <2/18> 60 <2/18> <2/18> 

29 <3/18> <3/19> 61 <3/19> <3/18> 

30 <3/17> <3/18> 62 <3/17> <3/18> 

31 <3/19> <3/18> 63 <3/18> <3/19> 

Table 2: Proposed wordlengths of the output formats at the 6-th stage for 

the 64-point radix-2 ML-FFT (O/P = Output Point, Real. = Real Storage 

and Imag. = Imaginary Storage). 
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