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Placement Sensitivity to Aberration in Optical Imaging 

Giuseppe Y. H. Mak, Edmund Y. Lam and Alfred K. Wong 

Abstract - Theories are developed to quantify the 
shift of image intensity extremum (Ax) due to 
aberratiou. The theory on real, one-dimensional mask 
spectrum bas been extended to complex, 
two-dimensional mask s p e d "  under coherent and 
partially coherent imaging. Verification of the 
formulae was performed on alternating phaseshifting 
mask (PSM) and contact array. Balanced tbirddrder 
coma was used to illustrate the validity of the theories. 
It is found that the Image sbiR due to aberration of 
alternating PSM decreases when the partial coherence 
factor increases. In general, the theories can be applied 
to any mask spectra and aberration functions. 

I .  
2. 
3. 

Comparison is made between results from the formulae 
and those from aerial image simulation. 

1 D mask spectrum under coherent imaging 
1 D mask spectrum under partially coherent imaging 
2D mask spectrum under coherent imaging. 

11. THEORY 

A .  ID markspert" under coherent imaging 

We begin ow analysis by considering the image 
intensity under coherent imaging [SI. Let (2 , j )  be the 
spatial coordinates normalized by (WNA), where 2. is the 
wavelength and NA the numerical aperture. Also let @,g) 
be the frequency coordinates normalized by ("2. If the 
phase aberration is @@,g) and the mask spec- is 

8x@)l, the image intensity I is given by: 

I. INTRODUCTION 

Due to the continnous decrease of critical dimension 
(CD) and the increase of integration density in integrated 
circuits (ICs), image placement error (or simply placement 
error) is becoming an important source of error in 
lithographic applications, such as the 1G DRAM 
development processes (0.18 pm design rules) [l]. This 
error is normally quantified by the image center shift of a 
feature, e.g. a line or a contact. If image skew is negligible, 
extremum shift (the point where maximum or minimum 

I(;)= )$,(j$;@J 
-1-1 (3) 

.exp[i2& - $ + ( A  -4)J)&dk 
intensity occurs) can be used to represent image placement 
error [2]. where the asterisk denotes complex conjugation and 

Aberration arises from the optical path difference of 
light rays that pass through the exit pupil of an eXIMSUre A = ~ p c 2 , 0 ) ,  fori = ~ 2 .  n s  can be written as: 
s&n, -This  phenomenon cawes a A g e  of problems in 
photolithography. It has been reported that the depth of 
focus (DOF') of semi-randomly aligned pattems with 
altematinc! PSMs decreases due to mherical aberration 131. 
Other kin& of aberration can cause'imaging artifacts s;ch 
as distortion and asymmetry [4]. In this paper, we focus on 
the effect of aberration towardsthe shift~of image intensity 
extremum. where Re(.) denotes the real p M  of (.), G2 = 3 - j; and 

At present, theories have heen developed for 
calculating the image placement error when the photomask 

~h~ = 4 - A  , fie intensity is found by 

has a real, one-dimaional (ID) mask spec- under differentiating 'with to ' ' 
coherent imaging [2]. However, since the geometric 
pattems on a photomask are arbitrary, we aim at " = 4 7 7 i j 1 m ~ ~ @ , ) 5 ~ * @ ~ )  developing formulae that are applicable to complex, a5 .Ifz 
two-dimensional (2D) mask spectra. 

derived. Three cases are considered 
In the next section, formulae for image shifts are , expi- ;27&2 + AWz di; 

where I d . )  denotes the imaeinarv  art of 

( 5 )  

., ). BY 
expanding the integrand Im(.) of Eq. (i) into Taylor series 

Giuseppe Y. H. Mak and Edmund Y. Lam are with the 
Department of Electn'cal and Electronic Engineering, the 
University of Hong Kong, Hong Kong. Alfred K. Wong is now 
with the Fortis Systems, Inc., U.S.A. Email: 
yhmak@eee.hku.hk, elam(ii.eee.hku.hk, 
-. transmission function O,(i) 

' The superscript "-" means that the mask spec- is 
obtained from the 2D Fourier transform of the mask 
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and retaining the first-order terms of the expansion, we 
have: where A4 and N are the numerator and denominator in Eq. 

(7) respectively, but with the mask spectrum shifted. 

C. 
Im{.) = D,, [ c o s ( ~ ~ A ,  )-2112~,,, s i n ( 2 7 7 ~ ~ ~  );I 
-slz E i n O d ~ ~  )+ 2 ~ 4 f , ,  c o s ( ~ d 4 ,  );I 2 0  mask spectrum under coherent imaging 

Similar to Section I1 A, we consider the image where 
D,, = ~ m ~ ( i ~ ) R e ~ ~ z ) - R e ~ ~ ) I m ~ ( i z )  (6) intensity first: 

S,, =ReaCi,)ReaCi,)+,maCi,)~aaci,) 

- 

I(;$)= I p ( i , i ) e x p c  j 2 @ + 6 + @ ( i , i ) b d {  (12) 

where P is the unit circle on the f - i plane. Usually, the 
mask spectnun can he expressed as a weighted sum of 
delta functions: 

I p  
Substituting Eq. (6) into Eq. (5)  and setting d l l b  = 0 ,  Eq. 
(5) becomes a linear equation in ;. Solving for .? : 

I I  

J[.;h2 c 0 9 w , ) - s , , ~ i d w , ) ~ k  

We assume that Without aberration, the cd" 
where a~ is complex, f,' +i; Eq, (,3) exists at i = 0. Hence Eq. (7) represents the image shift .I '̂ 

due to abmtion. 
into Eq. (12), Eq. (12) becomes: 

B. ID mask spectrum underpartially coherent imaging 

In partially coherent imaging, the effective light 
source consists of a distribution of point sources in the 
pupil plane [6]. Each point source produces an image that 
adds up to form the fmal image. If &,is) represents the 
light source, the image intensity is given by: 

where 

To find the position of the extremum, Eq. (14) is 
partially differentiated with respect to I;. and j . We want 
to find a pair of coordinates such that both partial 
derivatives equate to zero. For each partial derivative, the 
manipulations are similar to those in Section I1 A. Using 
fint-order approximation, two linear equations in i and 
j result: 

is the image intensity due to the point source at k,&) and 
R is the extent of the light source. By setting d l l b  = 0 ,  
we have: 

D ,  = h a ,  Rea, -Reo, h a , ,  

S, =Reap  Rea, + h o p  h a ,  

U = D ,  sin(2d(,)+S, cos(~z~( , )  

j j J ( i , , i , k d l ,  l&)aj ,di ,  = O  (10) v = D ~  cos(2d(m)-S~ s i n b ( m )  
R A = 2 r r C 4 i m 2 U ,  B=ZnC4,&,U 
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111. RESULTS AND ANALYSIS 

To test the validity of Eqs. (7), (11)  and (16), two 
kinds of masks have been used: altemating PSM and 
contact array. 

A. Testing Eq. p) 

An altemating PSM with CD = 0.3 (UNA) and pitch 
= IO()JNA)wasusedfortesting.Hereh=248nmandNA 
= 0.68. 

+ThRory --.A.-- Aeriallmage 

14 6- 

2L 0 
0 2 4 6 

Phase width ("A) 

Fig. 1. Comparison between ~c computed from Eq. (7) 
and that from aerial image simulation. 

Fig. 1 shows the image shift as a function of the 
phase width under balanced third-order coma 

0.01?.. 
The two graphs show excellent agreement with each 

other. The average percentage error between the two sets of 
data is only 0.665%. 

@($,e)= -2;)cose.  Zemike coefficient A,  = 

B. Testing Eq. (11) 

The conditions used for testing this equation are the 
same as those used for Eq. (7). The partial coherence factor 
a was varied. Fig. 2 and 3 show the image shift as a 
function ofphase width when a = 0.5 and a = 0.8. 
Fromthe two figures, we can see that the two graphs show 
excellent agreement when a = 0.5 anda  = 0.8. The 
average percentage errors for the two cases are only 
0.519% and 0.551%. 

On the other hand, by observing Fig. 4, the 
magnitude of image shift for partially coherent imaging is, 
on average, smaller than that of coherent imaging. 

Moreover, the oscillating behaviour of image shift at large 
phase width tends to be stabilized when a becomes higher. 

IO .i 8 7 
f 
4 3  

2 

0 'h 
0 1 2 3 4 5 6  

Phase width ("A) 

Fig. 2. Comparison between & computed fiom Eq. (11) 
and that from aerial image simufation when a = 0.5. 

+Theory .-- A...Aerialimage 

Fig. 3. Comparison between &, computed from h. (16) 
and that from aerial image simulation when a = 0.8. 
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aberration sensitivity of partially coherent imaging is 
lower than that of coherent imaging. In general, the 
theories are applicable to all types of mask features and 
illumination. 

-o=O - - * - -0=0 .5  - -X - 0=0.8 

16 

0 1 2 3 4 5 6  

Phase width ( W A )  

Fig. 4. Image shift decreases as partial coherence factor 
rises 

C. Testing Eq. (16) 
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Contact array is the candidate for testing Eq. (16). 
The contact array being used has a pitch of 10 (UNA) in 
both x and y directions. The dimensions of each contact are 
0.3 W“) x 0.3 (UNA). During testing, the Zemike 

Fig. 5. Comparison between the image shift calculated 
from Eq. (15) and that from aerial image simulation with 
varying Zemike coefficient - -. 

coefficient was allowed to vary from 0.001h to 0.22h. h = 

500 nm and NA = 0.5. 

Fig3 plots the image shift from Eq. (16) and that 
from aerial image simulation. It also shows the graph of 
%eh1 ratio computed with Marecbil formula [7] as a 
function of Zernike coefficient. Strehl ratio is defined as 
the ratio between the light intensity at the center of an 
image with aberration and that without aberration. 
According to Marecb B I formula, Strehl ratio is 
approximately given by: 

s = ( l - m o z  /zp (17) 

where bo is the standard deviation of the phase aberration 
over the exit pupil. At the bound ofvalidity of Eq. (16), the 
Strehl ratio is 0.968. This corresponds to a wavefront error 
of 0.182 approximately. Since the conventional limit of 
wavefront error in the state-of-the-art exposure systems is 
only 0.07h [8], Eq. (16) is generally applicable to these 
exposure systems. 

IV. CONCLUSION 

Theories are developed to quanti@ the image placement 
error for 1D mask spectra under coherent imaging, 1D 
mask spectrums under partially coherent imaging and 2D 
mask spectrums under coherent imaging. The validity of 
the equations is verified by using alternating PSM and 
contact array. From the graphs, it is observed that the 
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