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ABSTRACT 
A critical step in defect detection for semiconductor process 
is to align a test image against a reference. This includes 
both spatial alignment and grayscale alignment. For the lat- 
ter, a direct least square approach is not very applicable he- 
cause the presence of defects would skew the parameters. 
Instead, we use a linear programming formulation which 
has the advantage of having a fast algorithm, while at the 
same time can produce better alignment of the test image 
to the reference. Furthermore, this is a flexible algorithm 
capable of incorporating additional constraints, such as en- 
suring that the aligned pixel values are within the allowable 
intensity range. 

1. INTRODUCTION 

Defect identification is an indispensable step in the semi- 
conductor manufacturing process [ I]. From photomask man- 
ufacturing to final packaging, careful inspection is needed 
to avoid malfunctioning of the integrated circuits (IC) due 
to contamination. Because of the ever-shrinking feature 
size and ever-increasing complexity of the IC, advanced ma- 
chine vision techniques are constantly needed to improve 
the inspection capability. Although the ultimate test of an 
IC is its electronic behavior, visual inspection is equally im- 
portant because it pinpoints the areas with defects that may 
cause the problems. 

An efficient setup for inspecting a circuit is as follows. 
A reference circuit is h t  carefully examined to ensure that 
it does not contain any defect. A test circuit is then com- 
pared against the reference to see if there exists any visual 
difference. This comparison can be done on a pixel-by-pixel 
basis. Usually, some post-processing step is required to 
classify the potential defects into some known defect types. 
Clearly, the success of this defect identification and class& 
cation depends on an accurate comparison hetween the test 
and the reference. 

Usually, the inspection system is carefully designed to 
ensure that images of the test and the reference are taken un- 
der identical conditions. In reality, there are some inevitable 

variations, and the two images will have some shifts in lo- 
cation and intensity. In this paper, we focus our attention 
on the latter. This problem emerges because the lighting on 
the test and the reference may differ. In section 2, we dis- 
cuss a straightforward way to cope with such difference, and 
the drawbacks of this method. Then, in section 3, we ex- 
plain our algorithm that uses linear programming to tackle 
this problem. Simulation results are shown in section 4 to 
demonstrate the improvement in performance, and we dis- 
cuss the implications and conclusions in section 5. 

2. A LEAST SQUARE APPROACH 

Let fv(z, y) denote the reference, and f t(z ,  y) denote the 
test image. (I, y) are the spatial coordinates relative to a 
certain marker on the circuits, so the two are aligned spa- 
tially. Ideally, if their grayscale values are also aligned, then 
f7(z, y) = ft(z, y) except in areas where there are defects. 
Therefore, 

is a map for the defect locations. 
Now assume that the graylevels of the two images have 

not been aligned, but it is known that the test does not con- 
tain any defect. Furthermore, we assume that the graylevel 
variation between the two are linearly related, i.e., 

(2) 

where ft,i(z, y) are images that depend on f t(z ,  y), or a 
plain image to capture shift in mean intensity. Some possi- 

f t ( z  - 1, y). and m f t ( z ,  y). ai’s are the design pa- 
rameters. We can use the least square method to find the 
optimal ai’s, denotes as a*. Let ft,i and f. be the lexico- 
graphical ordering of ft,i(z, y) and fT(z, y) respectively. 

bilitiesofft,i(z,y) include zft(z,y). yfdz,y). ft(z,y) - 
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The optimal value a* can be found by 

a* = argmin [ ft,l ... . ( 3 )  

where ( ( . ( ( 2  denotes the L2 norm. It is known that the residue 
on the right hand side behaves like a white Gaussian noise. 

In reality, we deal with a situation where there are both 
defects and graylevel variations. If we just compute equa- 
tion 3, the values of a* will be affected by the defects. We 
can minimize the contribution of the defects by calculat- 
ing equation 3 iteratively. At each stage, we identify places 
where the residual is still large. We then mark those pix- 
els as defect candidates, and omit those pixels in the sub- 
sequent stages of computing equation 3. It is hoped that, 
after a number of iterations, the defect pixels will be mostly 
identified and only the valid pixels are used to calculate the 
correct values of the grayscale alignment factors. 

Speed and accuracy are the primary concerns in such 
an inspection system. The advantage of using equation 3 is 
that it is fast. In fact, analytic solution is readily available 
for least square calculation. However, accuracy is compro- 
mised by the presence of the defects, and we compensate for 
that by using iteration. Furthermore, a direct least square 
approach makes no guarantee that the resulting pixels in 
Caift,i(z,y) will not create pixel values that are outside 
the allowable range, such as below zero intensity or above 
maximum intensity. We propose an improved formulation 
of the problem in the next section that addresses these is- 
sues. 

3. A LINEAR PROGRAMMING APPROACH 

Equation 3 can be cast as the following Optimization prob- 
lem: 

minimize &) + $(gz) + . . .  + 4(gk) 

subject to g = [ ... ft,M ] f - f,, (4) I ,,I 
where gi denotes the ith component of the vector g (with a 

total of k elements), and $(si) = gf .  $ is called the penalty 
function [2]. Since defects usually result in great residuals 
in gi. a quadratic penalty for these terms lead to a solution 
that seeks to distribute the errors across more terms but with 
smaller residuals. In other words, a* will be significantly 
affected by the defects. 

Therefore, a better approach is to use a penalty term that 
is smaller for large values of its argument. Figure 1 plots 
a few possibilities. l(a) is obtained with a clipping of the 
maximum value of the quadratic penalty function, (b) is a 
linear penalty function, while (c) is a combination of a linear 

and quadratic penalty functions, called the Huber penalty 
function. If we use (b) or (c) in equation 4, the optimization 
problem is convex, which has fast algorithm such as interior 
point method [2]. Furthermore, if we use (b), the problem 
can be converted to linear programming. In this case, we 
can make use of fast algorithm readily available for linear 
programming. 

(a) 4(z) = z2 for Jz( 5 1, 4(z) = 1 otherwise. 

.... 
. . . . . . . . .  . . . .  . .  

, 

. . . . . . .  
(b) 4b)  = 14 
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(c) b(z) = z2 for 12) _< 1, @(z) = 2/21 - 1 otherwise. 

Fig. 1: Some example penalty functions 

To see how this can be done, we introduce a new vari- 
able t = Igl. Let 

b =  [ ;] 
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be our parameters. Equation 4 becomes the unprocessed image. Also, we discard 5% of the pix- 
els with the greatest errors after the grayscale adjustment, 
since those pixels are mostly likely defects. The percentage minimize [ 0 1 ]b 

subject to [ ft,i . . . ft ,M 0 ] b - fr 2 t (6) can change with aprion'knowledge about the proportion of 
defects in the image. As seen in the table, the linear pro- 
gramming approach outperforms the least square approach 
in both cases. The improvement for the bridged bump case 
is greater, because the contamination coven a greater area 
and therefore the effect on the alignment for least square is 

[ ft.1 . . . ft ,M 0 ] b - f, > -t. 

We can fulther reanange the terms to be 

minimize [ 0 1 ]b 
--1 more pronounced 

subject to [ ft.1 . . . f t , ~  '., 1 b 2 fr (7) 

Moreover, we can add the constraints 

[ f t , i  . . . ft,M 0 ] b I f, -t i,, 
[ -ft,1 ... -ft,M 0 ] b 5 -f, - i,i, (8) 

to ensure that the adjusted pixel values fall between [imi., 

I,,], while still maintaining the linear programming for- 
mulation. 

4. SIMULATIONS 

We apply the linear programming approach to graylevel al- 
ignment on bump inspection, which is a critical process in 
die bonding [I]. Bumps are the electrical and mecbani- 
cal connection between the die and the substrate, and are 
formed from processes such as paste-deposition and electro- 
plating. As such, the shape of the bumps may vary, and may 
have a few potential defects such as missing bumps, bridged 
bumps, contaminants on or between bumps, and incorrect 
bump volumes or heights. Image processing techniques are 
frequently employed to identify these defects 131. Figure 2 
shows the test images we are using. 2(a) is a reference im- 
age without any defect. (b) has a patch of ink upon it, and 
visually it bridges two bumps together. On the other hand, 
(c) has some missing bumps. In addition to having defects, 
both @) and (c) have intensity variation with respect to the 
reference image (a). Our goal is to adjust the grayscales of 
(b) and (c) to match that of (a). 

Table 1 shows the improvement in signal-to-noise ratio 
(SNR) gain with the least square approach and the linear 
programming approach in grayscale alignment. SNR is de- 
fined to be [4] 

(a) Reference image. 

(b) Test image with bridged bump. 

(c) Test image with missing bump. 

Fig. 2: Sample images from bump inspection. 

where f(z, y) is the original image and f(z, y) is the ad- 
justed image. In our case, f(z, y) is always taken to be the 
reference image. The gain is with respect to the SNR for 
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I Least square 
bridged bump 1.49dB 
missing bump 2.31dB 

5. CONCLUSIONS 

In this paper, we have described a linear programming for- 
mulation of performing grayscale alignment between two 
images. This is seen to produce images of better quality 
even in the presence of defects. This is also a fast approach 
because there exists efficient algorithm for tackling linear 
programming, making it suitable in view of the stringent 
speed requirement in defect inspection applications. 

However, we have not yet taken into consideration the 
locations of the defects. When a pixel is identified as a po- 
tential defect, the likelihood that its sumunding pixels are 
also defects is rather high. We are investigating an improve- 
ment to our approach where this information can help speed 
up the rejection of defect areas for grayscale alignment. 

Linear programming 
3.43dB 
2.38dB 
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