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Abstract: The problem of voltage collapse in the
power system occurs when the load parameter
exceeds some critical value. The critical operation
point is known as the nose point in P-V curve. In
this paper, the mechanism of vcdtage collapse is
explained based on system circuit and solution
manifolds. The corresponding mathematical model
is derived. The proven theorem shows that the
essential reason for voltage collapse is that the
solution manifold of injection Ibranch equations
being not transversal with that of linear network
equations. And the coincidence of the non-
transversal of solution manifolds with voltage
collapse and static bifurcation is proved.
Keywords: power system, voltage collapse, system
manifold. static bifurcation.

I. INTRODUCTION

The voltage collapse problem is of great concern
to the electric utility industry. Abnormal high or
low voltages and voltage collapse may occur in
many large interconnected power systems. There
are many research outputs on voltage collapse
analysis [1-4]. Venikov et al. [1] suggest a criterion
for voltage stability based on steady state sensitivity
analysis using a simple two-bus system. Tamura et
al. [2, 3] analyze voltages collapse by multiple
power flow solutions. Kwatny et al. investigate the
voltage collapse by applying bifurcation analysis
[4]. They show that the existence of bifurcation
point is associated to the voltage collapse, and at
this point the load voltages are infinitely sensitive
to parameter variations. No matter from the
viewpoint of multiple power flow solutions or
bifurcation, it is essential to understand the
nonlinear nature of power systems and the
relationship between the nonlinear nature and
voltage instability.

It is well known that power systems are very
special large-scale nonlinear circuits, in which there
are two different types of branches. One is the
transmission lines which interconnect various
buses, considered as network ‘links’ in our paper;
and the other is the injection branches including
generator branches and load branches, taken as the
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‘trees’ of the network circuit hereafter. In this
paper, the voltage collapse mechanism is
investigated from the system solution manifold
viewpoint based on structure-reserved nonline~
circuit. The paper reveals a significant fact that the
voltage collapse phenomena corresponds to the
occurrence of non-transversal between the solution
manifold of injection branch equations and that of
network equations. And the coincidence of the non-
transversal of system solution manifolds mentioned
above with voltage collapse and static bifurcation is
proved.

II. THE NONLINEAR CIRCUIT MODEL

In this paper we assume all the state variables
including loads are continuous variables. The
equivalent circuit of a power system is a nonlinear
circuit, and the injection branches, including
generator branches and load branches, have
nonlinear characteristics and are taken as the tree of
the circuit; other branches i.e. transmission lines,
are linear and taken as link branches in this paper.

A. Load branch characteristic equations
We assume that the load varies continuously. For

a general load there exsit two groups of different
variables, one group is the load circuit variable
which has fast dynamics such as load current for
inductive load, and the other is the load mechanical
variable such as an induction motor slip which is a
slow variable. Under most cases, the fast dynamics
can be neglected, hence, under the orthogonal
coordinates rotating at synchronous speed and
denoted as D and Q axes, the load model using
motor convention can be written as

ii = AFmi(si,Ui) (1)

ii =ii(si, ui) (2)

where i=l, . ..nL. nL is the total number of load

buses. ii = [iDi,iQi]T, Ui = [uDi,uQi]T are the

current and voltage of the ith load branch
respectively. Si is the slip or say the mechanical

variable of the ith branch. Nmi denotes the

deference between input elecric power and output
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mechanical power. From the viewpoint of circuit,
Eq. (2) is the ith branch characteristic equation, and
the branch characteristics are controlled by the

mechanicl variable Si. Therefore the equation for

the load current vector iL can be expressed as

.fL(~,~L,iL)= iL-iL($>~L) =() (3)

where UL is the vector of the voltages of load

buses.
In traditional analysis of power systems, for a

load bus the real power and reactive power
injecting to the bus is taken as load parameter and
the bus is called a PQ-bus. In fact, Pand Q define
the branch characteristics, and we have

[1[‘DI (PlU2)~Di +( Q/U2)/~~i—.—

1

(4)
lQi (P/ U2)u~i –(Q/U2)u~i

where U = ~U~i + U~i is the magnitude of bus

voltage. P and Q can be considered implicitly as
functions of dynamic load slip s, therefore (4) can
be in the format of (3) as well.

B. Generator branch characteristic equation
The 3rd-order mathematical model of a

synchronous machine without damper windings
under orthogonal coordinates rotating at
synchronous speed can be derived as ‘7]:

$, = Ami (5)

Atii = 141~1{T~i– DiAoi + Eji (iDiCosc$i+

+ iQjsin ~i ) – &@i [(i~; – i~~) sin ~i cos i$i– (6)

– iDiiQ[Cos2ai ] }

~~i = Tj~’[E@ - ‘~i - ~~~i (i~i sin ai - i~i COS dj)] (7)

where .&dqi = ~~i – X:i , Axddi = x;: – x~j .

The generator branch characteristic equation
using motor convention is

where i=nL+l,.. N, N=nL+n~ is the numbers

of buses in the power system (excepting swing
bus), nG are the numbers of generators, and

GDi = [Ri+ (Xqi– x~i) sin di cos fii1/(R? + Xqixii)

Therefore, the generator branch equations can be
written as

.fc(~,uc,ic)= ‘G‘ifJ(~, UG)=O (9)

where UC, i~ are the vectors of the voltages and

currents of generator buses respectively.

c. Network equations
In the network the link branches i.e.,

transmission lines are linear, and the lumped-
parameter line equivalent circuit model is
employed. The network equations can be written in
bus admittance matrix form:

(10)

where u = [u!, u~]T and i = [i~,i~]~ are the

branch voltage and current vectors respectively;

()Y. Y$~,Y,,
is the bus admittance matrix of the

network; u, and i$ are the voltage and abstracted

current of the swing bus; and u, is known. From the

first part of Eq (10) we can obtain the network
equations

or

fN(”, i)=y#+y#$+i=O (12)

D. Integrated model for power systems
Based on the model derived above, we can see

the integrated power system model consists of two
sets of equations, the first set of equations is the
differential equations of (1) and (5) to (7), the
second set is the algebraic equations, shown in (3),
(9) and (12). The dynamical behavior of variables

s, 6 and E; is governed by the differential

equations. It is easy to see that the dynamic

behavior of s, 6 and E: has significant impacts

on the tree branch characteristics

III. SOLUTION MANIFOLDS AND
EQUILIBRIA

It is clear that the equilibria of the power system

are determined by (3), (9), (12) and s = O, L$= O,

Ati = O, and ~~ = O. If the space discussed is

restricted on injection currents and injection
voltages (I- U) space, we can analyze the nature of
the system solution manifolds of (3), (9) and (12)
and get deep insight of the system.
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Theorem 1[5]: If M is an m-dimensional manifold,

F M ~ Rn (n < m) is a smooth mapping. If F has

maximum rank for the subset N = {xlF(x) = O},

then N is a regular sub-manifold of dimension m-n.
Combining (3), (5-7) and (8), the injection

branch equations take the form of

or

finj(~(~L)!~(~G ),~L>~G>~L,~G)=o (13)

where S(UL) and ~(i~ ) are solved from s = O,

~ = O, AriJ= O and ~~ = O. It is clear the injection

branch is the controlled branch, and the branch

steady state characteristics are controlled by S(UL)

and ~(i~ ).

Theorem 2: The solution manifold of network
equation (12) is a 2N-dimensional regular
submanifold in 4N-dimensional injection cttrrent-
node voltage space.
Proof

The matrix
(~ ~)

has full rank, Using

theorem 1 this theorem can be proved directly.

Remark: It should be pointed out that when the
parameters and the structure of power systems are
invariant, the solution manifold of (12) is also
invariant with respect to the variation of load
parameters. (P or Q for PQ-bus load model or
output mechanical toque of the induction motor etc.
are all load parameters. )

Theorem 3: If the mapping of fi.j is smooth, then

the solution manifold of $inj = O is ii regular

submanifold of dimension 2N in 4N-dimensional I-
U space.
Proofi
Since the matrix

[)

G~i B~i

‘Qi ‘Qi

is of full rank for any 6, therefore, ~~G/&G must

be nonsingular. And also since the matrix

dfL /diL = I, therefore, injection branch equations

finj = O has maximum rank. According to theorem

1 this theorem can be proved directly.

From theorems 2 and 3, we can see that under

injection branch equations and network equations
are all regular submanifolds of injection current-

node voltage space. Let M ~ and Mi~j be the

solution manifolds of (12) and fi~j = O

respectively, then the equilibrium point (i, u) is

(i, u) =Minj flM~ (14)

which means that when the conditions of theorem 2
are satisfied, the equilibrium point of the nonlinear
circuit associated to the power system is the

intersection of two regular submanifolds Minj and

MN in I- U space.

IV. VOLTAGE COLLAPSE IN
A SIMPLE SYSTEM

Now we apply the conclusion to study the
voltage collapse mechanism perceptually. As an
example, a simple single machine – single load
power system is used with its equivalent circuit
shown in Fig. 1.

mjx

%IJ” G(s) -jB(s)

Fig. I Equivalent circuit for the simple system

In Fig. 1, x is the inductance of the transmission
line; G(s) -jB(s), the equivalent admittance of the
induction motor; $, the slip of the motor, and

G(s)= (q+r~/.s)/[(q +r~/s)2 +X2] (15)

B(s)=x/[(lj +r;/$)2+X2] (16)

‘=%+J[OX2-’]’17)
where rl, r; are the resistance of stator and rotor

windings respectively viewed from stator, Pm is the

output mechanical power of the induction motor
load. X is the summation of inductance of stator
and rotor windings, U is the voltage of the load bus.
Substituting (17) into (15) and (16), we can have
G(s) -jB(s) = g(U) -jb(U). Therefore the load
injection branch equation is:

I- UJ-=0 (18)

and the network (line) equation is:

U;= (U+ lxsinq)2 + (lxcosfp)2 (19)

some fair conditions, the solution manifolds of
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1(1
2— then S and L at point p are transversal; otherwise

where, p = tan-l[X I(2+ ~~ -X2)1. they are not transversal at point p. Here TPS , T,)L

m m and T~N express tangent spaces of S, L and N
Fig.2 shows the solution curvm clf (18) (see curve ‘.
1) and (19) (see curve 2). When system operateat

respectlvel y.
Let f(x, y) andg(x, y) be two vector fields with

normal conditions, the corresponding curve 1
intersects the relevant curve 2 at uoints b and a, Cr, r>l, XCR”3 y ~ Rm . Consider following

point b corresponds to normal v:ltage level and two sets of equations

stable load flow solution, while point a is an fix, y)= o (21)

abnormal operation point. When Pm increases to g(x, y) = o (22)

some critical value Pnlc, the curves 1 and 2 change

to 1‘ and 2’ respectively, and point a and point b
coincide at point c, at which point the solution
manifold 1‘ of (18) is tangent to the solution
manifold 2’ of (19). It is clear that the geometrical
structure of the solution manifolds of (18) and (19)
is unstable when Pm = P~C. Once Pm> P~C, the

system will lose the equilibrium point near point c,
i.e., voltage collapse phenomena occur.

K]

I;

42?

\ la~\

137 -.’

‘~\
i, \

bs.
‘----\

~s,, l—
—u

Assumption 1: The following two matrices satisfy

()af af
rank% ~=n

()
ag ag =m

rank ~ ~’

It is clear that the solution manifolds of (21) and
(22) are two regular submanifolds from theorem 1.

Lemma 1: According to assumption 1, the
necessary and sufficient conditions of the solution
manifolds of (21) and (22) being transversal at

(xP, yP) in Rnwm are

[1
af af
-TIT

rank Jg ag =n+m (23)

= = (Xp, yp)

Proof
Using definition 1, the lemma can be proved.

Apply above mathematical theory to power
Fig.2 Schematic diagram for voltage systems, we can obtain the following theorems.

collapse in the simple system

V. VOLTAGE COLLAPSE IN GENIERAL
POWER SYSTEMS

From above analysis, we can see that voltage
collapse is dependent on the solution manifolds of
the injection branch equations and the network
equations of power systems. However, both the
injection equations and network equations usually
have very high dimensions in a complex power
system. Hence, how to explain the relation between
voltage collapse and the nonlinear characteristics of
nonlinear circuits of the studied system is an issue
we have to address. In order to make further

Theorem 4: Assume the power system model,
including (5), (6), (7), (12) and (13), to be smooth.
If the solution manifold of (12) and the solution
manifold of (13) are not transversal at operation

point ( iP, ZIP)~ Mi~J (_)MN for equilibrium point

6 =6(iP) and s = S(UP) , i.e.,

[

‘NxN Yn
.7= afinj afinj ~6 afinj ~ afinl ~

~+—— —
1

(24)
aa ai au as aU(iD,Up)

is singular, then under a small perturbation the
power system will lose the equilibrium point near
( iP, UP), i.e., voltage collapse phenomena occur.

analysis on voltage stability, the :following Proof:

definition and lemma are given first. Using lemma 1, this theorem can be proved.

De$nition 1[6]: Let S and L be two sub-manifolds Remark: Theorem 4 shows that the two solution-

of N,if peS(_l L, and manifolds Miflj and M ~ being not transversal to

TPS+TPL=TPN (20) each other in the injection branch current and node
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voltage spanned space causes voltage collapse. In
other words, injection branch characteristics have
great influences on the transversal of Mjfij and

MN. It also means that the nonlinear nature of

injection branches dominates the voltage stability.

VI. THE RELATION BETWEEN THE

TRANSVERSALOF M’inj AND

MN AND STATIC BIFURCATION

In [4] Kwatny et al. analyzed static bifurcation in
power systems, and studied the relationship
between static bifurcation phenomena and voltage
collapse. In this section authors study the relation
between static bifurcation and tlhe transversal of

Mi~j and MN .

From above analysis, the power system can be
modeled as

i= f(x, u) (25)

o=fN(i,u) (26)

O= ~ifl,(X, i,U) (27)

where XT= [6T, AcoT,E~T,ST] denotes the state

variables.

Assumption 2: That the Jacobian matrix is singular
corresponds to the static state bifurcation.

Assumption 3: The matrix i3~/i]x is nonsinguku for

the interested equilibrium poinl..

Above assumption 3 is usually reasonable, since

that d~/& is singular means the system is at

critical operation point for the voltage of generator
being a constant. It is easy to see that in fact the
critical point of interest occurs prior to

det [il~/dx] = O . Hence, assumption 3 is fair.

Theorem 5: If the solution-manifolds Minj and

MN are not transversal at ( iP, UP) ~ Minj fl MN

for equilibrium point 6=6(iP) and S= S(UP),

then according to assumptions 2 and 3, (iP, UP)

must be corresponding to a static bifurcation point.
Proof

When the static bifurcation occurs at point ( i~?up)

in the power system (see (25-2’7)), the following
matrix

[1
af df af

x
~

z

J=o~yn
af,lv afi,~ afillJ—— —
ax ai au (ip,up)

must be singular. By Schur’s formula

Y>, )

‘p%+x%r%%-SWJ(28)
From implicit function theorem, we know at the
equilibrium point

[~ ;]=-(W(%4=

=-[(%JW(+WE))(2’)
Then we have

(‘T”%+(%’13afi,,j af 1 afafiuj

ai ax ax

afinj ~ afinj ad

= ai i36 di (30)

( ‘==%+(% w

afi.j ~fifij ~f 1 af

au ax ax

afinj ~ Vinj &

= au as au (31)

Substituting (30) and (31) into (28), we can see

det[m = O means that ~ is also a singular matrix.
Therefore, the point at which the solution-

manifolds of Minj and M ~ are not transversal to

each other is corresponding to the saddle-node
bifurcation point in I- U space.

VIL CONCLUSIONS

By above analysis, main conclusions of this
paper can be drawn as follows.

l Complete power systems can be described in
state variable space with slow dynamics and
circuit variables (injection branch current and
voltage).

l The solution manifold Mi~j of injection

branch equations and the solution manifold
MN of linear network equation are all

regular submanifolds of the space spanned by
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the injection currents and corresponding
voltages.

The occurrence of solution-manifolds of

Minj and MN being not transversal to each

other means the loss of the equilibrium point

near ( iP, UP), I.e., the happening of voltage

collapse phenomenon.
The critical intersection point of solution

manifolds Mi,j and A4)l when they are not

transversal is corresponding to the static
bifurcation point.
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