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ABSTRACT 

In this paper, a decentralized power system voltage 
stability proximity indicator is presented. This 
indicator can consider the occurrence of not only 
the saddle node bifurcation but also the Hopf 
bifurcation, while only local bus information is 
needed for the decentralized voltage stability 
monitoring. The results of two power system 
examples discover the possibility of on-line 
decentralized voltage instability / collapse 
assessment. 

1. INTRODUCTION 

Voltage stability is the ability of a power system to 
maintain acceptable voltage at all buses in the 
system under normal conditions and after being 
subjected to a disturbance. In the last two decades 
several major network collapses such as the 
massive Tokyo system blackout in July 1987 
occurred due to voltage instability problem in the 
world, therefore voltage stability phenomenon has 
been a major research area for system planning and 
operation[’]. One ofthe typical issues of concern for 
the system operators is how close the system to its 
voltage stability boundary. 

In order to measure the distance between current 
system operation point and the system instability 
point or critical point, a lot of voltage stability 
proximity indicators have been proposed, such as 
the minimum singular value of the power flow 
Jacobian matrixr21[s1, the minimum eigenvalue of the 
nodal reduced system matrixL3], voltage power 
sen~itivity[~~[~], the angle distance between the 
current stable equilibrium point and the closest 
unstable equilibrium point of nonlinear power flow 
equationsL6], some kind of energy fUn~tions[~], etc. 
All the, above indicators are based on the 
assumption that voltage instability is caused only by 
the saddle node bikcation. 

However it has been shown by some examples that 
electric power systems can experience Hopf 
bifircation that is related to voltage control 
instability on the upper portion of PV curves before 
the nose When the load gradually 
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increases, a pair of complex eigenvalue related to 
the voltage control can go through the imaginary 
axis before the power flow Jacobian becomes 
singular. In such cases, therefore, the indicators, 
which ignore the possibility of Hopf bifircation 
occurrence, will draw an optimistic conclusion. It 
should be very dangerous for system operation and 
control. 

In this paper, a decentralized power system voltage 
stability proximity indicator based on local bus 
information is presented. Based on the modified 
Jacobian matrix model presented in reference [ 131, 
this indicator is calculated by determining how 
‘close’ the reduced matrix on frequency domain is 
to singular in several different frequency intervals. 
Its main characteristics include: 

It can be considered that the occurrence of not 
only the saddle node bifurcation but also the 
Hopf bifircation in this indicator. When the 
frequency is restricted to zero, the proposed 
indicator can be used to measure the distance 
to saddle node bifurcation point. On the other 
hand, when frequency is forced not equal to 
zero, it is the index to show the distance to 
Hopf bifurcation point. 
It is based on the local bus information, which 
makes this indicator possible to be applied for 
decentralized voltage stability on-line 
monitoring. Since the reactive power can not 
be transferred to areas far away, voltage 
instability / collapse events usually appear due 
to localized shortage of reactive power or 
voltage control. This makes it possible for 
decentralized voltage stability on-line 
monitoring just with the local bus information, 
while networks with long distance to the area 
being monitored can be equalized. 

0 

In section 2, firstly the modified Jacobian matrix 
model is presented in frequency domain. And the 
nodal reduced matrix can be developed with this 
model. Based on the matrix, the decentralized 
power system voltage stability proximity indicator 
is proposed. Finally two examples are presented to 
illustrate the efficiency of this voltage stability 
indicator in section 3. 
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2 MATHEMATICAL MODEL 

2.1 Modified Jacobian Matrix Model 
Consider a typical system model with nB buses, nG 
generator buses and nL load buses. In this paper, 
the generators are modeled with two-axis 
representation. The excitation systems are assumed 
as IEEE type-I. And the loads are presented with 
the load recovery model. Thus the overall system 
model in time domain can be shown as the 
following differential-algebraic type['31: 

And then the above equations (1) can be linearized 
at the system operation point as the following form: 

0 = CAx+ DAY 
where the incremental state variables Ax is defined 
as hx = [hg , h, IT,  Axg is the incremental state 
variables describing dynamics of the synchronous 
machine and its excitation system, and Ax, 
describes the load dynamics, while Ay is defined as 
A y = [ A B , , A V , , . . . , A B , , A V , , ] T  i.e. the set of 
incremental phase angle and magnitude of voltage 
at each of the network buses. 

Suppose that matrix D isn't singular then 

Replacing variable Ay in equation (2) with (3), 
yields: 

Ay= -D-'CAx. (3) 

dhx - = (A - BD-'C)Ax 
dt (4) 

Generally, after defining the system matrix 2 as 
2 = A -  BD-'C the steady-state stability of the 
operating point can be determined by the 
eigenvalues of the system matrix. 

Using the Laplace transformation, equation (4) in 
time domain can be changed to the following form 
in fiequency domain. 

{ O=CAx+DAy ( 5 )  
sZAx = A h  + BAY 

where Z is the unit matrix with n dimensions, and 
s=jw. 

Define that D(s)=D+C(sI-A)-'B (6)  
as the modified Jacobian matrix. And the trajectory 
of det[D(s)] in complex plane, when w drift along 
the imaginary axis within the interval [0 +CO], is 
called characteristic trajectory of equation (5). The 
following conclusions can be drawn that: 
(a) Matrix D(s) can be obtained by only modifying 

the 2x2 diagonal blocks of load flow Jacobian 

matrix. And each of these 2x2 diagonal blocks 
is determined by the dynamics of generators or 
loads at the corresponding buses. Thus we call 
the equation ( 5 )  in fiequency domain modified 
Jacobian matrix model. 
It can be proved that no matter whether the 
operating point is saddle node or Hopf 
bihcation point, the characteristic trajectory 
of equation ( 5 )  passes through the origin point 
in complex plane. 

Nodal Reduced Matrix 
Generally unlike real power in the electric power 
systems, the reactive power can't be transferred 
through a long distance. Voltage instability / 
collapse events usually appear as the localized 
shortage of reactive power or voltage control. 
Therefore it is reasonable to ask whether it is 
possible to decentralized monitor and assess system 
voltage stability decentralized, where only the 
nodal bus information is used. Based on the above 
idea, a nodal reduced matrix is developed. 

Suppose for any bus i, matrix D(s) in equation (6) 
can be reformulated as the following blocked 
matrix form. 

(7) I DAA(s) DAB(s) [ DBA DEB 
where D BB (s) E Czx2 is the 2x2 block matrix, 
whose related incremental variables is ABi and 
A 6. 
Now the nodal reduced matrix of bus i is defined as 
D ~ B  = DEB - DBA ( ~ 1 ~ 2  (SID,~  (s) (8) 

Since det D(s) = det D, (s) det DhB (s) (9) 
it can be proved that when the system operation 
point is saddle node or Hopf bifurcation point, 
there much exist a w o  (0 I Q, < +CO) and the nodal 
reduced matrix D 'BB (j w ) at w is singular. 

Therefore a new decentralized power system 
voltage stability proximity indicator is proposed 
as following: 

L - min [detDhB(jw)[ (10) - OiO<+Oo 

With this indicator, no matter whether the system 
operation point is saddle node or Hopf bifimation 
point, LB=O. After applying the above indicator to 
two example systems, it can be found that LB 
approaches to zero with almost quadratic h c t i o n  
to the load factor, which makes it possible for on- 
line assessment of the system voltage stability. 

3. EXAMPLES 
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In this section, the indicator of equation (10) is 
evaluated for both the three machines system and 
the New England system. 

8 '  
1 r 

3.1 The Three Machines System 
For the three machines system["] shown in Fig. 1, 
bus 1 , 2 and 3's generator excitation systems are all 
IEEE Type-1 with the same parameters as Table 1. 
And each of the dynamic loads at load buses 5, 6 
and 8 is modeled by the load recovery model with 
the same parameters as Table 2. 

L 
S I  

3 '  

" I 1 9  

K 
Fig.1 The Three Machines System 

Table 2 The dynamic load parameters 
T, I TQ I n D . 3  I nQS I n D t  I nQ, 

1.0 I 1.0 I 0.6 I 0.6 I 1.2 I 1.2 

Assume that the real and reactive power injected at 
each network buses changes in the following 
pattem: The real power at each load buses increases 
in steps at the same rate, while the reactive loads 
remain unchanged. The total amount of increased 
loads should be distributed by 2 and 3 generators in 
the same proportion. In this paper, the system 
loading condition is represented by the loading 
factor y . When PO, the system is in the normal 
base loading condition. When each of the real 
power loads at three load buses increases by one 
per unit, the loading factor ywill be 1. 

When the load factor y increases step by step, the 
system voltage stability proximity indicator LB is 
calculated with bus 5, 6 and 8 selected to be the bus 
i in L E ' S  definition. The results (LB5,  L B ~ ,  and LBS) 
are shown in Fig. 2. 

From Fig. 2, it can be found that the indicator LB 
approaches to zero very smoothly and 
monotonously when load factor y increases. Also 
after numerical curve fit manipulation, it can be 
found that L B  changes nearly as a quadratic function 
with y .  
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Fig. 2 Voltage Stability Indicator LE 

3.2 New England System 

Fig. 3 New England System 

For the New England System[''] shown in Fig. 3, all 
the load is modeled by the load recovery model 
with the same parameters as Table 3. 

Table 3 The dynamic load parameters 

T, I T, I n,, I nu, I n,, I no f 
0.1 I 0.1 I 0.6 I 0.6 I 1.2 11.2 

After making the assumption that the real power at 
load buses 3, 4, 7 and 8 increases in steps at the 
same rate, while the reactive loads remain 
unchanged, while the total amount of increased 
loads should be distributed by all generators in the 
same proportion, the load factor ycan be defined as 
p0 corresponding to the normal base loading 
condition. And y =1 means that each of the real 
power loads at buses 3,4,  7 and 8 increases by one 
per unit 

When the load factor y increases step by step, the 
proposed system voltage stability proximity 
indicator LE is calculated related to bus 7, 8, 15 and 
25 as the selected bus i. The results (Lm, LBS, LEIS, 

and LBzs) are shown in Fig 4. 

208 



0 ’  I I I 

2.5 5.0 IA 

Fig. 4 Voltage Stability Indicator LE 

The following two conclusion can also been drawn 
fiom Fig. 4. 
5. The indicator LE approaches to zero very 

smoothly and monotonously as load factor y 
increases. 
After the numerical curve fit manipulation, the 
quadratic function relationship between LB and 
ycan also be discovered in this example. 

6. 

4. CONCLUSION 

Based on the modified Jacobian matrix model 
presented in [13], a new decentralized voltage 
stability proximity indicator is presented. This 
indicator can consider the occurrence of not only 
saddle node bifurcation but also Hopf bifurcation. 
Meanwhile the nodal reduced matrix is employed to 
calculate the proposed indicator, in which only 
local bus information is used. 

‘ 

It should be emphasized that by the means of nodal 
reduced matrix the information of the whole system 
can be ‘concentrated’ to the local bus. Therefore 
the proposed index LE can be used as an indicator 
of the system voltage stability by just using local 
bus information. 

Both three machines and New England example 
systems show that the proposed indicator can 
decrease monotonously and very smoothly to zero 
with the loading factor And a quadratic function 
relationship between LE and y is found in above two 
examples, which makes it possible for on-line 
monitoring and assessment of system voltage 
stability in the future. 
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