
Title An efficient graph partition method for fault section estimation
inlarge-scale power network

Author(s) Tianshu, B; Ni, Y; Shen, CM; Wu, FF

Citation IEEE Power Engineering Society Winter Meeting, Ohio, USA, 28
January - 1 December 2001, v. 3, p. 1335-1340

Issued Date 2001

URL http://hdl.handle.net/10722/46335

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37885118?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


An Efficient Graph Partition Method for Fault Section Estimation

in Large-Scale Power Network

Tianshu Bi, St. M. IEEE Yixin Ni, S.M, IEEE C.M. Shen Felix F. Wu, Fellow IEEE

Dept. of Electrical and Electronic Engineering
The University of Hong Kong

Hong Kong SAR

Abstract In order to make fault section estimation (FSE) in large-
scale power networks use distributed artificial intelligence approach,
we have to develop an efficient way to partition the large-scale
power network into desired number of connected sub-networks such
that each sub-network should have balanced working burden in
performing FSE. In this paper, a new efficient multiple-way graph
partition method is suggested for the partition task. The method
consists of three basic steps. The first step is to form the weighted
depth-first-search tree of the power network. The second step is to
thrther partition the network into connected,balanced sub-networks.
And the last step is an iterative process,which tries to minimize the
number of the frontier nodes of the sub-networks in order to reduce
the required interaction of the adjacent sub-networks. The proposed
graph partition approach has been implemented with applications of
sparsestoragetechnique. It is fhrther tested in the IEEE 14-bus, 30-
bus and 118-bus systems respectively. Computer simulation results
show that the proposed multiple-way graph partition approach is
suitable for FSE in large-scale power networks and is compared
favorably with other graph partition methods suggested in
references.

Keywords graph partition, fault section estimation, large-scale
power network

L INTRODUCTION

Fault section estimation (FSE) aims at identifying the
faulty elements in power network based on the information of

the current status of the protective relays and circuit breakers,

which is available ilom SCADA systems,. As the first step to
system restoration, FSE is of great importance in enhancing
service reliability and reducing power supply interruption.
FSE should be implemented quickly and accurately in order
to isolate the faulty elements from the rest of the system and
to take proper countermeasures to recover normal power

supply. It is clear that on-line automatic FSE is significant

and crucial to the restorative operations.

Many artificial intelligence techniques have found their use
[11 fiq.in solving the problem such as expert-system-based ,

set-based ‘2], artificial-neural-network-based ‘3], stochastical-
optimization-based ‘4] and logic-based ‘5] approaches.
However FSE of large-scale power networks still remains
unsolved because of the large amount of information to be
dealt with and the FSE speed and accuracy required. The FSE
is even more difficult in cases with failure operations of
relays and circuit breakers, or multiple faults at the same
time.

Based on the idea of “divide and conquer”, we suggest to
use distributed artificial intelligence systems (DAIS) for FSE

in large-scale power networks. The local nature of FSE

makes this DAIS approach very attractive. The faulty element

could only be identified according to the status of its main

protection, neighboring back-up protection and the

corresponding circuit breakers, which are all local signals.
This makes DAIS very attractive in FSE. In addition, once

the power network is expanded and some new elements are
added, for distributed FSE only related sub-systems need to
be changed to adapt this network expansion, while
centralized FSE have to be totally reconstructed and
retrained, which is extremely time-consuming,

Two issues have to be solved in implementing FSE using
DAIS. The first issue is to partition the large-scale power
networks into several sub-networks. The second one is to

construct the corresponding FSE sub-systems of obtained
sub-networks by independent distributed artificial intelligent

subsystems. In this paper, the first issue is our concern. The
second issue has been introduced in other two papers ‘6-7].

It is obvious that a good power network partition method is
essential and crucial to the success of distributed FSE
systems. According to the characteristics of FSE, a good
power network partition means that any obtained sub-
network should be a connected network; the calculation

burdens of FSE of sub-networks should be balanced in order
to improve the parallel calculation efficiency in a multi-
processor system; and the number of elements on the frontier
should be minimized to reduce the overlapping of different
neighboring sub-networks.

If we denote the buses and the transmission lines in the
power network by the vertices and the edges in a graph
respectively, this power network partition problem can be
easily modeled by the following graph partition problem: to
partition the graph vertices into connected and balanced
subsets according to the weights of the vertex under the

constraint that the number of frontier nodes crossing the
different subsets is minimized.

Since this graph partition problem appears in many
practical applications and is a NP-hard problem ‘8], a number
of efficient and effective heuristic algorithms have been
developed for its solution. Most of these attempts are based
on one of the following three basic approaches: Kernighan-
Lin heuristics ‘g] Joseph W.H. Liu heuristics ’10] and

stochastic optimi~ation based heuristics ‘1l]. The common
demerit of these methods is that none of them consider the
special requirement of the FSE that any obtained sub-network
must be connected. It is not easy to modi& these methods to

adapt this requirement.
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In this paper, a new efficient multiple-way graph partition
method is proposed for FSE in large-scale power networks. It

consists of three basic steps. The first step is to form the
weighted depth-first-search tree of the power network. The

second step is to further partition the network into connected,
balanced sub-networks. And the last step is an iterative

process, which tries to minimize the number of the frontier
nodes of the sub-networks in order to reduce the required
interaction of the adj scent sub-networks. The proposed graph
partition approach has been implemented with applications of
sparse storage technique. It is further tested in the IEEE 14-
bus, 30-bus and 118-bus systems respectively. For
comparison purpose we realized and tested Joseph W. H. Liu
graph partition heuristics too. Computer simulation results
show that the proposed multiple-way graph partition
approach is suitable for FSE in large-scale power networks
and is superior over the previous method of graph partition
heuristics.

II. PROPOSED GRAPH PARTITION APPROACH

The proposed multiple-way graph partition method consists
of three basic steps, which will be described one by one in
detail in this section.

A. Weighted Depth-First-Search Tree

Depth-First-Search (DFS) algorithm ’13] is a standard

technique of systematically exploring nodes in a graph. It
serves as a fimdamental tool in devising many efficient graph
algorithms. For completeness, we give a quick review of the
overall algorithm in Table 1.

Table 1, Depth-fust-searchalgorithm
Let G be a graph with n vertices {x,, x2, . . .. x.},

&vJ. Choose the vertex with the largest subscrip~ that is x., label it 1,
and proceed to Step 2 with this vertex and label.

- Given a vertex x, labeled k, if there exists the vertices adjacent to
x, which have not been labeled, them

(a) Select the vertex with the largest subscript among these
unlabeled adjacent vertices, assign to it the smallest unused

label from the set {1, 2, . . .. n} and repeat Step 2 for this new
vertex and its labe~

else means that all vertices adjacent to this vertex -ti have been
labeled, them

(b) ● If the label k of vertex x; satisfies k>l, backtrack to the
vertex from which you arrived at x, at the time k was labeled

and repeat Step 2 with this vertex and its label.

● If the label k of vertex .x, satisfies k= 1, stop and the

algorithm end.

A simple power network is cut from IEEE 118-bus system
as the illustrative example (Fig. 1a), in which the vertices are
denoted by their subscripts and corresponding labels directly.
When the algorithm terminates, those edges, which were used
in the DFS (depicted by darker line in Fig. la), form a
spanning tree ’13] for the connected graph (Fig. lb). This
property is desired for our partition method because all the
vertices would be explored systematically and any obtained
sub-graph would be connected when the partition is carried
out along the spanning tree. In addition, it should be pointed

out that our partition method just requires a spanning tree as
the basis of the partition and so the DFS algorithm can be

replaced by other algorithms which could produce a spanning
tree.

In order to make the calculation burdens of sub-graphs
more balanced, we assign each vertex an integer, called

weight, to form the weighted spanning tree. The investigation

shows that the calculation burden of a sub-graph is mainly
determined by the number of the involved fault estimation
objects, hence the weight of a vertex is the number of the
related fault estimation objects with the considered vertex.

Suppose Y. is the admittance matrix of the given power
network, we use the number of the nonzero elements of the
upper diagonal matrix of Y. as the weight of the
corresponding vertex, which is denoted as nodewt(xi) of node
x,. Let T[xJ denote the set of nodes in the subtree rooted fi-om
node xi. Then the total weights associated with this subtree
will be:

wt(T[xJ)= ~ nodewt(x, )
IETIX, ]

(1)

The weighted DFS tree of the illustrative example is shown in
Fig. lc.

a. The illustrative power network (part of IEEE- 118 system)
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!

60(2)

54 54(7)

49 49(6)
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48 50(2) 48(2)

57 6 46 57(1) n 46(3)

45

P

47 45(3)

P

47(3)

44 44(2)

b. Depth-first-search tree c. Weighted depth-first-search tree

Fig, 1 The illustrative example of weighted depth-first-search tree

B. Multiple-way graph partition algorithm

Suppose G is a graph with n vertices. Once the DFS
spanning tree is formed, we could get the following basic
terminology and concepts. If the root node of the spanning
tree is Xn, the spanning tree could be denoted as T[xJ. Let

x,=parent(xj) represent that node xi is the parent of the node
~j) whiGh means x, is the neighboring node of x, in the path
fi-om xj back to the root node; on the contrast, xj is called the
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child of the node xi. A node, which has no children, is called
leaf node. The length of node ~i is defined as the path length

from node xi back to the root node. Hence, the above
weighted DFS tree in Fig. 1c could be denoted as T[60], in
which nodes 44, 47 and 57 are leaf nodes and their parents
are 45, 46 and 50 respectively. For leaf node 44, its path to
root node 60 consists of nodes 45, 46, 48, 49, 54 and 60, so

the length of node 44 is 6.

For graph G with n vertices, let ng be the number of the

desired sub-graphs, then the objective of the proposed
multiple-way partition algorithm is to divide the node set of
G into ng connected subsets under the constraint that the
weight of each subset should be as close to wt(T[x~)/ng as

much as possible. Along the paths from leaf nodes to root
node of the weighted DFS spanning tree, the proposed
algorithm searches the partition points which satis@ the
constraint. We described the proposed algorithm in detail in
Table 2.

Table 2 Proposed multiple-way graph partition algorithm

&.o& Denote the node set of G by S, the node sets of the sub-grauhs

by C,, where i= 1,2, . . .. ng~ ~d the temporary working~e~ by

cw Imtially, set S={XJ, .XZ,. . .. x.}, C,=O and cwO;
Choose the leaf nodes, which have the maximum length, as the

starting search points of the partition algorithm. Move these
leaf nodes to the working set cw and delete them from S at the

same time. In addition, suppose the maximum length of the leaf
nodes is denoted by k end the pointer of the sub-graphs i=l;

k=k-1 ;
Find the different parents of the nodes in CW.For each parent

node XP, sort its child nodes {x, [ xP=parent (x,)} in descending
order according to their subtree weight wf(T[xJ). Then test the

child node x, one by one by this sequence, if T[xJ satisfies:

lwi(~/xPJ-wt(T[x.fi/n.l>lw4T[x,J-w<T[x.}/n8\ (2)

then assign the subtree T[xJ as a sub-graph C,=T[.] and i=i+l,
At the same time delete x, and Z’[x,] from the working set cw

and S respectively. If all the child nodes of .xPcouldn’t satistj
(2), delete all the child nodes of x, from the cw and add the
node XPto CW.Repeat step 4 until all the different parent nodes
have been tested,
Find the leaf nodes whose length equal k and add these leaf
nodes to the working set CW,

If k equals O, then S=0 means all the nodes of G have been

explored systematically, and so the algorithm terminates, eke
repeat Step 3 to Step 6.

We still use the above simple power network (Fig. 1) cut
from the IEEE 118-bus system as an illustrative example.
Suppose the total weights wt(T[l 18]) of IEEE 118-bus
system is 297 and ng=12, then the expected weights of each
sub-network should be wt(T[l 18])/ng=24,75. We use this as
the measurement to perform partitioning task. For the
weighted DFS tree in Fig. lc, node 44 is the only node which
has the maximum length t%6, so it’s the starting search point
and move it to CW.At the same time, perform step 3 k.=k-1=5.
Then the parent XP of cw is node 45. This XP only has one

child, that is, node 44. For node 44, \wt@[44])-24.751=22 .75
>lwt@[45])–24.751 =21 .75, eq. (2) (in Table 2) is not

satisfied, which means that the parent is more approaching
the expected weights of the sub-network. Hence, delete child
node 44 from cw and add the parent node 45 to CW. In
addition, find the leaf node 47 whose length is k=5 and move
it to cw too. Now CW{43 47}, S={46 48575049 60} and

k=5. Because of k#O, continue the similar search process
fkom step 3 to step 6 along the weighted DFS tree. When the
search process encounters node 49, that is CW{49) XP={54}

S={54 60} and k=2, lwqTf49])-24.75\ =2.75<lwt(T[54])-
24.751 =4.25, eq. (2) is satisfied, which means T[49] is the

proper node set for one sub-network. Therefore, T[49]={44
454746485750 49} makes up of one sub-network and
CV–{54} and S={60} is the new starting search point for the
next sub-network. This multiple-way graph partition

algorithm will terminate until all the nodes of IEEE 118-bus
system have been explored. It can be seen that the proposed
algorithm guarantees the obtained sub-networks are
connected because the partition is carried out along the
spanning tree and guarantees the calculation burdens are
distributed evenly because all the partitions satisfi eq. (2).

C. Frontier reduction method

After the partition, an initial state of the frontier nodes
crossing different sub-graphs is determined as well, We use
the notation Ac$’~(x) to refer to the set of nodes adjacent to the
node x in the graph G. We also extend this operator to include
the adjacent set of a node subset, that is, for a subset W of
nodes.

Ac$&-(W)={u I U$sw,24.dc$~(x), Xdv) (3)

When the graph G is clear from the context, we use A&
instead of AdjG. In the same way, we use AdjG(x,U) or
Atf(x,U) to denote the adjacent nodes of x in U, that is,

Ac#(x,U)= A&(x)nU. We also extend the notation to subsets,

that is, for a subset W, AcJ( W,U)=A~(W)nU. For any

obtained sub-graph Ci (i=l, 2, . . .. izg), the initial value of its
corresponding frontier node set is represented by Fi (i=l, 2,

. . . . ng) and defined as:

We apply this definition to the illustrative example in Fig. 1
on the basis of the partition, Suppose CI={4445 47464857
50 49} and then the initial value of its corresponding frontier
node set is FI={54 5661 66 69}. This is the original frontier
node set to be reduced.

Consider a subset Y of any given Ilontier node set Fj,

where Adj(Y,Ci)#Ci. The following simple but crucial results
are stated.

Proposition 1: Suppose Fi is the fl-ontier node set crossing C’i

and U, then the set F ‘(F,-Y,) u A@(Y, Ci) is the frontier

node set of the two sets ~i =C,–A~(Y, C,) and ~ =UUY.

Proposition 2: If lA@(Y,Ci)l<lll, then I~ l<lFil.

The following heuristic method makes use of the above
two observations and attempts to reduce the size of the
frontier node sets one by one, in which the central issue is
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how to determine a subset Y of a given fkontier node set Fi so

that the size of@(Y, Ci) is less than that of Y.

C. 1 Background on bipartite graph and matching
The problem of tinding a subset Y of the corresponding

frontier node set with the desirable property is associated

with a well-known combinatorial problem called bipartz%e
‘]2] We outline the necessary concepts andgraph matching .

related terminology first.

A bipartite graph H is an undirected graph whose node set
can be divided into two disjoint subsets 1 and J such that
every edge has one endpoint in I and the other in J. it is
customary to write H as (1, J, E). A edge subset M of’ E is
called a matching of H if no two of the edges in M are
adjacent, in other words, if there is no intersection node for
any two edges in M. Furthermore if the vertex v of the graph
His the end vertex of some edge in the matching Mthen v is
called M-saturated or we say that M saturates v. Otherwise v

is M-unsaturated. The number of edges in M is called the size

of the matching. If M is a matching in H such that every
vertex of H is M-saturated then M is called a perfect
matching. A matching M in H is called maximum if H has no

matching M’ with a greater number of edges than M has. Let
M be a matching in H and let E=E(H) be the edge set of H.
An M-alternating path in H is a path whose edges are

alternately in M and E–M, i.e., alternately in M and not in M.
An M-alternating path whose origin and terminus are both M-

unsaturated is called an M-augmenting path.
For a given large-scale power network, we could establish

the bipartite graph Hj between any obtained sub-graph {Ci ~~,

and its corresponding frontier node set {Ri ~jl by (F;, ~~c(~i,

C’i), E). For example, we abstract the corresponding bipartite
graph fi’om Fig. 1a and redraw it in Fig. 2 to explain the
above-mentioned concepts about bipartite graph. Two node
sets, I=FI={54 566166 69},J=Ac#G(F1,C1)={4749 57}, and
the edge set E crossing Z and J construct a bipartite graph
H=(I, ~ E). It’s obvious that the set {{69, 49}, {56, 57}}
depicted by darker line in Fig. 2b is a matching of size 2 for
H. With respect to this matching, the path (47, 69, 49, 66) is
an augmenting path, a special case of alternating path.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

!.=(J??

........................
Fig. 2 The bipartite graph abstracted from Fig. 1a

It should be pointed out that, if there is an augmenting path
in H with respect to M, we could augment the matching M by
this path as follows. For example, (47, 69, 49, 66) is the

augmenting path with respect to the matching {{69, 49}, {56,
57} } shown in Fig. 2, remove the edges {69, 49} from the
matching M and replace them by {47, 69}, {49, 66} in the
augmenting path. This has the net effect of increasing the size
of the matching by one. This operation is called a transfer
along the augmenting path.

C. 2 Theorem and Hungarian method for tlontier reduction
The following marriage theorem and its corollary relate

bipartite graph and matching with the objective of this
subsection, that is, find the smaller adjacent set of the subset
Y of the given frontier node set F, to make the frontier
reduction.

Theorem 3 (Hall’s Marriage Theorem, 1935, [12]): Let Hbe a

bipartite graph with bipartition V= IvJ. Then H contains a
matching that saturates every vertex in 1 if and only if

l,4@~Y)/21Yj for every subset Yof 1, (5)

Corollarv 4 ([12]): Let x be an unsaturated node in 1 with
respect to the matching M. If there is no M-augmenting path
with x in H, then there exists a subset Y containing the node x
such that ~&(Y)l<l~.

The Hungarian method ’12] uses the concept of M-

alternating tree to prove this corollary by a direct construction

of the set Y. Let M be a matching in the bipartite H and let XO
be an M-unsaturated vertex in 1. Then the M-alternating tree

rooted at XO is defined as: Lo, L1, L2, . . . . L2j.1, L2j3 . . .. where:

Lo={xo};j= 1, 2,3, .,.;
For odd levels: L2j-l=A~~Lou... uLzj_z);

For even levels: L2,={z4 I {u,v} eM for some ~~L2j-1} (6)

Since there is no augmenting path starting with the node Xo,

there has no unsaturated node in the odd levels. This implies
that every node in the odd level Lzj., must have its mate in the

even level L2j and the alternating tree must end on an even

level. Therefore, we have lL2jl=lL2j.)1. Define the set Y to be
the union of all the even levels, including Lo. That is,

Y=LOULIV.. .uL2j (7)

According to (6), ,4@~Y) is simply the union of the odd

levels. Then we have 1~-~@~Y)l=l. Therefore, the desired
subset Y is obtained by (7) and the corollary is proved.

We could apply this Hungarian method to construct our
tlontier reduction algorithm. For the illustrative example in
Fig. 2, suppose that M={ {47, 69}, {49, 66}, {57, 56}} is the

matching of the bipartite graph H=(F’I, AdjG(Fl, C1), E). It can
be seen that node 51 is a M-unsaturated node in I, so we
could get the alternating tree rooted at node 51 by (6):
LO={51}, Ll={49}, Lj={66}, and thus the expected subset of
the frontier node set F] is Y={51, 66}, which has a smaller
adj scent set Adj~Y)={49}, The same way, the frontier
reduction algorithm is described systematically in Table 3.

Hence, for a given large-scale power network, the three
steps described in these three subsections are performed in
successive steps. At last, we could get the optimal solution,
which partition the given network into connected and
balanced sub-networks under the constraints that frontier
node sets are minimized as much as possible. Once the large-
scale power network is divided into solvable sub-networks,
the artificial intelligence techniques could be used to solve
FSE problem for each sub-network.
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Table 3. Frontier reduction algorithm

w i=l;
= For the sub-graph C, and its frontier node set F,, construct the

corresponding bipartite H,. At the same time, initialize matching

lWO.

~ For each node xe~i, generating the M-alternating tree rooted at
the node x by (6). If an M-augmenting path starting from x is

found, then
augment the current matching Mby this pati,

repeat perform Step 3 until all nodes of F, have been
tested, then go to Step 4.

else
according to the alternating tree rooted at x, return the

desired Yby (7).

get the modified ~ and ~ based on the Proposition 1.

break and restart this algorithm from Step 1.
~ i=i+l, if i=ng, then this frontier reduction algorithm terminates,

eke go to Step 2.

III. COMPUTER SIMULATION RESULTS

The proposed multiple-way graph partition method has

been implemented with the application of sparse storage

scheme. The sparse storage scheme only stores and operates
nonzero elements and this could improve the calculation

efficiency greatly.
IEEE 14-bus, 30-bus and 118-bus systems are used as the

test systems respectively. Only IEEE 118-bus system is
selected as an example to present here with rrg=12 the
working process of the proposed graph partition method
systematically. The weighted DFS tree of IEEE 118-bus
system formed by the first step of the proposed method is
shown in Fig.3, in which each node is denoted by x
(zrodewt(x)). Then the second step, i.e. the partition algorithm,
is performed to get zrg=12 sub-networks, which are listed in

Table 4. In addition, the initial frontier and the reduction

results of the third step are displayed in Table 5,

Table4. Obtained sub-networks of IEEE 118-bus system atler partition

i=[ 1, ng] Obtained sub-networks Cj={x[xeCj}
1

Wt (Cj)

2, 1,3,7,6, 10,9, S>4,5 25

2 13>11, 16, 117, 12, 14>22,21,20, 18, 19, 15 29

3 33,36,35,41,42,39,40> 37,34,43 25

4 44,45,47,46,48,57350, 49 22

5 55,54,53,52,51,58,56, 60,59 26

6 25,26,63,64,61,62,67, 66,65,38,30 25

7 113,17,31,29,28,27,115, 114,32,23 26

8 83,84,87,86,85,88,89, 90,91 21

9 104,103,111,112, 110,109,108,105,107,106 22

10 24,72,73,71,7’0,74,75, 69, 116,68 26

11 93>95,94,92,102,101, 98,100,99 25

12 78,79,81,80,97,96,82, 77,76,118 25

Table 5. The frontier node sets of IEEE 118-bus system

i=[l, lrrl] F, before reduction R after reduction

1 11, 12,30 11,12,30

2 17,23,33,34 17,23,33,34

3 38>44,49 38,44,49

4 51,54,56,66,69 49,56,69

5 61,62>63 59

6 17,23,27,68 17,68,25

7 24 24

8 82,92 82,92

9 100 100
10 77> 81, 11S 77> 81, 118

11 80,96 80,96

8(2)

Fig. 3 The weighted DFS tree of IEEE 118-bus system

From this case, it can be concluded that the proposed
multiple-way graph partition method works effectively and
could satis~ all the requirements of FSE problem. IEEE 14-
bus and 30-bus systems could get the similar results. Because

of desired weights = wt(~x.])/n~, we use max{ I lCil– desired
weightsl}/desired weights to denote the unbalance degree of

the partition. Table 6 shows unbalance degree, the number of
nodes on the frontier before reduction and after reduction for
these IEEE test systems with different n~’s.

Table 6. The test results of IEEE 14-bus, 30-bus and 118-bus systems

14- 30-bus 118-bus
bus ng=2 ng=3 ng=2 ng=3 ng=8 n~10
(n =2)

Unbalance

degree ‘%o
117 1.4 7.1 2.3 2 164 14.5

Before

reduction 121316151121231271

(NO,)

After
reduction 2 3 5 5 10 21 24

(NO.)
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The results in Table 6 prove that the proposed method could

not only work effectively but also succeed in all the test

power networks.
In addition, we realize Joseph W.H. Liu heuristics ’10] by

sparse storage technique too. Compared with the proposed
graph partition method, Joseph W. H. Liu heuristics suffers
three disadvantages. First, it only realizes 2-way partition if
we require any obtained sub-graph must be connected.
Second, it partition the network based on the elimination tree
directly and not use weights to indicate the calculation

burden. This is not helpful for getting the real balanced sub-

networks for specific problem. In addition, the calculation of
Joseph W. H. Liu heuristics is much more complicated than

that of the proposed method, so its calculation efilciency is
lower than that of the proposed graph partition method. Table
7 compares the calculation efficiency of 2-way partition
between this method and our proposed graph partition
method. The results show the proposed multiple-way graph
partition method works more efficiently than Joseph W.H.
Liu heuristics. Hence, our method could work effectively for

FSE in large-scale power network.

Table 7. CPU time for 2-way partition
by proposed method and JosephW.H. Liu heuristics

Cpu time (s) 14-bus 30-bus 118-bus

Proposed method 0.05 0.11 0.28

Joseph W H Liu
heuristics

0.05 0,16 2.15

IV. CONCLUSION

In this paper, a new efficient multiple~way graph partition
method has been suggested and tested successfidly for FSE in

large-scale power network. It consists of three basic steps.
The first step is to form the weighted depth-search-first tree
of the power network. The second step is to further partition
the network into connected, balanced sub-networks. And the
last step is an iterative process, which tries to minimize the
number of the frontier nodes of the sub-networks in order to
reduce the required interaction of the adj scent sub-networks.
The proposed graph partition approach has been implemented

with applications of sparse storage technique. It is fhrther
tested in the IEEE 14-bus, 30-bus and 118-bus systems
respectively. Computer simulation results show that the
proposed multiple-way graph partition approach is suitable
for FSE in large-scale power networks and is compared
favorably with other graph partition methods suggested in
previous work,
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