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Abstract - A new symbol timing estimator for generalized
MSK signals is proposed.  It is based on the squaring algorithm
and has a feedforward structure.  The proposed timing
estimator is fully-digital and is suitable for implementation in
software radios.  The performance in AWGN channel is
compared with the Modified Cramer-Rao bound and that of the
ML algorithm.  The proposed timing estimator is found to have
a performance close to that of the ML algorithm, but with a
lower implementation complexity.

I. INTRODUCTION

Continuous phase modulation (CPM) [1] is a class of
jointly power and bandwidth efficient digital modulation
scheme.  It has a constant envelope and therefore is very
attractive to applications where nonlinear power amplifiers
are employed to maximize power efficiency.  However, the
main drawback of CPM is that the optimum receiver for
CPM, which is based on the Viterbi algorithm, requires high
implementation complexity.  Fortunately, there is a subset of
CPM with binary data and modulation index equal to 0.5,
referred to as Generalized minimum shift keying (MSK)
modulation [2][3], in which linear MSK-type receivers can be
used with limited loss in performance compared to the
Viterbi-algorithm based receivers.

Software radio has drawn much attention in recent years,
as it is suitable for realizing multi-band multi-mode
terminals.  In software radio receiver, the digitalization point
is shifted towards the antenna such that more and more
functions are implemented in digital domain.  Symbol timing
recovery, which is a crucial part in demodulation, also has to
be in all-digital form.  Various all-digital timing recovery
algorithms for generalized MSK signals have been reported
in the literature [4]-[6].  In particular, the symbol timing
recovery algorithm in [4] involves the transmission of a
preamble, thereby lowering the transmission efficiency.  The
algorithm introduced in [5] is based on approximation of the
Maximum Likelihood (ML) principle.  Although it provides
good performance, the implementation complexity is large.
An ad hoc approach has been proposed in [6], but the
performance is quite far away from the Modified Cramer-Rao
bound. 

In this paper, we propose a new all-digital symbol timing
recovery algorithm for generalized MSK signals based on the
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squaring algorithm, which was originally designed for linear
modulation [7].  The same algorithm has also been recently
applied to GMSK signal by the authors [8].  The applicability
of this algorithm to other members of generalized MSK
modulations is addressed in this paper.

The paper is organized as follows.  Section II gives an
overview of the generalized MSK signal model and its linear
approximation.  Section III describes the proposed timing
estimator.  Simulation results are presented in section IV and
conclusion is drawn in section V.

II. GENERALIZED MSK AND ITS LINEAR
APPROXIMATION

The complex envelope of the binary CPM is given by
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In this expression, ai  is the transmitted symbol, h is the
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special case of h=1/2.  With different g(t), we have different
modulations.  Some of the popular modulations are raised-
cosine (LRC), rectangular (LREC), Tamed Frequency
Modulation (TFM) and Gaussian MSK (GMSK).  Their
corresponding pulses are given by
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Laurent [9] has shown that any constant-amplitude binary
phase modulation can be expressed as the sum of a finite
number of time-limited amplitude modulated pulses.
Specifically, (1) can be expressed as

s t j hA C t NTK N K
KN

L

( ) exp[ ] ( ),= −
=

−

=−∞

∞ −

∑∑ π
0

2 11

(2)

where             A a aK N n
n

N

N i K i
i

L

, , ,= −
=−∞

−
=

−

∑ ∑ α
1

1

and                 C t S t S tK i L
i

L

K i
( ) ( ) ( ).

,
= × + ⋅

=

−

∏0
1

1

α

In the above expression,

  

K

S t
t nT

h

i
K i

i

L

n

=

= +

−

=

−

∑2 1

1

1

α

π

, ,

( )
sin[ ( )]

sin( )
,

Ψ

where       Ψ( )

( )

( ) .

t

g d t LT

h g d t LT

t

t LT
=

− ≥

%

&

K
K

'

K
K

−∞

−∞

−

I

I

π τ τ

π π τ τ

                   <

         

By plotting out all the component functions CK(t) for
various generalized MSK modulations, it can be easily
observed in every single case that the main pulse C0(t)
conveys the most significant part of the energy of the signal.
Table 1 shows the percentage of total energy that C0(t)
contains for commonly used modulations.  Therefore, it is
reasonable to approximate the generalized MSK signal by the
first component only.  Assuming there is no data for t<0, we
have
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where  ,   and b b a b b a bk k k k k k2 2 1 2 2 1 2 2 1 1 1= = − =− + + − .  Note

that C t0( )  is a pulse of length (L+1)T and when L=1, the

representation in (3) is exact as only C t0( )  exists in this case.

Table 1.
The percentage of the total energy that the main pulse C0(t) contains

Modulation pulse g(t) Percentage of total energy that C0(t)
contains

0.3GMSK 99.6%
0.5GMSK 99.96%

1REC (MSK) 100%
2REC 98.83%
3REC 93.42%
1RC 100%
2RC 99.98%
3RC 99.43%
TFM 98.13%

III. THE PROPOSED TIMING ESTIMATOR

We first consider a received linear modulation signal
(PAM, QAM, PSK), with its complex envelope given by
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where an  is the nth  data symbol, g tT ( )  is the transmission

signal pulse, T  is the symbol duration, n t( )  is the white

Gaussian noise with one-side power spectral density No  and

ε  is an unknown delay but assumed slowly-varying.  After
the received signal passes through the RF front end, where
out of band noise is rejected, r t( )  is sampled at a rate

1 / /T N Ts =  and filtered by a digital receiving  filter with

impulse response g kT NR( / ) .  The output of the digital

receiving  filter is given by
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where g(t) is the combined response of the symbol pulse and
the receiving  filter.  ~( )n t  is the filtered noise.

Oerder and Meyr [7] proposed that the unknown timing
delay can be estimated by computing the complex Fourier
coefficient at the symbol rate for every segment of L No

samples (Lo symbols) of ~rk
2
.  That is, the estimate is given

by
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In the frequency domain, the squaring operation is
equivalent to self-convolution of the signal spectrum.  The
operation of self-convolution generates spectral lines at
symbol rate f=�1/T, which contains the timing information.
The accuracy of the estimate depends on the strength of the
spectral lines generated at symbol rate, which in turn is
determined by the degree of spectral overlap when the signal
spectrums are 1/T apart.

By exploiting the linear approximation in (3), a
generalized MSK signal can be viewed as a combination of
two orthogonal linear modulations each with symbol rate
1/2T and staggered with a time T.  Therefore, timing delays
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can be estimated separately in the inphase and quadrature
channels by the squaring algorithm and the two estimates can
be subsequently combined to give the timing delay estimate
for the generalized MSK signal, �ε .

Denote the timing estimates of the inphase and quadrature
branches in (3) by �ε I  and �ε Q  respectively.  It can be shown

[8] that, in the absence of estimation variance (in the case of

high SNR or large Lo), � � .ε εI Q+ = 0 5 .  It implies that when

the value of �ε I  increases, �ε Q  decreases, and vice versa.

Based on this relationship, the proposed timing recovery
method can be stated as:

�

� � .

� � . .
ε

ε ε

ε ε
=

≤

<

%
&
K

'K

2 0 25

2 0 25

I I

Q Q

            if      

           if      (5)

There may be cases when both �ε I  and �ε Q  are very

close to 0.25, say � .ε I = 0 24 and � .ε Q = 0 26 , and due to the

variance of estimation, none of the case in (5) occurs.  In this
situation, either �ε I  or �ε Q  can be chosen to give the estimate

of the generalized MSK signal as they both give a value close
to 0.5 or -0.5.

An obvious choice of the receiving filter for the proposed
estimator is H(f)=C0(f), which matches to the pulse shape of
the linear approximated generalized MSK signal.  However,
if g(t) has a long pulse length L, the frequency spectrum of
the main pulse C0(f) becomes narrow and therefore the degree
of spectral overlap is reduced when signal spectrums are 1/2T
apart.  As the strength of the spectral lines containing the
timing information depends on the degree of spectral overlap,
the strength of the spectral lines generated decreases and thus
the estimator performance is degraded.

To counter this problem, an alternative receiving filter is
proposed as H(f)=RC4T(f)/C0(f), where RC4T(f) is the Fourier
transform of a raised cosine pulse with 3dB cutoff frequency
fc=1/4T.  By using this receiving filter, the signal spectrum
that generates the spectral lines becomes RC4T(f).  There are
two opposing effects when using this receiving filter.  The
first effect is that for long pulse length L, RC4T(f) has stronger
frequency components than C0(f) (as shown in Figure 1a for
the case of 3REC), so that the degree of the spectral overlap
is increased.  On the other hand, as the maximum frequency
span of RC4T(f) is �0.5/T, this receiving filter zeros out all the
frequency components of C0(f) for ÑfÑ>0.5/T, which are
originally used to obtain the timing information.  Therefore,
this receiving filter offers better performance than H(f)=C0(f)
only for long-pulse-length cases.  In these cases, the first
effect is much stronger than the second one, resulting in an
increase of spectral overlap.  For the cases of short pulse
length L, this receiving filter may not improve the
performance and even cause degradation since the two effects
may cancel out or even the second one becomes stronger than
the first one (see Figure 1b for the case of 1REC).

(a) (b)
Figure 1.  Magnitude of the frequency responses for    (a) C0(f) of 3REC and

RC4T(f)   (b) C0(f) of 1REC and RC4T(f)

IV. SIMULATIONS AND DISCUSSIONS

The performances of the proposed algorithm for
generalized MSK signals are assessed by simulation.  Due to
space limitation, only results of 1REC (MSK), 2RC and TFM
are presented here.  The variances of the estimates as a
function of Es/No in AWGN channel is obtained by Monte
Carlo simulation with each point averaged over 104 estimates.
In addition, the modified Cramer-Rao bound (MCRB) [10]
and the performance of the estimator derived from the ML
algorithm [5] are also shown for reference.  In all simulations,
the observation length Lo is 64 and the oversampling factor N
is 4.

Figure 2 shows the variance of the estimates for the case
of 1REC.  Let us first focus on the performance difference by
using two different receiving filters.  It is apparent that the
proposed estimator using C0(f) as the receiving filter offers
better performance.  This is due to the fact that C0(f) contains
significant frequency components for ÑfÑ>0.5/T.  Using
RC4T(f)/C0(f) as the receiving filter zeros out most of the
frequency components that originally yield the timing
information in the squaring operation.  Although
RC4T(f)/C0(f) enhances some frequency components, the
resultant performance is degraded.

Figure 3 depicts the performance of the proposed
estimator for TFM.  The results indicate that for TFM, using
RC4T(f)/C0(f) as the receiving filter provides better
performance.  In contrast to the previous case, the frequency
span of C0(f) for TFM is small due to its large value of L (L=6
in the simulation), RC4T(f)/C0(f) enhances the frequency
components of C0(f) and thus give better performance.

Figure 4 illustrates the performance of the proposed
estimator for 2RC.  In this case, the performances of the
proposed estimator using two different receiving filters are
similar. The two effects introduced by the receiving filter
RC4T(f)/C0(f) almost cancel out and resultant degrees of
spectral overlap using two different receiving filters are
similar.

Now, let us compare the performance of the proposed
estimator with the MCRB and that of the ML algorithm.
From Figures 2-4, it is noted that, for the proposed timing
estimator, there exists a receiving filter such that the
performance is close to the MCRB.  In comparison to the ML
algorithm given in [5], two cases are considered separately.
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For pulse length L�2 (Figure 3, 4), the proposed estimator
exhibits only a limited degradation at low SNR, but the
variance of estimates from the proposed estimator is smaller
than that from [5] at high SNR.  It is because in the derivation
of the timing estimator based on the ML algorithm in [5], low
SNR is assumed and performance in high SNR is sacrificed.
For L=1 (Figure 2), the same observation can only be
obtained for the receiving filter C0(f), as the receiving filter
RC4T(f)/C0(f) degrades the performance of the proposed
estimator in short-pulse-length cases, which has been
explained earlier.  However, what should be noted is that the
performance curve of the proposed estimator with receiving
filter C0(f) is parallel to the MCRB while that of the ML
estimator exhibits an irreducible error floor at high SNR.

Despite a slight loss of performance at low SNR, the
proposed algorithm has a lower implementation complexity,
implying lower power consumption, which is an important
advantage.  Since it is known [11] that, the computation of
complex Fourier coefficient at the symbol rate in (4) can be
realized by an IIR filter with single coefficient of value -1,
the proposed algorithm requires only 2LoN real
multiplications and 2LoN real additions per estimate.  While
the algorithm in [5] requires 3LoN+16 real multiplications
and 3LoN+12 real additions per estimate, the saving in
complexity of the proposed algorithm is about 33%.  In the
calculation above, multiplication with -1 and 2 does not
count.

V. CONCLUSIONS

An all-digital timing estimator for generalized MSK
modulation based on squaring algorithm has been presented.
The performance of the estimator in AWGN channel has
been assessed by computer simulation.  It has been shown
that two receiving filters generate different performances in
different modulations so that small variance of estimates can
be guaranteed by using different receiving filters for different
modulations.  With lower implementation complexity, the
performance of the proposed timing estimator is close to that
of the ML estimator at low SNR and is better at high SNR.
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