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Abstract- In this paper, we propose a two-layer hierarchical cache 
architecture for enhancing TCP performance over heterogeneous 
networks with both wired and wireless links. A new network- 
layer protocol, called New Snoop, is designed. The main idea is to 
cache the unacknowledged packets at both Mobile Switch Center 
(MSC) and Base Station (BS), thus forming a two-layer cache 
hierarchy. If a packet is lost due to transmission errors in 
wireless link, the BS takes the responsibility to recover the loss. 
When a handoff occurs during a TCP connection session, the 
packets cached in MSC can help to minimize the latency of 
retransmissions due to temporal disconnection. Simulation 
results show that using New Snoop is significantly more robust 
in dealing with unreliable wireless links and handoffs as 
compared with the Snoop scheme 131 as well as other existing 
TCP enhancements. 

I. INTRODUCTION 

The two growing technology trends, Internet access and wireless 
access, would result in a strong combination that wireless data 
networks and services would dominate the marketplace. TCP is a 
transport layer protocol that has been designed, improved and 
tuned to work efficiently on wired network where the packet loss 
is very small. Whenever a packet is lost, it is reasonable to 
assume that congestion has occurred on the connection path. 
Hence, TCP triggers congestion recovery algorithms when 
packet loss is detected. On the other hand, the bit error rate of a 
wireless link is much higher and a wireless connection might be 
temporally broken due to a handoff or other temporal link 
impairment such as shadowing effect. As a result, the 
assumption that packet loss is (mainly) due to congestion is no 
longer valid and the original TCP cannot work well in a 
heterogeneous network with both wired and wireless links. In 
summary, the challenges for TCP over wireless networks are: (1) 
high bit error rates, (2) handoff due to users' mobility, (3) 
asymmetric effects and latency variation, and (4) low channel 
bandwidths. 
Since many network applications are built on top of TCP, and 
will continue to be in the foreseeable future, it is important to 
improve its performance in wireless networks without any 
modifications to the fixed hosts. This is the most promising way 
by which mobile devices can seamlessly integrate with the rest 
of the Internet. Recently, several reliable transport-layer 
protocols for networks with wireless links have been proposed to 
alleviate the poor end-to-end TCP performance in the 
heterogeneous network environments, including Split 
Connection Approach [2], Fast-Retransmit Approach [4], Link- 
level Retransmissions [ I] and Selective Acknowledgements [SI. 
However, these schemes have some limitations with respect to 
one or more of the following aspects: TCP semantics 
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transparency, application relinking requirement, software 
overhead or others. 
It is worthy noting that a good scheme called Snoop was 
proposed in [3]. The Snoop protocol introduces a module, called 
snoop agent, at the base station. The agent monitors every packet 
that passes through the TCP connection in both directions and 
maintains a cache of TCP packets sent across the link that have 
not yet been acknowledged by the receiver. The snoop agent 
retransmits the lost packet if it has it cached and suppresses the 
duplicate acknowledgments (ACKs). Like other link-layer 
solutions, the snoop approach could also suffer from not being 
able to completely shield the sender from the wireless losses. 
In this paper, we propose a two-layer hierarchical cache 
architecture for enhancing TCP performance over heterogeneous 
networks with both wired and wireless links. A new network- 
layer protocol, called New Snoop, is designed. The main idea is to 
cache the unacknowledged packets at both Mobile Switch Center 
(MSC) and Base Station (BS), thus forming a two-layer cache 
hierarchy. If a packet is lost due to transmission errors in wireless 
link, the BS takes the responsibility to recover the loss. If the 
losdinterruption is due to a handoff, the MSC performs the 
necessary recovery. With this proposed hierarchical cache 
architecture, New Snoop protocol can effectively handle the 
packet losses caused by both handoffs and link impairments. 
This in turn improves the TCP throughput performance as 
compared with the Snoop scheme [3] as well as other existing 
TCP enhancements. 
In this paper, we consider the case where a fixed host, e.g. an 
ISP server, using TCP to communicate with a mobile host via a 
path consisting of an error-immune wired link and an error-open 
wireless link. In the next section, the two-layer hierarchical 
cache architecture and the New Snoop protocol are proposed. 
The simulation model and simulation results for evaluating the 
New Snoop protocol are presented in Section 111. Finally we 
conclude the paper in Section IV. 

II.TW0-LAYER HIERICHICAL CACHE ARCHITECTURE 
AND NEW SNOOP 

Using the proposed two-layer hierarchical cache scheme, no 
modifications to the two end hosts and the fixed network are 
required except at the MSC and BS. At these two points, the 
routers are modified to cache the unacknowledged packets going 
to mobile hosts using a new network-layer protocol called New 
Snoop. Local retransmission over the wireless link is performed 
by the BS when a packet loss due to wireless transmission errors 
is detected. If a connection interruption due to a handoff occurs, 
the MSC performs the necessary recovery. We can show.that the 
sender can be completely shielded from the instabilities of the 
wireless links and the user mobility. 
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A. New Snoop Protocol Layer 
Like Snoop protocol [3], New Snoop is located above the IP 
layer. Its function is to monitor and cache the packets passing 
through the BSMSC, to abstract the code information from the 
TCP packets, and to utilize this information for local packet 
recovery. New Snoop differs from the original Snoop in four 
major aspects. With New Snoop, (1) packets are cached at both 
MSC and BS, (2) packet loss due to congestion at the BS is 
considered, (3) local fast retransmission of out-of-order packets 
is implemented, and (4) each BS has an ACK adjustment 
mechanism to handle the latency variation caused by local 
retransmission. 
According to our understanding of Snoop in [3], the buffer for 
each TCP connection at the BS is divided into two portions, we 
call them output buffer and cache buffer as shown in Fig. 1. A 
packet arrives and waits in the output buffer for transmission to 
the mobile host. Upon transmission, a copy of the transmitted 
packet is stored at the cache buffer until the ACK that confirms 
its correct reception by the mobile host is received. Since the 
size of the cache buffer is fixed, a transmitted packet cannot be 
cached if the cache buffer is full. Therefore using Snoop does 
not guarantee a packet lost on the wireless link can be found at 
the BS. If this happens, the BS will forward the received 
duplicate ACKs to the original TCP sender and subsequently a 
fast retransmission at the sender for recovering the loss will be 
triggered. In this case, the loss caused by wireless transmission 
errors will be wrongly interpreted by the sender as traffic 
congestion. 

Input 
(packets 

arrived from 
MSC) 

Output Buffer 

Cache 
Base Station 

output to 
Mobile Host 
via wireless 

channel 

1 I 

Fig. 1 Buffer design at the BS for a TCP connection using Snoop 
protocol. 

Input 

arrived from 
MSC) 

(packets - 

Shared buffer for both packets waiting 
for transmission and packets waiting for 

ACKs (i.e. cached packets). 
Base Station 

output to 
Mobile Host 
via wireless 

channel 

Fig. 2 Buffer design at the BS for a TCP connection using New 
Snoop protocol. 

Using New Snoop, we propose to use a shared buffer for both 
packets waiting for transmission and packets waiting for ACKs 
as shown in Fig. 2. When a new packet arrives at the BS, i t  is 
discarded if this shared buffer is full. Similar to a conventional 
router, a buffer overflow implies that traffic congestion occurs. 
(The congestion effect on Snoop is not considered in [3].) Upon 
transmission, a copy of the transmitted packet remains in the 
buffer but becoming a cached packet (a packet tag for 

distinguishing the packet status will be described later). The 
cached packet is cleared from the buffer when the ACK 
confirmed its correct reception is received. Therefore if a packet 
is lost due to errors in wireless link, it can always be found in the 
BS buffer. The local loss recovery can then be performed and the 
original sender will be completely shielded from the instabilities 
of the wireless links. Another advantage of using shared buffer is 
that the buffer utilization will be greatly improved because 
complete resource sharing policy i s  used. 

B. Packet Loss Recovery due to Wireless Transmission Errors 
Recall that the TCP protocol is a sliding window scheme 
implemented at the sender. Each TCP packet has an associated 
sequence number. A TCP packet is identified uniquely by the 
sequence number and its size. For implementation, we propose 
to add a three-bit tag to each packet arrivedhuffered at the BS. 
This tag is used only at the BS to indicate the status of the 
buffered packet, where the first bit of the tag denotes the 
associated packet is waiting for transmission <O> or waiting for 
ACK <I>; the second bit denotes the packet is an out-of-order 
packet <I>  or an in-order packet <O>; and the third bit denotes 
the packet is a retransmitted packet <1> or not <o>. 
When a new packet arrives at the BS, it is assigned a tag with 
value 000 or 010, denoting the packet is waiting for its tum of 
transmission (to the mobile host). Tag 000 is used if it is an in- 
order packet, meaning that its sequence number is one plus that 
of the last received packet. Tag 010 is used if the new packet is 
an out-of-order packet. Upon transmission, the tag of the 
transmitted packet is converted to 100 or 110 to denote that this 
packet is a cached copy. It remains in the buffer until an ACK 
confirmed its correct reception by the mobile host is received. 
Finally, a packet is marked as a retransmitted packet with tag 
x x l  (where x means don’t care, it can be either 0 or 1) if it has 
been retransmitted by the sender or by the BS. Depending on the 
tag value, the BS carries out the corresponding packet processing 
procedure andor ACK processing procedure as described below. 
B1. Packet Processing at BS 
1) When an in-sequence packet arrives and found no free buffer 
at the BS, the packet is immediately discarded. Otherwise, attach 
tag 000 to the packet and place the packet to the transmission 
queue. When the packet is transmitted via the wireless link later, 
a timestamp is attached to its cached copy (for measuring the 
round-trip-time of the wireless loop as described later) and its 
tag becomes 100. 
2) When an out-of-order packet that has not been cached before 
(i.e. no copy of this packet can be found at the BS) arrives and 
local buffer is available, attach tag 010 to the packet and place 
the packet to the transmission queue. Upon transmission, its tag 
becomes 110. It should be noted that although this packet is out- 
of-order, there is no need to give this packet a higher 
transmission priority over other packets waiting in the 
transmission queue. 
3) When an out-of-order packet that has not been cached before 
amves and local buffer is not available, if the sequence number 
of the new packet does not equal to the sequence number of the 
last received ACK, the packet is discarded. Otherwise, the 
mobile host is expecting this packet. That means the mobile host 
is waiting for this packet in order to generate an ACK to release 
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some packets from the fully occupied BS buffer, and the wireless 
link is idle at this time. The new packet is immediately 
transmitted to the mobile via the idle wireless channel, and a 
copy of it  is stored at a special one-packet buffer (which is not 
explicitly shown in Fig. 2). In this case, it is reasonable to 
assume that this packet has been lost previously in the fixed 
network, and right now it is a retransmitted copy of the 
previously lost packet. Therefore a tag 111 is attached to this 
cached packet. We refer this as local fast retransmission of out- 
of-order packet. 
4) When an out-of-order packet arrives and a copy of this packet 
is found in the BS buffer, this newly wived duplicate packet is 
i,mmediately dropped. This happens when some previous packet 
corrupted and caused a fast packet retransmission. The long 
delay for recovering the previously lost packet causes the current 
packet (i.e. the one just arrived) to timeout at the sender (since 
no ACK for it was issued by the mobile host). However, the 
previous copy of this packet has already been transmitted to the 
mobile host and the BS is waiting for the corresponding ACK. 
B2. ACK Processing at BS 
New Snoop processes ACK with two major differences from 
Snoop [3]. First, using Snoop all out-of-order packets are marked 
as retransmitted packets. If an out-of-order-packet is lost in the 
wireless link, the BS must wait for local retransmit timeout 
before triggering a local packet retransmission. If the wireless 
link transmission rate is high (e.g. 2Mbps or 384 kbps) and the 
lower layer protocol processing time is long, the throughput 
degrades quickly while waiting for timeout. 
Using New Snoop an out-of-order packet i s  judged as lost at the 
wireless link when the 31d duplicate ACK for it arrives at the BS. 
(Note that for an in-order packet, the first duplicate ACK 
signifies that this packet has been lost in the wireless link and a 
local retransmission can thus be immediately triggered.) The BS 
retransmits the packet immediately and the successive duplicate 
ACKs are held by the BS (i.e. without forwarding to the sender) 
until a new ACK is received. Using this approach, the sender 
will only receive two duplicate ACKs for  the packet lost at the 
wireless link and that would nor inappropriately (like in Snoop) 
trigger fast retransmission at the sender. 
The local loss recovery at the BS will cause extra delay (and 
delay variation) for ACKs to reach the sender. The length of this 
extra delay is a function of the packet loss probability on the 
wireless link. It is important to have a good estimation of the 
round trip delay time at the sender. This can avoid the inaccurate 
setting of the retransmit timeout (RTO) value and thus 
unnecessary retransmission by the sender. To achieve this, the 
BS should have a mechanism to adjust the forwarding time of 
each ACK towards the sender. The detail of the ACK adjustment 
i s  described in the next sub-section. This is the second important 
difference with Snoop. 
The following pseudo code describes the steps when an ACK is 
received by the BS. (The ACK adjustment scheme is not 
included.) 

( I )  When a new ACK is received, the acknowledged packets in the 
buffer (including the one-packet special buffer) are flushed. The 
round trip time estimate for the wireless link is updated. The 
same ACK is then forwarded to the sender. 

(2) When a spurious ACK is received, it is discarded without 
forwarding. A spurious ACK is an ACK with a sequence number 
less than that of the last received ACK. 

(3)  When a duplicate ACK is received, 
if the requested packet is not found in the buffer, forward the 
duplicate ACK to the sender. 

if the requested packet is found in the buffer, 
if its tag is IO0 (i.e. it is an in-order packet), retransmit 
the requested packet and reset the retransmit timer. Then 
mark the packet as retransmitted with tag -1. where x 
means either 0 or I .  Hold the duplicate ACK. 
if its tag is 110 (i.e. it is an our-of-order packet), 
if DUP-counter < 3, DUP-counter = DUP-counter +- 1.  
if DUP-counter = 3, retransmit the requested packet and 

reset the retransmit timer. Then mark the packet as 
retransmitted with tag xxl. Hold the duplicate ACK. 
Reset DLIP-counter = 0. 

if its tag is m1 (i.e. it is a retransmitted packet), hold the 
duplicate ACK. 

(4)  When the retransmit timer times out, check the sequence 
number of the associated timeout packet. If its sequence 
number is the same as that of the last received ACK, 
retransmit the timed out packet and reset the retransmit timer. 
Mark the packet as retransmitted with lag xxl. 

DUP-counter i s  an integer counter that counts how many 
duplicate ACKs have been received if the requested packet is 
an out-of-order packet. 

C, ACK Adjustment for Handling Latency Variation 
The TCP sender estimates the RTT (round-trip-time) of a 
connection by measuring the time between the sending of a 
packet and the receipt of the ACK for this packet. For each 
congestion window CWND the TCP sender can get a sample of 
the RTT. The new RTTand its deviation are calculated below: 

RTT = a x  R U  + (1 - a ) x  M (1) 
(2) D = a x  D -t (1 - a)xlRTT - MI 

where D is the mean deviation of R T ,  M is the sample of the 
RTT; a is the control factor, The optimal value of a (as 
suggested by RFC of IETF) equals to 0.875 in order to have 
small oscillation between two R7Ts. 
In TCP protocol, the retransmit timeout (RTO) value of the 
sender is calculated as a function of the average and mean 
deviation of the R7T, where 

Most TCP implementations use a 500 ms timer granularity for 
the retransmission timeout. In heterogeneous networks, the local 
retransmission at the wireless link can cause the end-to-end R7T 
to increase significantly in a short time due to the long 
processing time and the low data transmission rate on the 
wireless link. As a result, big time gaps in the receiving ACK 
sequence are observed at the sender when loeal retransmission 
occurs. Frequent wrong timeouts at the sender would then be 
triggered. Remember that wrong timeout has a serious negative 
impact on the TCP connection throughput. 
In New Snoop, we propose to use an ACK adjustment scheme to 
solve this problem. Each ACK that is to be forwarded to the 
sender will be held or delayed for a short period of time at the 
BS, As a result, the sender will get a longer but more stable (i.e. 

(3) R T O = R T T + 4 x D  * 
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with less delay variation) RZT measurement, and the probability 
of wrong timeout at the sender can be reduced. The ACK delay 
interval, AD+, is calculated as a function of the round trip time 
and the packet loss probability of the wireless link, or 

where Ppk,-loss is the packet loss probability of the wireless link; 
R7Tw,relclcsr is the round trip time of the wireless link. R7Tw,,eless is 
measured by the timestamp of each packet in the local buffer at 
the BS using the same formula in equation (1) above. 

D. Fast Packet Recovery during Handoffs 
When a handoff occurs during a TCP connection session, the 
transmission channel is temporally not available and TCP 
packets are lost. A handoff latency may last for several tens ms 
or higher. Packet losses due to handoffs can cause the TCP 
sender to remain idle for long period of time even after the 
handoff is completed, resulting in unacceptably low throughput. 

ADdW = P P k L I O S I  XRT7;,rel,ss (4) 

Mobile host BS1 MSC BS2 

Fig. 3 Handoff processing in two-layer hierarchical cache 
architecture using New Snoop. 

In New Snoop, we propose to tackle this by storing 
unacknowledged packets at MSC for fast local loss recovery. For 
simplicity, we can assume that the buffer sizes at both BS and 
MSC are equal for each TCP connection. Fig. 3 shows a typical 
scenario of packet transmissions during a handoff in a network 
using two-layer hierarchical cache scheme. When a mobile host 
finds a base station with a stronger signal power, a handoff 
request is sent to MSC via the old base station (BSI). The MSC 
then re-routes the TCP connection to the new base station (BS2). 
The MSC keeps track which packets have been sent to BSI 
during the handoff. It collects the following information from 
BSI: (a) which packets are waiting for ACKs from the mobile 
host, and (b) the associated local retransmit timer values for 
packets waiting for ACKs. Then the MSC sends all 
unacknowledged packets from its cache buffer plus their 
retransmit timers collected from BSI to BS2. Then BS2 takes 
over the role of BS1. The handoff completes and the TCP 
connection is resumed. 

The buffer requirement at a MSC can be greatly reduced if a 
handoff can be predicted. In fact, predicting a handoff is not 
difficult. We can, for example, start to cache the packets arrived 
at the MSC only when a handoff request from a mobile is 
received. If this duration is not enough for caching at least the 
same amount of unacknowledged packets as the old base station 
(BSI), we can adjust the handoff initiation power threshold such 
that a handoff request can be initiated earlier, or the MSC will be 
warned about the handoff earlier. 

111. PERFORMANCE EVALUATION 

In this section, we study the performance of the New Snoop 
under the hierarchical cache architecture using computer 
simulations. Fig. 4 shows our simulated network, which consists 
of an ISP server, a MSC, two BSs and a mobile host. We assume 
that the mobile host is moving in one direction from left to right. 
A handoff occurs at the boundary between two cells that are 
covered by two adjacent base stations. The simulation 
parameters are summarized in Table 1. 
We assume that the links in the fixed network are error-free, and 
the congestion in the fixed network only occurs at the BS. We 
also assume that some error-correction schemes have been 
implemented at physical and data link layers, therefore the 
packet lost probability as seen by the TCP layer is a uniformly 
distributed random process. Since ACK packets are relatively 
small in size, the effect of ACK loss is ignored. 

Link-S-M 

L i n k ; ; B s  Link-M-B , 
Wireless-Link -*.-- [%I 

___) Moving Direction 

Fig. 4 Simulation Model. 
For comparison, TCP Reno, New Reno, Reno with Snoop/New 
Snoop, and New Reno with Snoop/New Snoop are implemented. 
For all protocols except those with Snoop option, the base station 
is assumed to have a fixed (shared) buffer size of Sizecwhe= 20 
packets. For protocols with Snoop option, we adopt the buffer 
design shown in Fig. 1. That is the output buffer is Sizecache= 20 
packets, and the extra cache buffer is assumed to be infinite. 

A. Performance in Recovering Losses caused by Wireless 
Transmission Errors 
We first study the performance of New Snoop (NS) protocol in 
recovering losses caused by wireless transmission errors. The 
packet loss rate (PLR) of the wireless link under consideration is 
from 5x10’ to 5x10’. We simulate the case that a mobile host 
retrieves a buck data file from the fixed server. The size of the 
download file is 50 Mbytes for minimizing the effect of TCP 
slow start on the throughput performance. 
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Fig. 5 Recovering losses caused by wireless link errors; 384 
Kbps wireless link. 

0.8 
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5.OE-01 5.OE-02 5.OE-03 5.OE-04 5.OE-05 
Packet Loss Rate 

Fig. 6 Recovering losses caused by wireless link errors; 2 
Mbps wireless link. 
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Reno A h  NS 
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Packet Loss Rate 

Fig. 7 Recovering losses caused by wireless link errors; 144 
Kbps wireless link. 

Figs. 5 ,  6 & 7 show the throughput of wireless links with 
transmission rates 384 kpbs, 2Mbps and 144 kbps respectively. 
We can see that using New Snoop can significantly improve the 

throughput when PLR is higher than 5 ~ 1 0 ~ .  This indicates that 
the packet losses due to errors at the wireless link have been 
effectively recovered by New Snoop. From PLR of 10" to lo-*, 
the throughput improvement obtained using New Snoop is from 
10 - 60 times as compared to that of the (pure) TCP Reno and 
TCP New Reno in Fig. 5 ,  8 - 67 times in Fig. 6, and 3 - 23 
times in Fig. 7. 
From Fig. 5 ,  we can see that the throughput of using New Snoop 
is higher than Snoop. (Remember that we have used an infinite 
sized cache buffer for Snoop. Therefore if finite sized cache 
buffer is used, Snoop will perform even worse.) For PLR from 
10.' to 5x103, about 4-12% and 3-17% throughput 
improvements are obtained when New Reno and Reno are used 
respectively. (We also notice that the improvement using Reno is 
more than New Reno. This is because if multiple packets are lost 
due to buffer overflow, Reno has a higher probability of causing 
sender timeout. When packet loss due to wireless PLR is low, 
the performance difference between using Reno and New Reno 
are small.) 
Comparing Figs. 6 & 7, it is interesting to see that the throughput 
using 2Mbps is lower than that of the 144kbps when PLR is 
high, while the vice versa is true when PLR is low. This is 
because when the wireless link rate is high, there are more 
unacknowledged packets in the local cache at the BS. If the PLR 
of the wireless link is high, the local cache overflows with a 
higher probability. Then the TCP sender will enter the fast 
retransmission and fast recovery procedures to recover the lost 
packets. This results in a significant drop in throughput. On the 
other hand, when the PLR is low enough, the local cache 
overflow is less likely. Therefore, the link with a higher transfer 
rate can achieve a higher throughput. 

Table1 Simulation Parameters 
Parameters Symbols Values 

Transfer rate of the Link between the RL.lnk_S.M 10Mbps 
Server and the MSC 
Transfer latency of the Link between the LL,~LS_M 40 ms 
Server and the MSC 
Transfer rate of the Link between the MSC RG~L-M-B IOMbps 

Transfer latency of the Link between the L M M - ~  1 ms 
MSC and the BS 
Transfer rate of the Wireless Link Rwmlsu 2Mbps I 

384Kbps / 
144 Kbps 

Packet Loss Probability of the Wireless P,,h-,os 5x10.' - Transfer latency of the Wireless Link LW,,,, 20 us 

Link 5x10" 
Processing delay of the lower layer DWeu loo ms 
protocols at the wireless link 
Handoff interval Handoff 30s - 180s 
Buffer size of the MSC and BS for each 20Packets 
TCP connection 
TCP packet size Sizep*, 512 Bytes 
ACK size SizeAcK 40 Bytes 

Sizecxk 

B. Performance in Recovering Losses during Handoffs 
Next we focus on the performance of using New Snoop in 
handling interruptions caused by handoffs. Assume the mobile 
host moves at a constant speed from left to right as shown in Fig. 
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4. The handoff frequency or the interval between two handoffs 
depends on the mobile moving speed. In our simulations, we 
assume handoff occurs at a regular interval from 30 seconds to 
180 seconds. For comparison, the handoff performance of the 
Snoop protocol is also obtained. The handoff processing time is 
assumed to be 20 ms for New Snoop using the hierarchical cache 
architecture, and 20 ms plus the packet transmission time (from 
the old BS to the New BS) for the Snoop protocol. The packet 
loss due to handoff is not considered for Snoop protocol. 
Two types of wireless environments are simulated (Figs. 8 & 9), 
one with a high PLR ( = 5 ~ 1 0 - ~ ) ,  and another with a low PLR (= 
5x10.'). For each type of environment, three wireless link 
transfer rates, 144kbps, 384kbps and 2Mbps, are used. In all 
simulations, the size of the download file is 50 Mbytes and TCP 
New Reno is adopted. 

o,8 

0.7 - 
0.6 - 
0.5 - 
0.4 4 .  

0.3 - 
0.2 - 
0.1 - 
01 

n.6 . 

- -*-+: : I:, . 4  - . ,:: : :' - - A - -  
, - - - - - - _. - - - - - - -- - - - - 

,+ 384K Hierarchical-Cache - 
384K Snwp protocol 
ZM Hie=%ai-Cache 
ZM S-ol . . + _ _ _  
144K Hierarchical-Cache 
144K Snoop protocol 

- - - - - - +' 

_ _ _ _ _ _  
i 

0.1 (Please refer to Fig. 9 for legend keys.) 

384 Kbps rate. The throughput drops about 20%, while the 
throughput drops for 2 Mbps and 144 kbps are only about 1% 
and 0.5%. 
Fig. 9 shows the case with wireless link PLR = 5x10". We can 
see that hierarchical cache scheme improves the throughput by 
5%-lo%, 15%-50% and 6%-7% as compared to that of using 
Snoop, at rates 384 kbps, 2 Mbps and 144kbps respectively. 

IV. SUMMARY 

In this paper, we have proposed a two-layer hierarchical cache 
architecture for enhancing the TCP performance in a 
heterogeneous network with both wired and wireless links. A 
new network layer protocol called New Snoop was designed for 
implementing at both base station (BS) and mobile switching 
center (MSC). The idea to cache packets at these two places for 
effectively recovering retransmissions caused by wireless link 
errors as well as handoffs. The simulation results showed that the 
proposed scheme is robust and can significantly improve 
wireless link throughput when packet loss rate is high, and the 
improvement for high-speed wireless links is more significant 
than that for low-speed links. 
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