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ABSTRACT 

This paper studies the problem of robust adaptive filtering in 
impulse noise environment using the Quasi-Newton (QN) adaptive 
filtering algorithm. An M-estimate based cost function is minimized 
instead of the commonly used mean square error (MSE) to suppress 
the adverse effect of the impulse noise on the filter coefficients. In 
particular, a new robust quasi-Newton (R-QN) algorithm using the 
self-scaling variable metric (SSV) method for unconstrained 
optimization is studied in details. Simulation results show that the 
R-QN algorithm is more robust to impulse noise in the desired 
signal than the RLS algorithm and other QN algorithm considered. 
Its initial convergence speed and tracking ability to sudden system 
change are also superior to those of the quasi-Newton algorithm 
proposed in [I] .  

1. INTRODUCTION 
The performance of conventional linear adaptive filtering algorithms 
can deteriorate significantly when the input or desired signal is 
corrupted by impulse noise. Nonlinear techniques are usually 
employed to reduce the adverse effects of the impulse noise on the 
filter coefficient vector. For example, median filtering has been 
applied to the LMS and the RLS algorithms to protect the filter 
weights from the effects of impulsive interference, giving rise to the 
order statistic least mean square (OSLMS) [2] and the order statistic 
fast Kalman filtering (OSFKF) [3] algorithms. While the adaptive 
threshold nonlinear (ATNA) [4] and the nonlinear RLS (NRLS) [ 5 ]  
algorithms use nonlinear clipping functions to limit the transient 
fluctuation of the estimation error on filter coefficients in the LMS 
and the RLS adaptive algorithms. Recently, the authors have 
proposed a family of robust adaptive filtering algorithms based on 
the minimization of an M-estimate cost function. In particular. a 
recursive least M-estimate (RLM) algorithm [6] ,  and a least mean 
M-estimate (LMM) [7] algorithms have been developed based on 
the Hampel's three part redescending M-estimate cost function [8] 
to suppress the impulses in the desired and the input signals. 
Simulation results showed that the robust statistic approach offer 
improved robustness to consecutive impulses in the desired and 
input signals than other approaches [6, 7. 151. 

In this paper. we further generalize this approach to the conventional 
quasi-Newton algorithms to develop robust adaptive filtering 
algorithms in impulse noise environment. Particularly, a new robust 
quasi-Newton (R-QN) algorithm using the self-scaling variable 
metric (SSV) method for unconstrained optimization will be studied 
in details. Simulation results show that the R-QN algorithm is more 
robust to impulse noise in the desired signal than the RLS algorithm 
and other QN algorithm considered. Its initial convergence speed 
and tracking ability to sudden system change are also superior to 
those of the quasi-Newton algorithm proposed in [I] .  

The paper is organized as follows: A brief summary of the Quasi- 
Newton adaptive filtering algorithm is given in Section 2 .  The 
robust quasi-Newton algorithm is introduced in Section 3.  
Simulation result and compnrison with other algorithms are 
described in Section 4. Finally, conclusions are drawn in Section 5. 

2. QUASI-NEWTON ADAPTIVE FILTERING 
ALGORITHMS 

Fig. 1 shows an adaptive linear transversal filter configured in a 
system identification application. Signals . Y ( J I )  and ~ ( J I )  are 
respectively the input and the output of the adaptive linear 
transversal filter. d ( J 1 )  is the desired signal, which consists of the 
output of the unknown system d . ( 1 1 ) ,  and the additive interference 

l ~ o ( J l )  , i.e. ~ ( I l ) = ~ / , ~ J l ) + l J ~ ~ J l )  . The symbols I I  , N and the 
superscript T denote the time index,' the filter length, and the 
transpose operator, respectively. The task of the adaptive filter is to 
minimize certain distortion measure between the output signal ?(ti) 

and the desired signal d ( J 1 )  . Therefore, the adaptive filtering 
problem can be formulated as a general unconstrained optimization 
problem. One frequently used distortion measure is the mean square 
error (MSE) as follows 

nin J,, ( w  )-= nlin E [ c ' ( I J ) ]  . 
where e( J I  ) = d (  J I  ) - wr(rl - 1 ) X ( r ? )  . 

( 1 )  

( 2 )  

w(n ) = [ IV, (JI) ; .  . . 1 \ . . ~ ( 1 1  ) I r  , X ( n )  = [.v( JI ): . ...v( JI - N + I )I7 and JM.5E( w ) 

are the estimation error, the filter coefficient vector, the input signal 
vector, and the MSE cost function, respectively. The Newton 
adaptive filtering algorithm is developed from the Wiener-Hopf 
equation and the filter coefficient vector is updated as [9] 

W ( J l ) = W ( J I - l ) - - y R ~ ' g ( I l - l ) .  ( 3 )  

where 11 is the stepsize ( O < p  < I  ), R is the (N  x N )  ensemble 
autocorrelation matrix of . Y ( J l ) ,  and g(J1) is the gradient vector of 
the cost function J , , ( w ) .  In practice, R and g ( r i )  are not known 
in advance and they have to estimated continuously. From an 
adaptive filtering point of view, different estimation method for R-l 
and g(11)  constitute different Newton-type adaptive filtering 
algorithms, which have the following general form 

W ( J 1 )  = W ( I 1 -  1 ) -  k l ( J l  ) k l ( J I  - l ) g ( J l  - 1 )  , (4)  

where ~ ' ( J I )  and gui) are the estimate of R-' and g 0 i )  , 

respectively. The stepsize p ( r 1 )  can either be time varying or 
constant. For example, one gets the LMS-Newton algorithm [IO] if a 
constant stepsize ( j l ( J 1 )  = p ) and the following instantaneous 
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of J,,(w) are used. Substituting ( 5 )  into (4) yields the filter 
coefficient update equation of the LMS-Newton algorithms as 
follows [IO, 11 J 

W ( 1 i )  = W ( H  - 1 ) + 2 / / d 1 i K ' O i  - I ) X ( r i ) .  (6) 

Various methods have been proposed to estimate k'(11) in (6) or 
solving the system k ' ( r i - I ) X ( r i )  , which constitutes the major 
complexity of the Newton-type algorithms. In the conventional RLS 
algorithm, k'( 1 1 )  is recursively estimated from X ( 1 1 )  using the 
inverse matrix lemma [ 121 

where A is a forgetting factor. The RLS algorithm has a 
computational complexity of order O(N' and provides the fastest 
convergence speed. Unfortunately, the RLS algorithm suffers from 
numerical problem when implemented in fixed-point or floating- 
point arithmetic [ I ,  121. In [I]. a new quasi-Newton (QN) algorithm 
with better numerical behavior was proposed, based on Fletcher 
optimization technique. More specifically, the coefficient vector of 
the QN algorithm is updated as follows: 

k ' ( r 1 )  = k I ( r 1 -  l ) + ( / / ( f i ) -  I ) t ( f l ) t ~ ( f i ) / " ( f I )  , (10) 

(11)  W ( 1 2 )  = W ( f I  - l ) + c ~ f l ) t ~ f 7 ~ / U ~ f z )  , 

where c ( n )  is given by ( 2 ) .  Noted that. in the development of the 
QN algorithm. g(ri-1) is still estimated by (S), but in order to 
obtain the available regression for the adaptive filter, g o i )  is 
approximately estimated by 

g ( n  ) = guYF(  1 1 )  = - ? E ( J I  )x( 1 1 )  ( E ( I I )  = d (  1 1 )  - w T (  ri)X(ri) ). ( 12) 

where € ( i t )  is the posterior error. Finally, a linear search is 

performed along the direction - k ' ( r i - I ) g ( r ~ - l )  to minimize ~ ' ( 1 1 )  

with respect to the time-varying stepsize ~ ( J I ) .  It can be shown that 

the update of ~ ' ( J I )  in ( I O )  and (7) correspond to an update of 

R(ri )  respectively as follows [ I ,  121 

R i ( r 1 )  = & I  - i ) + ~ [ i - p ( r i ) ~ x ( ~ i ) ~ ~ ( ~ ~ )  , (for QN) 

i o I  ) = ~ k r I  - 1) + x(rl )x'(rl) , (for RLS) 
(13) 

(14) 

where ~ ~ J I ~ = I / ~ ~ X ' ~ J ~ ~ R ~ ' ~ J I - ~ ~ X ~ J I ~ ~ .  Comparing (13) with (14). i t  

can be seen that the R ( J I )  in ( 13) will continuously accumulate its 
previous value and relies on the second term on the right hand side 
of (13) to give the correct estimate. In contrast. the k r l )  in (14) will 
gradually forget the effects of its previous value. This makes the 
tracking ability of QN algorithm inferior to the RLS algorithm. 

Both the LMS-Newton or the QN algorithms are not robust to 
impulse noise since they are all developed based on the 
minimization of the MSE cost function [2, 4. 6-81, When there are 
impulses in the desired signal or the input signal ~ ( 1 1 )  , 
g M , E ( ~ ~  -1) in ( 5 )  will be corrupted by the impulse leading to a fault 
gradient with a large value. The corresponding , N J Z )  along this 

'wrong' direction will further exaggerate the effect of the impulse on 
the filter coefficient vector w(I1) and the update of k ' ( i 2 )  . 
Therefore, the performance of the QN algorithm will be significantly 
degraded. 

3. ROBUST QUASI-NEWTON (R-QN) ADAPTIVE 
FILTERING ALGORITHM 

In this section, we develop a new robust quasi-Newton (R-QN) 
algorithm based on the self-scaling variable metric (SSV) method 
[13, 141 and the robust statistics concept [6, 7, 151. It has better 
robustness against impulse noise in the desired signal and better 
tracking ability to sudden system change than the QN algorithm in 
[I] .  In what follows, the SSV method [ 13, 141 will be introduced. 
Then, the proposed R-QN algorithm will be described in details. 

3.1 The SSV method [113,14] 

Starting with any positive definite matrix k ' ( 0 )  , w(0)  = 0 . The ri th 
iteration of the SSV method is given as follows: 

Step One: set the searching direction s( 1 1 )  as 

s ( n )  = -R-'(ri - I)g(ri - I )  . (15) 

Step Two: perform a linear search along ~ ( J I )  to determine the new 
coefficient vector 

W ( I I )  = w ~ f I - l ) + p ( f l ) s ( f l )  . (16) 

Step Three: update R-'( 11)  from R-'(II - 1) 

where K and y are two parameters chosen to improve the 
approximation of the Hessian 1131. For clarity of presentation, in the 
right hand of equations (17) and (18), we have used the 
abbreviations A g i g ( r i ) - g ( r i - l )  , A W L  w ( n ) - w ( r z - l )  , and 

R-' = R-'( J I  - I )  . As we shall see later in the simulation in section 4, 
the SSV provides a convenieni tradeoff between tracking ability and 
steady state error for the QN algorithm by controlling the parameters 
K and y . In principle, QN algorithms based on the Fletcher or SSV 
formulas can be applied to nonlinear objective functions if the 
gradient in (4) can be estimated. 

3.2 The Robust Quasi-Newton Algorithm 
We can see that the various derivations of the QN algorithm are 
based on (3) and the use of the instantaneous gradient of the 
conventional MSE cost function as shown in (5). To provide more 
robustness to impulse noise, we estimate the gradient vector g ( n )  
by minimizing the mean M-estimate cost function J , ( w )  = E [ p ( c ( r ~ ) ) ]  

[ 7 ]  instead of J , , , ( w ) = E [ e ' ( r i ) ] ,  where p(e ( r i ) )  is the Hampel's 
three-part redescending M-estimate function [ 7 ] .  Then, the 
corresponding gradient vector g(.cr~ -1) can be computed as 

and 
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where q(e( i i ) )  is the weighting function of the Hampel's three part 
redescending M-estimate function p ( e ( n  ) )  [7]. The reason for 
choosing the M-estimate function is to de-emphasis the 
contributions of abnormally large instantaneous error on the 
objective function. From (20), it can be seen that the weighting 
function decreases gradually from I to 0 when e(r7) is increased 
from 6 to A: . In fact, when e ( n )  is smaller than 5 . the weight 
function q(e(rz))  is equal to one and g + , ( r i - l )  in (19) becomes 

identical to gM,7E(~~-1) in (5). When e( i i )  is larger than 5 , q(e(ri)) 

starts to reduce and is equal to zero when le(iz)( > A? . As a result, the 

adverse effect of the impulse on g,>(ri -1)  will be suppressed, if 
these thresholds are properly chosen. In [6, 71, we proposed to 
estimate these thresholds continuously using the following formulas 

5=!itc?(ri)=1.966(ri) ,A,=!i,,c?(r1)=2,24c?(ri), 

A ,  . =!i c?(/1)=2.5766(ri), (21) 

where & r i )  is the impulse-free variance of the estimation error 
which can be estimated as follows [7] 

8'(ri ) = Ao6'(?i - I )  + 1.4S3(l+ 5 / ( N t ,  - 1))(1- Lo )nied (A,(ri )) , ( 2 2 )  

where A , ( r i ) = ( c z ( r i ) . . . . , c ' ( i i - N , ,  + I ) )  , N,,. is the length of the 
estimation window, and A. is the forgetting factor. The basic idea is 
to remove the impulsive components in the error signal through the 
median filtering operation so that an impulse-free variance of the 
estimation error can be obtained. Assuming that this impulse-free 
error signal to be Gaussian distributed, it is possible to determine the 
required thresholds to reject or de-emphasis the impulses with 
different degee of confidence. The robustness of the resulting 
algorithm is not sensitive to the choice of the constants k; , !i>, , and 

!i+ provided that they are not too far away from those suggested 

here. The constant 1.483 in ( 2 2 )  is used to provide more accurate 
estimation of the variance if the input is Gaussian distributed. 
Interested readers are referred to [6, 71 for more details. Substituting 
(19) into (4) yields 

W ( I l )  = will- I )  + q(e(r7 )),U( I7 ) d f i  )R-'(II - I ) X ( n  ) . ( 2 3 )  

Together with the method that we have proposed in [I51 for 
suppressing input impulses, (23) serves as a framework for 
developing various Quasi-Newton algorithms for robust adaptive 
filtering in impulse noise. In what follows, we shall focus ourselves 
on the development of a new robust QN algorithm using the SSV 
method illustrated in Section 2.1 

First of all, we consider the determination of the stepsize p ( n )  in 

the linear search along the direction ~ ~ , ( r i ) = - ~ - ' ( r i - I ) g ~ ( r i - l )  in 
Step Two of the SSV algorithm. From (19). it can be seen that when 
d i i )  is larger than A? , both q ( e ( n ) )  and g,,(ii - 1 )  will be zero. In 
this case, the weight vector is not updated. because of the possible 
risk of having an impulse in the desired or input signals. For other 

situation, a linear search along the direction s P ( n )  is performed to 
minimize ~ ( ~ ( 1 7 ) )  with respect to p ( n )  so that its optimal value can 
be determined as follows 

- (24) 

where T ( I I ) =  Xr(rI)R-'oi -1)X(r1) . Here, we have approximated 
q ( E ( r z ) )  by q(e(r7)). To provide a more stable estimation against the 
impulse noise, the actual stepsize p ( n )  is obtained by multiplying 
(24) with a stepsize parameter 

1 1 
W ) =  

q(E(JI))Xr(I1)R-'(il -1)X(fl) q(e(ri))r(n) . 

as follows 

p ( f i ) = p ~ / ( q ( e ( ~ ~ ) ) r ( r 7 ) ) ,  with O<p( ,  21. ( 2 5 )  

Also, from (12) and (23), Ag and Aw in (17) and (18) can be 
estimated respectively as follows 

& = g, ( I I  ) - g, ( 1 1  - 1) = q(c(ri ) )  (e( I I  ) - ~ ( n  1) x(n) , (26) 

AW = p(ri)q(e(rz ))e(ri )R-'(ri - I )X(r i  ) . (27) 

This completes the estimation of the matrix inverse R-'(ri) in Step 
Three of the SSV algorithm. Inserting (26) and (27) into (17) and 
(1  8), we finally obtained the following recursion for the proposed R -  
Q N  algorithm 

e(r1) = d(r1) - wr07 - I  ) X ( i l )  , 
A( / I  ) = R-'( I ?  - 1 )X (n ) , 
r(ri) = X r ( r i  )A(ri) , 

R - ' ( J z )  = R - ' ( J I  - 1) , w(n)  = w(ii - 1) , 

(28) 
(29) 
(30) 

(31) 
if q ( e ( r i ) ) = O ,  then 

else if q ( e ( n ) ) # o ,  then 

W ( / I  ) = ~ ( J I  - 1)  + bc,e(fl )A(iz ) / T  ( 1 1 )  , (33) 

where q(e(r i ) )  is given by (20). and K is chosen as l / A  , as 
suggested in [13], where A is a forgetting factor. Comparing the R- 
QN algorithm to the QN algorithm given in Section 2, it can be seen 
that the arithmetic complexity of the R-QN algorithm is comparable 
to that of the QN algorithm, except for O ( N , ,  IogN,,,) more 
operations required for computing q(e(r1)) [6]. 

4. SIMULATIONS 
The performance of the proposed R-QN algorithm is evaluated and 
compared with the RLS and the QN algorithms in impulse noise 
environment. The adaptive filter shown in Fig. I is used to identify 
the unknown system w' , which is a 91h order lowpass FIR filter with 
coefficients w '  = [.2.-.4,.6.-.S. I. -.S..6.-.4..2Ir and it is changed to 

-w' at rz=2500 to evaluate its tracking ability to sudden system 
change. The input signal . so l )  is generated by passing a zero-mean. 
unit variance white Gaussian process through a linear time-invariant 
filter with coefficients [.3887,1,.3SS7] [12]. The output of the 
unknown system d , ( r i )  is corrupted by the additive noise q, , (n)  , 
which is modeled as the frequently used contaminated Gaussian 
(CG) noise, q , , ( ~ i ) = i j ~ ( r i ) + / ~ ( r ~ ) i j ,  ( 1 1 )  [2, 61. In fact, q 3 ( r i )  and q , , ( ~ i )  

are independent identically distributed (i.i.d.) zero mean Gaussian 
noises with variance 05 and a,: , respectively, D ( r z )  is an i.i.d 
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Bernoulli random variable with occurrence probability 
I: (b(ri) = 1)  = p, . The ratio yo,, = q;,, /o: = p,o;  lo: determines the 

impulsive characteristic of i j , ( r i )  . For fixed value of 03 , the larger 
the y , ,  , the more impulsive q, (r i )  becomes. The signal-to-noise 

ratio at the system output is defined as SNR = IOlog,,(o~~ /ob) , where 

03, is the variance of d , ( r i ) .  The initial values of R-’(O) and w ( 0 )  

are set to identity matrix I and zero vector, respectively. Simulation 
parameters and the initial values for various algorithms are shown in 
Fig. 2 .  For illustration purpose, from ri = 1 to 999, q,,(ri)  = q s ( r i )  is 

used. Whereas from ri=IOOO to 1950, q, (r t )=q , (r i )+b(r t ) i j , , ( r t )  with 

p ,  =0.005 and I ; , $ ~  =300 is used. To visualize clearly the effect of 
impulses in d(ri)  , their locations generated by b(ri) are fixed and 
marked in Fig. 2 ,  but their amplitudes are varied according to q,, ( 1 1 )  , 
which is generated statistically independent in each run. The MSE 
results averaged over 200 independent runs are plotted in Fig. 2. It 
can be seen that the RLS and the QN algorithms are not robust to 
any impulses in the desired signal. The effect of a single impulse 
will last for more than 200 and 350 iterations for the RLS and the 
QN algorithms, respectively. In contrast, the performance of the R- 
QN algorithm is very robust to the added impulses. Additionally, the 
initial convergence and the tracking ability to the system sudden 
change of the R-QN algorithm are superior to those of the QN 
algorithm although they are slightly inferior to those of the RLS 
algorithm. This can be viewed as a reasonable tradeoff between the 
better numerical stability and the robustness to impulse noise and 
the convergence speed and tracking ability. 

5. CONCLUSION 
A new robust quasi-Newton (R-QN) adaptive filtering algorithm for 
impulse noise suppression is presented. It is developed on the self- 
scaling variable metric (SSV) method and the robust statistics 
concept. An M-estimate based cost function is minimized instead of 
the commonly used mean square error (MSE) to suppress the 
adverse effect of the impulse noise on the filter coefficients. 
Simulation results show that the proposed R-QN algorithm is more 
robust to impulse noise in the desired signal than the RLS algorithm 
and other QN algorithm considered. Its initial convergence speed 
and tracking ability to sudden system ch‘mge are also superior to 
those of the quasi-Newton algorithm proposed in [ 13. 
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Fig. 2. The MSE perfoniiance of the various algorithiiis with impulse noise. 
( 1 )  QN (with plus sign); (2)  RLS (with stars): ( 3 )  R-QN (with bold 
dianionds). N = 9 .  SNR=3OdB. p ,  =0.3. A=Ao=0.95. &’tO)=cl ’ (O)  

and h’, =.S (the marked numbers (1298. 1491 and 1903) indicate the 
locations 01 the impulses in the desired). 
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