
Title Quality of service support in differentiated services packet
networks

Author(s) Bakiras, S; Li, VOK

Citation Ieee International Conference On Communications, 2001, v. 8, p.
2370-2374

Issued Date 2001

URL http://hdl.handle.net/10722/46241

Rights Creative Commons: Attribution 3.0 Hong Kong License

Quality of Service Support in Differentiated Services Packet
Networks

Spiridon Bakiras and Victor O.K. Li
The University of Hong Kong

Department of Electrical & Electronic Engineering
Pokfulam Road

Hong Kong
email: { sbakiras,vli} @eee.hku.hk

Ah.srmcr-During the past few years, new types of Internet applications which re-
quire performance beyond the best-effort service that i s provided by the current In-
ternet have emerged. These applications include the transmission of voice and video,
which require a fixed end-tosnd delay bound in order for the end-user to perceive an
acceptable level of service quality. The Differentiated Services (Diffserv) model has
been proposed recently to enhance the traditional best-effort service, and provide cer-
tain Quality of Service (QoS) guarantees to these applications. Its current definition,
however, does not allow for a high level of flexibility or assurance and, therefore, it
can not be widely deployed. I n this paper, we introduce a new protocol for a Diffserv
architecture which provides a simple and efficient solution to the above problem. I t
i s a complete protocol, in the sense that it deals with the issues of packet scheduling,
admission control, and congestion control. We will show, through experimental re-
sults, that our proposed protocol can improve the flexibility and assurance provided
by current solutions, while maintaining a high level of network utilization.

I . INTRODUCTION

The Internet was originally designed to provide best-effort services
to all users. The Internet today does not provide resource reservation,
and all packets are treated equally in a First-Come-First-Served (FCFS)
order. In the past this approach worked very well, since the applications
that made use of the Internet did not require a fixed delay bound (e.g.
telnet, ftp, e-mail, etc.). However, the dramatic increase of the capac-
ity in the Internet core, and the development of powerful compression
techniques, have allowed the creation of new types of applications such
as Internet telephony, video-conferencing, and streaming video. These
applications are called real-time, since they require a fixed end-to-end
delay bound. To address this problem, the Internet Engineering Task
Force (IETF) has proposed two different service models, namely, Inte-
grated Services (Intserv) [l] and Differentiated Services (Diffserv) [2].
The purpose of these architectures is to provide end-to-end QoS guar-
antees to real-time applications.

The main idea behind lntserv is resource reservation. It utilizes the
RSVP [3] signaling protocol to reserve resources in each intermedi-
ate router between the source and the destination, so as to provide
application-specific QoS requirements. The lntserv model, however,
has some major limitations on widespread deployment. Each router
has to perform management on a per flow basis. In other words, each
router has to perform per flow signaling procedures (for resource reser-
vation), perform per flow classification and scheduling, and maintain
per flow forwarding and QoS state. This approach will work well when
the number of flows is small, but it will be hard to implement if the
number of flows is large. In other words, Intserv is not scalable.

The above limitations of Intserv led to the introduction of the Diff-
serv model by the IETF. The Diffserv architecture, in general, is sub-
stantially different from Intserv. First of all, Diffserv distinguishes be-
tween boundary and core routers. In a Differentiated Services (DS)
capable domain, only the boundary routers process traffic on a per flow
basis. The core routers forward packets based on Per Hop Behaviors
(PHBs). In particular, each packet is forwarded according to the DS
field (1 byte) in the IP header. There is a limited number of service
classes that are defined in the DS field, and each application may se-
lect any of them based on the required type of service. Since there is

0-7803-7097-1/01/$10.00 02001 IEEE

no need to maintain per flow states in the core routers, the Diffserv
model is more scalable. Even though Diffserv scales well with increas-
ing number of flows, it still has some key disadvantages compared to
the lntserv model. First, its service is not flexible, since the application
can not specify the required end-to-end delay. In its current defini-
tion [4], Diffserv can only provide a static priority service discipline to
the different classes, which can not be translated into end-to-end delay
bounds. Second, the issue of admission control has not been defined yet
and, therefore, QoS guarantees can not be provided. However, since
the number of flows in the Internet core is expected to be very large,
the more scalable Diffserv architecture seems to be more appropriate
for the future Internet.

In this work, we propose a simple and efficient protocol for a Diffserv
architecture. More specifically, we will present a new packet schedul-
ing algorithm, where the priority of each packet will change continu-
ously during its transmission from the source to the destination. In ad-
dition, we will introduce an admission control algorithm which will try
to ensure that all packets will meet their end-to-end delay bounds with a
very high probability. We will show, through experimental results, that
our proposed protocol can improve the flexibility and assurance pro-
vided by current solutions, while maintaining a high level of network
utilization. The rest of the paper is organized as follows. Our proposed
packet scheduling algorithm is presented in Section 11, while in Section
111 we describe the admission control procedure. Section IV presents
the results of the simulation experiments, and Section V concludes our
work.

11. PACKET SCHEDULING

Our goal is to design a packet scheduling algorithm along with an ad-
mission control procedure, which does not require routers to maintain
per flow state. The main idea behind our proposed algorithm is that
most of the time the queueing delay of a random packet will be very
small compared to its local (at that queue) delay bound. Traditional
scheduling disciplines, such as Weighted Fair Queueing (WFQ) [5] or
Earliest Deadline First (EDF) [6], do not take this fact into account in
packet scheduling. They schedule each packet in exactly the same way
at every node, without considering the delay already experienced at the
previous nodes. Other protocols, such as the Jitter Virtual Clock [7],
hold the packets that arrived earlier than expected at a rate-controller, so
as to reconstruct the per flow traffic and remove the delay-jitter. This, of
course, will degrade channel utilization. As part of our protocol we will
introduce a new packet scheduling mechanism, called Priority-EDF (P-
EDF). It is based on the EDF service discipline, but it also takes into
account the delay that each packet experiences during its transmission
from node to node. Packets that are ahead of their deadlines at one
node will be given lower priority at the next node, while those that are
behind will be given higher priority.

Without loss of generality, let us define a time unit to be a period
of time equal to 0.1 ms. This time unit will enable us to represent the
priority of each packet (which is its per node delay bound) as a small

2370

integer number. We will discuss this issue again in the next subsec-
tion, where we describe the details of the implementation. Suppose a
connection i has an end-to-end delay requirement of di time units, and
that the length of the path from the source to the destination is ni hops.
Then, we can assign a per node delay bound of di = 121 time units in
each intermediate router, for that particular connection. Each packet k
from connection i will then be assigned a priority p: which will be the
per node delay bound. This priority will be equal to di when the packet
amves at the first router of the path. It will then be updated continu-
ously just before the transmission of the packet from each router. The
priority will be updated to

where ni is the number of remaining hops, and w," is the waiting time
for that packet at the router (in time units). This priority will be used
as an index to insert the packet in the appropriate place of the priority
queue at the next router. If the priority value in equation (I) becomes
negative, it means that the deadline (end-to-end) of the packet has al-
ready expired. As a result, this packet may be discarded immediately
at the next or current router. Upon its arrival at a router, each packet
is assigned a priority value which is equal to the arrival time plus the
per node delay bound (p,"). Packets are transmitted in order of increas-
ing priority value (i.e. EDF scheduling), and the number of remaining
hops is used to break any tie: packets with smaller number of remain-
ing hops are transmitted first, since they are more urgent (packets with
larger number of remaining hops may be given priority at the following
hops, if they miss their current per node delay bound).

Note that the per node delay bound for a random packet is not tight.
Most of the packets will be transmitted before or sometimes after their
deadlines. Equation (1) will rearrange the priorities so that each packet
is treated according to its previously experienced delay. Any delay gain
or loss at a router will be split equally among the per node delay bounds
of the remaining hops.

A. Implementation issues

The proposed scheduling algorithm requires only minor changes in
the current IP protocol. For its implementation we need to include two
new states (integers) in the 1P packet: the priority of the packet p,",
and the number of remaining hops ni. These states will be updated
during the transmission of the packet from a router. With 15 bits we can
easily encode these two states in the IP packet; 11 bits can represent a
per node delay bound (i.e. priority) of up to 200 ms, while 4 bits can
represent a path length of up to 16 hops. This is mainly the reason why
we chose the time unit to be equal to 0.1 ms. It is small enough to
differentiate between individual priorities, and it can be easily encoded
in the IP packet as an integer number, avoiding the use of floating point
arithmetic. For the actual implementation of the protocol we may insert
an additional header between the layer 2 and layer 3 headers, which will
include these two state variables (similar to the MPLS concept).

Another implementation issue is due to the complexity of the priority
queue. When the queue length is large, packet insertion may be the
bottleneck for a router that has to forward packets at a speed of several
Gbps. This, however, is a more general problem that is inherent to
the priority queue service disciplines, and is beyond the scope of this
paper. In the next section we will indicate how to perform some kind
of congestion control, and prevent the individual queues from reaching
large values.

B. Related work

There have been some similar packet scheduling techniques reported
in the literature which aim to provide better service to real-time applica-
tions. In [S] the authors proposed a scheme called FIFO+, where each
router measures constantly the average delay for each service class. I f a

packet is treated better than the class average, it will be given lower pri-
ority at the following hops. If, on the other hand, it experienced larger
delay than the average, i t will be given higher priority. The objective
was to minimize the jitter across all the hops of a given path. However,
the authors did not consider the problem of providing end-to-end delay
guarantees.

An approach which is more similar to ours was developed indepen-
dently in [9] with the Budgeted Residual-Life Dependent Discipline
(BURD), and in [IO] with the Hop Laxity (HL) scheduling mechanism.
These schemes are practically identical, and they schedule each packet
according to a dynamic priority discipline, where the priority of each
packet is given by [9] Q(t) = (AgijT), where LT is the end-to-
end delay bound, Age(t) is the age ofthe packet at t imet, and Hops(t)
is the number of remaining hops at time t (including the current node).
This scheme, however, has two disadvantages. First. it has a constant
O (N) complexity for the dequeue operation (where N is the length of
the queue), since the priority of each packet is changing according to
both the age of the packet, and the number of remaining hops. As a
result, all the packets in the queue have to be searched in order to find
the one with the highest priority. Our scheme, though, requires only the
implementation of a priority queue which has O(1og N) enqueue, and
O(1) dequeue complexity. Second, this scheme will obviously favor
packets with small end-to-end delay bounds, since the priority of each
packet increases at a rate which is inversely proportional to the number
of remaining hops.

111. ADMISSION CONTROL

In order for an admission control algorithm to provide deterministic
or statistical delay guarantees, per flow state has to be maintained in
each router about the traffic characteristics of each flow (typical exam-
ples are the algorithms proposed in [l I], 1121, [13]). In our protocol, we
do not maintain per flow state, and so we are not able to prove analyt-
ically that the admission control procedure can indeed provide end-to-
end delay guarantees. Even if we keep the per flow state in each router,
since the priority of each packet changes continuously along the path
of intermediate routers, it is practically impossible to provide analyti-
cal results. We will follow, instead, an intuitive approach to admission
control, and we will try to verify it with experimental results.

Each router will reserve enough resources to accommodate the av-
erage per node delay of all the active connections. In other words,
it will assume that there is only one priority class with a specific per
node delay bound. If, for example, there are two active connections
with arrival rates X I and X Z , and per node delay requirements d; and
d ~ , respectively, then the router will guarantee that the probability
the queue length under a FCFS service discipline exceeds the value
d a v g = is bounded. Since the priority of each packet is
updated continuously in order for every packet to meet its deadline, we
can argue that the end-to-end delay requirement for every connection
will be met with a very high probability.

Every router will only keep two variables for the purpose of admis-
sion control: the aggregate arrival rate A = E, A , , and the average
per node delay davg. When a new request arrives, each intermediate
router will check whether it can support the requested per node delay
d i of the new connection (which has an arrival rate X i) . If the answer
is affirmative in every router, the connection will be accepted and each
router will update its two variables as follows

A' = x + xi

(X d a v g + X i &)
A' davg =

When a connection is terminated, these variables will be updated ac-
cordingly. The admission control procedure may be performed in ei-
ther a centralized (e.g. bandwidth broker architecture) or distributed
(e.g. RSVP-like signaling protocol) manner.

2371 0-7803-7097-1/01/$10.00 02001 IEEE

To complete the admission control procedure, we need a formula that
will actually perform the admission control, that is, a formula which
will guarantee, probabilistically, that the queue length in each router
will not exceed the value of davg. Recently, several studies have shown
that Internet traffic exhibits self-similarity [14], [IS]. Moreover, i t has
been shown in [I61 that interamval times produced by a Pareto dis-
tribution generate asymptotically self-similar packet counts. We will,
therefore, use the G/M/I queueing model to perform the admission
control, where the interamval times will be assumed to be Pareto dis-
tributed with a shape parameter a (1 < a < 2). Smaller values of

concept). Given an average arrival rate A, a service rate p. and a de-
lay bound davg, the admission control procedure will check whether in
each router the following inequality holds [I71

0

a indicate more bursty traffic (this is similar to the Hurst parameter @ sink

Fig. l . The simulated network topology.

where y is the waiting time at the queue under a FCFS service disci-
pline, and E is a very small number (e.g. lop6). The variable U is the
solution to the equation U = A* (p - pu), where A* (s) is the Laplace
transform of the pdf of the interarrival time distribution (i.e. the Pareto
distribution). This equation can be easily solved numerically.

As we mentioned in the previous section, implementation of the pri-
ority queue in our scheduling algorithm may become a bottleneck if
the queue length of a router is allowed to grow to large values. For this
reason, we will use inequality (2) to perform some kind of congestion
control. A recent study [I21 has shown that even for bursty sources,
such as video, the utilization level at any node does not increase signif-
icantly with a queue length of more than 20-30 ms. We will, therefore,
choose to limit the maximum allowable queue length at any node, to a
value of 20 ms. This can be achieved by substituting davg at the LHS
of inequality (2) , with min{20ms, davg}.

There is no need for per flow state in any router.
The admission decision is based on the average rate of the aggregated

traffic, so it does not require individual traffic characteristics.
Congestion control is performed implicitly.
Each router need only advertise two values, X and davg. The concept

of available bandwidth is no longer required.
However, we have not shown analytically that our algorithm can in-
deed provide end-to-end delay guarantees. In the following section we
will perform extensive simulation experiments that will investigate the
potential of our protocol.

The main advantages of our admission control algorithm are

Iv. EXPERIMENTAL RESULTS

We simulated our protocol in the network topology of Fig. 1 where
the maximum path length is 5 hops. This topology may represent an
autonomous Diffserv domain. There are 6 sources generating exter-
nal traffic, and 6 sinks which absorb the traffic. The arrows in Fig. 1
indicate the direction in which the traffic flows. All the links have a
capacity of 45 Mbps, and to simplify the experiments, we assumed a
fixed packet length of IKbit. We used two different traffic sources for
the experiments

An ON/OFF source with exponentially distributed ON and OFF pe-
riods. During the ON period, an exponentially distributed number of
packets was transmitted, with a mean of 20 packets. The rate at which
packets were transmitted was 80 packets/sec. The OFF period was ex-
ponentially distributed with mean 375 ms. This traffic source was used
to model packetized voice with an average rate of 32 Kbps.

10 MPEG compressed video sequences [181 with an average rate of
between 312 and 744 Kbps. Each trace was 40,000 frames long (ap-
proximately 30 min in time). The frame rate was 24 fps, and we as-
sumed that the packets of each frame were generated at equally spaced
intervals within the duration of the frame. These sources are very
bursty, and they have been shown to exhibit self-similarity.

Each source node generated requests with interarrival times that were
exponentially distributed with mean 500 ms. The duration of each con-
nection was exponentially distributed with mean 5 min. These expo-
nential interarrival and holding times are quite realistic for voice and
video connections, and they do not affect the results of the experiments.
Even with different distributions we would obtain similar results, since
we do not make any assumptions on this matter in our protocol. A total
of 27 different source-sink pairs were used, with a predefined path be-
tween them. The length of the individual paths varied between 2 and 5
hops. There are three classes of traffic with end-to-end delay bound of
10 ms, 50 ms, and 100 ms, respectively. Every new request was either
for a voice or video connection with equal probability. The end-to-end
delay requirement for voice calls was I O ms (class I) , while for video
calls it was 10 ms (class 1) with probability 0.2, 50 ms (class 2) with
probability 0.3, and 100 ms (class 3) with probability 0.5. Every video
connection started from a random point in the trace, with appropriate
wrap-around at the end of the trace. The shape parameter for the Pareto
distribution was set to a = 1.3. We simulated 3000 sec of real time
and collected the results after the first 1000 sec. The experiments were
repeated 9 times with a different random seed, so as to obtain the con-
fidence intervals.

Table I shows the maximum observed delays (end-to-end) and the
99% confidence intervals (CI) for the different service classes at differ-
ent links. Throughout the experiments there was no delay violation, and
the maximum observed delay for any packet was much smaller than its
end-to-end delay requirement. It is, therefore, clear that our scheduling
algorithm can potentially provide end-to-end delay guarantees, when
proper admission control is performed. For a lower value of a, the end-
to-end delays were very small which means that the network links were
underutilized. On the other hand, with a value of a = 1.4 we observed
some delay violations which were not very frequent (in the order of
lop5). In a real system, the value of a would be set after extensive
experiments with real network traffic.

In Table I1 we have summarized the average utilization, and the max-
imum observed queue length for all the links of the simulated network
topology. The core links of the upper part of the topology (links IO,
12, and 1.5) experienced lower utilization level, as they were required
to carry many flows with a large path length (i.e. their davg was rela-
tively small). The rest of the links, however, which carried more flows
with smaller hop count, were able to achieve an average utilization of
over 80%. The maximum queue length was also small for links IO, 12,
and 15, while for the highly utilized links we did observe some very
rare violations (i.e. the queue length exceeded the value of daug). The
scheduling algorithm, though, was able to adjust the priorities accord-
ingly, so that every packet was able to meet its end-to-end delay bound.
For a higher value of a, these violations were more frequent, leading to
occasional delay violations.

In Fig. 2 we have plotted the distribution of the link capacity among
the three service classes for two different links of the simulated network
topology. For both links, an average of almost 30% of the link capacity

2372 0-7803-7097-1/01/$10.00 02001 IEEE

TABLE I

M A X I M U M OBSIIKVEI> I>BI.AYS AI 'IHE 1 R A I I T C SINKS

Link-id
17
18
19

I Service class (delay bound)
Class I 110 ms) I Class2 150 ms', I Class 3 11 00 ms)

Mean (ms) 99% CI Mean (ms) 99% CI Mean (ms) 99% CI
0.3 1 0.28-0.34 5.7 0.1-13.4 37.1 21.2-53.0
0.42 0.38-0.46 1 .5 0.2-2.9 31.1 22.5-39.7
0.38 0.34-0.42 3.2 1 .O-5.4 28.3 25.8-30.9

20
21

0.36 0.3 1-0.40 4.4 0.4-8.5 25. 1 18.5-31.7
0.32 0.28-0.36 4.5 0.4-8.5 28.7 17.0-40.3

(a) Link 12 (average uti11,ation: 71%). (h) Link 19 (avcragc utilizauon: 81%).

Link-id

Fig. 2. Distribution of the link capacity among the different service classes

. . , , V \ I

Mean 1 99%CI I Mean I 99%CcI

TABLE 11

UTILIZAlION L W E I . A N D MAXIMUM Q U E U E LENGTH NI I ~ I I ~ I ~ I W i N ' I LINKS

I I Utilization (%) I Max Queue length (ms'l I

(29% for link 12, and 28% for link 19) was allocated to connections
with an end-to-end delay bound of 10 ms (class 1) . On the other hand,
connections with an end-to-end delay bound of 50 ms (class 2) were
allocated an average of 13% (link 12) and 18% (link 19) of the link ca-
pacity. This was due to the lower arrival rate of class 2 customers in the
system: each new request was from a class 1 customer with probability
0.6, from a class 2 customer with probability 0.15, and from a class 3
customer (100 ms) with probability 0.25. Finally, class 3 connections
were allocated 29% (link 12) and 35% (link 19) of the link capacity.

The above results are very promising, and they indicate that our pro-
tocol can distribute fairly the network resources among the different
service classes. Even with 30% of the link capacity being allocated
to connections with very small end-to-end delay bound, the admission
control procedure could admit many connections from other service
classes, and achieve a very high level of network utilization.

Finally, we compared our scheduling algorithm with the FCFS,
BURD, static priority, and EDF service disciplines. We performed ex-
actly the same experiment (i.e. with the same random seed) for all five
algorithms, and the admission decisions were based on our admission
control procedure of Section 111. For the static priority discipline, the
priority of each packet is equal to its per node delay bound (i.e. the
value &), and it is always the same at any router. Packets with the
same priority are treated in a FCFS order. For the EDF discipline, each
packet is assigned a deadline upon its arrival at the router, which is
equal to the amval time plus the per node delay bound. Packets are
transmitted in order of increasing value of deadline. The results are
depicted in Table 111.

As expected, the FCFS service discipline had the worst performance
among all the algorithms. Since each packet is treated equally inde-
pendent of its service class, the maximum observed delays were prac-
tically identical for all three service classes. Even though class 2 and
class 3 connections did not experience any delay violations, class 1
connections had many of their packets dropped at the destination node
because of excessive delay. Moreover, the connections with larger path
length experienced much larger delays (this was also demonstrated in
P I , [lol).

For both static priority, and EDF scheduling we observed some rare
delay violations. In static priority, the connections with small end-to-
end delay bounds (class 1 and class 2) were treated much better than
the ones with large delay bounds (class 3). As a result, the delay dis-
tribution among the different classes was very unbalanced. A different

2373 0-7803-7097-1 101 /$10.00 02001 IEEE

TABLE 111
MAXIMUM OBSERVED IXLAYS AT I H E TKAlTqC SINKS POK DIFFERENT SERVICE DISCIPLINES.

BURD

EDF
Static
FCFS
BURD

EDF
Static
FCFS
BURD

EDF
Static

P-EDF

P-EDF

P-EDF

Class 1
(I O ms)

0.3 0.4 0.3

0.3 0.4 0.4
0.3 0.4 0.4
10.1 14.3 10.9
1.4 0.9 0.9

4.5 14.7 10.2
1.4 0.9 1.1

10.2 14.3 10.9
43.0 35.1 37.2

29.8 46.7 50.3
48.8 138.2 61.7

0.3 0.4 0.4

4.4 0.9 5.0

29.5 35.3 30.1

Class 2
(SO ms)

Class 3
(1 00 ms)

Linkid
Algorithm I 17 1 - 18 I 19

FCFS I 10.1 I 14.2 I 11.0

unbalanced delay distribution occured also in EDF scheduling, where
the connections with a large path length (i.e. terminating at links 18-21)
experienced much larger delays. This can be explained by the fact that
EDF scheduling does not take into account the delay that each packet
experienced in the previous nodes. A packet which has to traverse many
nodes is more likely to be delayed at one or more of them, but this
delay will not affect its scheduling at the following nodes. However,
with EDF scheduling the delay distribution among the different service
classes was fair.

Finally, for P-EDF and BURD there was a fair delay distribution both
among the different service classes, and among the connections with
different path lengths. In addition, none of the two schemes resulted
in an end-to-end delay violation. The difference between the two algo-
rithms is that class 1 and class 2 connections receive better service with
BURD, while class 3 connections receive better service with P-EDF.
This is a result that we expected from the beginning, since this prop-
erty of BURD was identified in Section 11. We believe, however, that
P-EDF generally results in a more equitable delay distribution, since
with BURD scheduling class 1 and class 2 connections experience very
similar delays, even though their end-to-end delay bounds are very dif-
ferent (i.e. five times larger for class 2). Moreover, the O(1) dequeue
complexity of P-EDF makes it a better candidate for an actual imple-
mentation within a Diffserv architecture.

V. CONCLUSIONS

In this paper, we presented a new lightweight protocol for a Differ-
entiated Services architecture. Despite its simplicity, it can offer the
flexibility of the lntserv architecture and, with proper admission con-
trol, it can also offer a similar assurance level. Its implementation is
very easy, since it only requires minor changes to the current IP proto-
col. The proposed protocol is complete, in the sense that it deals with
the issues of packet scheduling, admission control, and congestion con-
trol. The experimental results showed that our protocol can potentially
provide end-to-end delay guarantees to real-time applications, while
maintaining a high level of network utilization. For future work we
plan to implement our protocol, and investigate its applicability in the
lntemet architecture. Moreover, we will try to incorporate QoS routing
protocols in the admission control procedure.

ACKNOWLEDGEMENTS

This research is supported in part by the University Grants Commit-
tee, Hong Kong, Area of Excellence in Information Technology, Grant

No. AOE 98/99.EGOI, and by the State Scholarships Foundation of
Greece.

REFERENCES

[I]

[2]

[3]

R. Branden. D. Clark, and S. Shenker, “Integrated services in the Internet architecture:
an overview,” Internet RFC 1633, June 1994.
S. Blake, D. Black, M. Carlson. E. Davis, Z. Wang, and W. Weiss, “An architecture
for differentiated services.” Inrernet RFC 2475, December 1998.
R. Branden, L. Zhang, S. Berson, S. Herzog. and S. Jamin, “Resource reservation
protocol (RSVP) - version 1 functional specification,” Internet RFC 2205, September
1997.
K. Nichols, V. Jacobson. and L. Zhang. “A two-bit differentiated services architecture
for the Internet,” Internet RFC 2638, July 1999.
A. Demers. S. Keshav. and S. Shenker, “Analysis and simulation of a fair queueing
algorithm,” in Proceedings ACM SIGCOMM, pp. 3-1 2, September 1989.
D. Ferrari and D. Verma, ”‘A scheme for real-time channel establishment in wide-area
networks,“ IEEE Journal on Selected Areos in Conininnications, vol. 8, pp. 368-379,
April 1990.
1. Stoica and H. Zhang, “Providing guaranteed services without per Row manage-
ment,” in Proceedings ACM SIGCOMM, pp. 81-94, September 1999.
D. D. Clark, S. Shenker. and L. Zhang, “Supporting real-time applications in an in-
tegrated services packet network: architecture and mechanism,” in Proceedings ACM
SIGCOMM, pp. 14-26. August 1992.
J. Kobza and S. Liu, “A head-of-line approximation to delay dependent scheduling
in integrated packet-switched networks.” in Proceedings IEEE INFOCOM, pp. 1 106-
1 113, April 1989.

[IO] H. Schulzrinne, J. Kurose, and D. Towsley, “An evaluation of scheduling mechanisms
for providing best-effort, real-time communication in wide-area networks,” in Pro-
ceedings IEEE INFOCOM, pp. 1352-1361, June 1994.

[I I] E. W. Knightly, “Second moment resource allocation in multi-service networks,” in
Proceedings ACM SIGMETRICS, pp. 181-191, June 1997.

[121 E. W. Knightly and N. B. Shroff, “Admission control for statistical QoS: theory and
practice,” IEEE Network, pp. 20-29, March/April 1999.

[I31 V. Sivaraman and F. Chiussi, “Providing end-to-end statistical delay guarantees with
earliest deadline first scheduling and per hop traffic shaping,” in Proceedings IEEE
INFOCOM, pp. 63 1440, March 2000.

[I41 W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, “On the self-similar
nature of ethemet traffic,” IEEWACM Trfln.sncti(ins on Netwurking, vol. 2, pp. 1-15,
February 1994.

[IS] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson, “Self-similarity through
high-variability: statistical analysis of ethernet LAN traffic at the source level,” in
Proceedings ACM SIGCOMM, pp. 1 0 0 - 1 13, September 1995.

[I61 J. Gordon, “Pareto process as a model of self-similar packet traffic,” in Proceedings
IEEE GLOBECOM, pp. 2232-2236, November 1995.

[I71 L. Kleinrock, Queueing systems. Vol. I : theoo. John Wiley & Sons, 1975.
[IS] 0. Rose, “Statistical properties of MPEG video traffic and their impact on traffic mod-

eling in ATM systems,” in P roceedings 20th Annnul Conference on L n m l Conipurer
Nenuorkr, pp. 397-406, 1995.

[4]

[SI

[6]

[7]

[SI

[9]

0-7803-7097-1/01/$10.00 02001 IEEE 2374

