
Title An efficient algorithm for downconverting multiple bandpass
signals using bandpass sampling

Author(s) Wong, N; Ng, TS

Citation

International Conference on Communications (ICC2001),
Helsinki, Finland, 11-14 June 2000. In
International Conference on Communications. Conference
Record, 2001, v. 3, p. 910-914

Issued Date 2001

URL http://hdl.handle.net/10722/46234

Rights

©2001 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.



An Efficient Algorithm for Downconverting Multiple 
Bandpass Signals Using Banclpass Sampling 

Ngai Wong and Tung-Sang Ng 
Department of Electrical and Electronic Engineering, 

The University of Hong Kong, 
Pokfulam Road, Hong Kong. 

nwong @ eee.hku.hk, tsng @eee.lhku.hk 
Tel.: ++ 852 + 2857 8406, Fax: ++ 85;! + 2559 8738 

Abstract- Bandpass sampling is a useful alternative for direct 
digital downconversion in software radio. It significantly 
relaxes the analog-to-digital converter (ADC) sampling rate 
requirement and facilitates the design goal of moving the 
ADC as close as possible to the antenna. This paper presents a 
modified interpretation to the graph of allowable sampling 
frequencies in uniform bandpass sampling. It is shown that 
the position and guard bands of a downconverted bandpass 
signal band are highly related to the order of the valid 
sampling range, called wedge order. An efficient algorithm is 
then proposed, which significantly reduces the computational 
load in determining the valid sampling frequencies to 
downconvert multiple distinct bandpass signals. Conditions 
for the placement of bandpass signals to utilize a given 
sampled bandwidth are also discussed. 

I. INTRODUCTION 

A goal in software radio digital front-end design is to 
push the digitization point as close as possible to the 
antenna [I] .  Subsequent operations on the digital signal are 
then performed in the “soft”, reconfigurable digital domain 
via digital signal processors (DSPs) or field programmable 
gate arrays (FPGAs). Ideally, different air interfaces can 
co-exist on a common hardware platform. The desired 
channel and its corresponding demodulation are then 
selected and carried out through programming [2]. 

In practice, the traditional Nyquist rate sampling is not 
feasible due to the high carrier frequencies of those 
bandwidths of interest. For example, the Global 
Positioning System Standard Positioning Service (GPS- 
SPS) uses the L 1 frequency of 1575.42MHz and a 2MHz 
null-to-null bandwidth [3]. Direct digitization at Nyquist 
rate necessitates a sampling frequency as high as about 
3.2GHz, a rate impractical for existing discrete time signal 
processing systems. Moreover, it would be a waste to 
process at this rate for an information bandwidth of the 
order of only 2MHz. 

Bandpass sampling offers an attractive alternative 
solution. It is a special form of undersampling that 
translates (aliases) a high frequency bandpass signal to a 
lowpass one near to the zero frequency [41, [5]. The 
sampling frequency requirement is based on the signal 
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Fig. 1. Block diagram of receiver front-end for k distinct 
bandpass channels proposed by I). M. Akos et al. [6] for 
multi -band digital downconversion. 

bandwidth rather than its highest frequency. The chief 
advantage of bandpass sampling. therefore, is the reduced 
requirement of the sampling frequency and of the 
associated digital processing capability. Power 
consumption, which is of importance to mobile devices, is 
alleviated by this lower processing rate. Also, the 
elimination of analogue mixers removes their 
correspontding non-idealities like DC offset, phase and gain 
mismatches etc. Nonetheless, bandpass sampling demands 
some critical hardware needs. First, the ADC analog input 
bandwidth must be able to “see” the bandpass input at its 
carrier frequency, probably at IF or RF. Second, narrow 
bandpass filters of very high Qs are required to suppress 
the out-of-band noise. This is due to the fact that all noise 
within the analog input bandwidth of the ADC will be 
folded into the resulting lowpass band, called the sampled 
bandwidth,. 

To exploit the benefits of bandpass sampling, and due to 
the inadequacy of real time programmable processing 
power nowadays, D. M. Akos et al. [6] proposed a novel 
multi-banc1 digitization method that utilizes bandpass 
sampling to significantly reduce the required ADC 
sampling frequency. The configuration of their proposed 
receiver front-end is shown in Fig. 1. The filters are narrow 
bandpass filters centered about multiple RF carriers of 
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Fig. 2. Acceptable and unacceptable (shaded area) sampling frequencies for a bandpass signal of bandwidth B located at ( f L  , tu). Allowed 

ranges are shown in thickened dark lines for the examples of f,, =3.5 B Hz and fu =7.75 B respectively. 

interest. The appropriate sampling frequency, f s ,  of the 
ADC is then determined such that all wanted bandpass 
signals are aliased into the sampled bandwidth [O,  fs / 2 ]  
without causing aliasing. The non-linear nature of the 
sampling constraints of each signal, however, lends itself 
to computer simulation for the determination of an 
appropriate sampling frequency. A drawback is that an 
exhaustive testing of all frequencies up to the Nyquist rate, 
under the constraint of no aliasing, is computationally 
intensive. Since the procedure for sampling frequency 
determination was not further elaborated in [6] or in any 
other literature to date, this paper proposes a 
computationally efficient algorithm for this purpose based 
on a modified interpretation of the graph of allowable 
sampling frequencies in uniform bandpass sampling. 

The paper is organized as follows. In Section 11, the 
graph of allowable sampling frequencies for uniform 
bandpass sampling is reviewed and a modified 
interpretation is introduced. Section I11 proposes an 
efficient algorithm for determining an appropriate 
sampling frequency to simultaneously downconvert 
multiple bandpass signals without aliasing. Examples are 
given for verification of the algorithm's effectiveness. 
Section IV discusses bandpass signal placement conditions 
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that optimize the available sampled bandwidth and 
conclusion is drawn in Section V. 

11. BANDPASS SAMPLING - THE GRAPHICAL APPROACH 

This section describes the bandpass sampling of a single 
bandpass signal and the next section extends it to multiple 
signals. For uniform sampling of a bandpass signal in the 
open interval (f,,f,) with bandwidth B = f, - f,, the 
conditions for valid sampling frequencies are [4] 

s -  2fL ( 1 )  --If 2.f" <- 
n n-1  

where n is an integer given by 

1 I n I 1 f, I BA. ( 2 )  

Here LOA denotes the floor function. The plot of (1) and 
( 2 )  is depicted in Fig. 2. The wedges represent allowed 
zones of sampling frequencies without causing aliasing. 
Obviously, the wedge of order 1 (i.e., n = l )  represents the 
Nyquist sampling zone. For a bandpass signal of 
bandwidth B and a band upper bound f, (e.g., 3.5B Hz 
and 7.75B Hz respectively in Fig. 2) ,  the valid sampling 
frequency ranges are denoted by vertical lines above f, 
and within the wedges (shown by thickened line segments 
in Fig. 2) .  
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Fig. 3. Frequency domain representation of bandpass sampling using aliasing triangles. 

The total guard band BGT is defined in this paper as 

( 3 )  
L 

Different from the definition in [4] where the guard 
bands are embedded into the signal band and treated as 
part of the signal bandwidth, the guard band definition in 
(3) represents the tolerance of the downconverted signal 
band from the boundaries of the sampled bandwidth 
[O, f s / 2 ] .  This is best illustrated by the concept of aliasing 
triangles (e.g., see [6]) as shown in Fig. 3. Here the 
allowances on both sides of the signal band in the sampled 
bandwidth add up to the total guard band. Additionally, it 
can be seen that all noise within the analog input 
bandwidth of the ADC is folded into the sampled 
bandwidth, therefore the requirement of steep roll-off 
narrow bandpass filters to maintain a reasonable signal-to- 
noise ratio (SNR). 

A careful analysis of ( I ) ,  ( 2 )  and Fig. 3 reveals an 
important fact. Specifically, the wedge order n in Fig. 2 is 
equivalent to the triangle order in Fig. 3. In other words, 
valid frequencies falling in the n th wedge represent those 
sampling frequencies such that the bandpass signal will 
reside in the nth aliasing triangle. Using this idea, the 
relation between the guard bands and wedge order can be 
derived in accordance with Fig. 4. First, the span of 
allowable sampling frequencies Afs (= AA,, + ALL) is 

2(f” - 4 
n(n - 1) 

A ?  = (4) 

which decreases with increasing n . By breaking down the 
total guard band B,, into upper (BGu)  and lower (BGL)  
guard bands, i.e., B,, = B,, + BGL, it can be verified that 
for an odd n , 

while for an even n , 
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B,, for  odd n 
(BGL for e v e n n )  

fs=2fL/(n- I )  

Fig. 4. Expanded view of the n th wedge in Fig. 2 

Equations (4)-(6) infer that in an odd order wedge, when 
the sampling frequency is increased, the resultant signal 
band in the sampled bandwidth will move further apart 
from the upper bound of f ,  / 2 until it touches zero, while 
the opposite happens for an even order wedge. Fig. 5 
depicts such scenario, again for the example of bandpass 
signals of bandwidth B with fU=3.5B Hz and 7.75B Hz 
respectivelly . 

Several observations can be made from Fig. 5.  First, the 
bandpass sampled signal band appears in the form of 
parallelogram stripes in the sampled bandwidth against f , ,  
with the vertical stripe height being the signal bandwidth 
B .  The number of band stripes corresponds to the number 
of wedges that the vertical line cuts through (see Fig. 2). A 
higher-order wedge results in a “shorter” stripe of lower 
sampling frequencies to the left of Fig. 5. With the 
exception of the Nyquist stripe, which is an infinite-length 
horizontal rectangle, all other stripes form a zigzag pattern. 
Odd order stripes are in the form of backslashes “Y’s, while 
even ordei- stripes are in the form of slashes “/”S. The 
conditions of (1)-(6) guarantee that all stripes, within their 
own valid ranges, will just touch the lower and upper 
bounds of the sampled bandwidth with no bending (i.e., 
aliasing). 

It should be stressed that for even order wedges, the 
bandpass sampled lowpass signal band is flipped about its 
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Bandpass signal of bandwidth B and fU=3.5B Hz 
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Fig. S. Resultant signal band in the sampled bandwidth Vs sampling frequency. 

center (see Fig. 3) and should be handled with care. This 
effect does not affect symmetric bandpass signal but for 
asymmetric signals, e.g., single-sideband (SSB) signals, 
this flipping should be accounted for in the digital signal 
processing part. 

111. DOWNCONVERTING MULTIPLE BANDPASS SIGNALS 

To fulfil the software radio philosophy of 
accommodating multiple standards, the results from 
Section I1 can be extended easily to downconvert multiple 
distinct, nonadjacent bandpass signals. The essence lies in 
the determination of a sampling frequency lower than the 
Nyquist rate that will translate all bandpass signals into the 
sampled bandwidth without causing aliasing, neither the 
aliasing of a signal onto its own nor into another. The 
algorithm is as follows, 

The valid frequency ranges are computed for each 
bandpass signal using (1) and (2); 
These sets of ranges are ANDed together to find 
their intersection; 
The band stripes within these intersected ranges, 
knowing their wedge order, can be immediately 
obtained using the simple “stripe rule” from 
Section 11; 
The ranges where any two band stripes overlap are 
rejected. The remaining ranges represent the valid 
sampling frequencies for simultaneous 
downconversion of all bandpass signals without 
aliasing; 
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5 .  Among these valid frequency ranges, a desirable 
sampling frequency is chosen subject to constraints 
like minimum sampling frequency and/or other 
practical issues like sampling and carrier frequency 
drifts [7]. 

This algorithm is reflected in the example of Fig. 5. 
Instead of the brute force approach of testing all 
frequencies starting from the sum of bandwidths (2B Hz) 
up to the Nyquist frequency (15.5B Hz), only the 
intersection of the two sets of valid frequency ranges 
(represented by slant-line background) is tested. 
Apparently, the saving will increase further with the 
number of bandpass signals, as the intersection will be less. 
An exceptional case in step 4 is in the downconversion of 
Code Division Multiple Access (CDMA) signals where 
signal bands are allowed to overlap on one another 
provided a degradation in SNR is tolerable [6]. 

To get a better feeling of the effectiveness of the 
algorithm, the example from [6] is taken, in which the U.S. 
GPS-SPS (fU=1577.02MHz, B=3.2MHz) and the Russian 
Global Navigation Satellite System (GLONASS) 
( fu=1609.40625MHz, B=7.5MHz) were considered and 
sampling frequencies from 20MHz to 40MHz were tested. 
Using the proposed approach in this paper, it can be found 
that only an aggregate of 7.64MHz out of the 20MHz span 
needs to be tested. This represents a saving of 61.8%. The 
stripe rule also provides a quick way to position the signal 
bands above a valid frequency range without having to 
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Fig. 6 .  Plot of (7) and an example sampled bandwidth optimization scheme for four equally spaced channels of bandwidth B .  

compute their location at every single frequency point, 
thereby further reduces the computational complexity. 

Iv. SIGNAL PLACEMENT UTILIZING SAMPLED BANDWIDTH 

A question may now arise as to what are the conditions 
for the placement of the multiple bandpass signals such 
that the sampled bandwidth can be fully utilized, i.e., the 
sampled bandwidth is exactly equal .to the sum of signal 
bandwidths. Or suppose a sampling frequency is fixed for 
a certain system, in what way those bandpass signals can 
be positioned in order to utilize the sampled bandwidth. 
These questions are answered by considering the equation 
relating an arbitrary frequency f and its image f ,  in the 
sampled bandwidth when being sampled by a frequency 
f,, namely [61, 

rem(f 9 f s )  if rem(f 9 f s  1 5 f, /2 
f ,  - r e m u  9 f, 1 if r e m u  9 f,) > f ,  12. 

(7) f, = {  
Here rem( f ,  f, ) is the remainder after division of f by 

f,. Equation (7) can be verified from Fig. 3 graphically. 
The plot of (7) is shown in Fig. 6 along with an example of 
positioning four equally spaced channels, all of bandwidth 
B .  It can be seen that bandpass signal bands on the 
frequency axis are “reflected” back to the sampled 
bandwidth according to (7). Note that the image of a 
bandpass signal reflected by a negative slope will be 
flipped about its center in the sampled bandwidth, and a 
signal band traversing integral multiples of f ,  / 2  will 
bring about aliasing, which are consistent with Fig. 3. With 
regard to (7) and Fig. 6, it can now be deduced that the 
sampled bandwidth is utilized when and only when the 
bandpass signals are positioned in such a way that their 
“reflections” (not their exact band locations) just add up to 
the sampled bandwidth without causing aliasing. 
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V. CONCLUSION 

This paper has presented a modified interpretation to the 
graph of allowable sampling frequencies for bandpass 
sampling. Particular attention has been paid to the relation 
between {he wedge order and the resultant band position 
and guard bands in the sampled bandwidth. A 
computationally efficient algorithm has been proposed for 
determining the appropriate sampling frequency to 
simultaneously downconvert multiple distinct bandpass 
signals. Numerical examples have been given to verify the 
effectiveness of the algorithm. Finally, conditions for the 
placemenl of bandpass signals to utilize a given sampling 
frequency have been elaborated. 
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