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ABSTRACT 
Among various direct-form delta operator filters, the delta direct- 
form I1 transposed (6DFIIt) has been shown to produce the 
lowest roundoff noise in finite-word-length implementations. 
Recent analyses focus on the optimization of the free parameter 
A of the delta operator, with scaling of the structure to prevent 
arithmetic overflow. This paper proposes a modified 6DFIIt 
second-order section in which the A s  at different branches are 
separately optimized to further suppress roundoff noise gain. 
Noise variance plots against pole locations are presented. Closed- 
form expressions for the optimal filter coefficients are derived 
and reduction of noise gain is confirmed by numerical examples. 

1. INTRODUCTION 

noise gain. Simple and readily computable expressions for the 
optimal filter coefficients are derived. 

To begin with, Section 2 of this paper describes the 
transformation of a conventional second-order direct-fomi I1 
transposed (DFIIt) filter into its corresponding 6 DFIIt 
counterpart. Signal and noise transfer functions are then given. 
The graphical approach in Section 3 shows how the noise 
variance in a 6DFIIt structure behaves as filter poles approach 
unity in the complex :-plane. Section 4 presents the derivation 
of the optimal A in each branch. Numerical examples are given 
in Section 5 and Section 6 concludes this paper. 

Before proceeding, it should be noted that the L,,-norm [9] of a 
transfer function F is defined as 

Delta operator realized digital filter structures have attracted 
increasing attention in this decade due to their good numerical 
properties when compared to traditional delay structures [ 1]-[8]. 
This is especially true when the sampling rate is much higher 
than the underlying signal bandwidth in which the z -plane poles 
cluster towards unity. By replacing the conventional c -' operator 
with the inverse delta operator 6.' = &-' / (1  - ) , certain ill- 
conditioned numerical issues can be overcome. Moreover. delta 
operator filters are generally accompanied with better roundoff 
noise performance and more robust coefficient and frequency 
sensitivities [ I ] ,  [2]. Although an 6.' operator is more 
complicated to implement in terms of hardware, its excellent 
numerical properties allow the use of shorter word-length, which 
results in moderate complexity or even gross savings in silicon 
area [6]. 

Extensive study of different direct-form delta structures has been 
carried out in [4]. It was found that the delta direct-form I1 
transposed ( SDFIIt) exhibits the best roundoff noise properties 
among various delta structures. Focus has been put on the 
optimization of the free parameter A of the delta operator to 
achieve minimum roundoff noise gain at the output. The basic 
second-order 6DFIlt section was studied in detail [3], [4]. 

In this paper, instead of limiting to optimizing a single A within 
the second-order 6DFIlt section, the concept of separately 
optimizing the A s in each 6-l operator is introduced'. It will be 
shown that this approach enables further reduction of roundoff 

In fixed-point implementations, the noise variance for ( B+1 )-bit 
quantization with rounding is [IO] 

Assuming additive uncorrelated white noise process. the noise 
variance 0; seen at the output of a linear system F is related to 

the L, -norm and 0 5  by 

0: = 0jlFII;. ( 3 )  

2. STRUCTURAL TRANSFORMATION 

Suppose a transfer function in the 1 -domain. represented by (4). 
is obtained under certain sampling conditions, i t  can then be 
transformed into an equivalent delta structure by substituting 
: = 1 + SA where A is a positive constant. 

Fig. I (a)  and I(b) show how a DFIIt structure is converted into a 
6 DFIIt implementation. Fig. 1 (c) incorporates the scaling 
constant g to prevent arithmetic overflow. This is necessary 
since finite-word-length arithmetic is used in practice. This basic 
second-order 6 DFIIt building block was studied extensively for 
roundoff noise minimization in previous work [3], [J]. in which 
the same A occurs in both 6.' operators. 

' The notion of using different As'also appeared in [5]  but 
optimization with respect to them has not been done. 
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(a) (b) (c) 

Figure 1. (a) Conventional DFIIt structure with possible quantization noise sources. (b) Transformation into a 6 DFIIt 
structure. (c) 6 DFIIt structure with overflow prevention scaling and possible quantization noisc sources. 

In our analysis, two separate A s ,  A ,  and A ,  as in Fig. l(b) and 
I(c), are used to allow more degree of freedom for optimization. 
If less-than-double-precision fixed-point arithmetic is used after 
each coefficient multiplication (therefore the roundoff 
quantization error sources e, to e, ), the summation nodes So, SI 
and S, (called branch nodes [ 9 ] )  have to be scaled to prevent 
overflow. Their signal transfer functions without scaling [i.e., 
g=l  in Fig. I(c)]  are given in (4)-(6). A common overflow 
prevention strategy is to use L_-norm scaling. Using the 
convention (also throughout this paper) that a tilde-topped 
transfer function represents its :-dependent part after any 
prefixing constants, the scaling factor will be 

g = m~~(llFoll_~llF;l l_~ll~llm) 

Assuming noise from the back scaling by g before the output Y 
[see Fig. I(c)] is absorbed into the next section, transfer 
functions from different roundoff quantization noise sources due 
to coefficient multiplication are given as follows, 

Y &:-I)? 

-? ' (8 )  G , = - = g  
-I e, 1 +al: +a2: - 
c - 1  (1-z- ')  Y Y  

e, e, 
G . 5  = - = - = = A 1  , + n l z - l  - ' ( 9 )  

Modeling rounding quantization noise as an additive 
uncorreliited white noise process, superposition holds and the 
output noise variance is expressed as a sum of noise powers, 

A word-length-independent noise gain term can therefore be 
defined as the ratio 0; / 0:. h4inimization of this term is carried 
out in Section 4. 

3. GRAPHICAL NOISE ANALYSIS 

As noted in Section 1, the noise gain is proportional to the 
squared L,-norm of the noise transfer function, e.g. the noise 
power produced by e, is ~ : g ~ i i ' , l l E ,  ,I]:. 
Form (8)-(12), it is seen thai the noise transfer functions are 
dependent on the poles. As the filter coefficients are real. the 
poles are complex conjugates, say, re"and IT-'*. Ignoring the 
effects of the noise gain prefixing constants g, A I  and A, which 
are filter-dependent, it is possible to derive closed-form solutions 
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Eqn-14 

Figure 2. Plots of equations (14). (15) and (16) on the right half of the unit circle up to a radius of 0.99. 

for the norms as functions of poles. Application of Parseval's 
theorem 'and Cauchy's residue theorem [IO] gives 

(14) 

From (14)-( l6), the pole location dependence of the noise gain 
can be easily visualized. This is useful for providing a qualitative 
perspective for narrow-band lowpass filters design, as the poles 
will cluster towards unity in the complex :-plane when the 
sampling rate is raised. Fig. 2 shows the plots of (14)-(16) in a 
domain on the right half of the complex-plane unit circle up to a 
radiw of 0.99. Now the effect of filter structure on the noise gain 
can easily be seen. Plot of ( 16) reveals that e , ,  E ,  and e6 see the 
maximum gain when the poles move towards unity due to the all- 
pole transfer functions ( I O )  and (12). To maintain a desired 
signal-to-noise ratio. the word-length must be increased [see ( 2 )  
and (3)]. Plot of (15) shows that e , .  e ,  and cy still see increasing 
gain around unity but the increase is much smaller due to the 
single zero in (9) and ( 1 1 ) .  Plot of (14) in fact shows a 
decreasing trend and a limiting gain of 3 dB at unity, thereby 
indicating that eo sees the nunimum gain. This is accounted for 
by the double zeros in (8). 

For the DFIlt structure in Fig. I(a). all quantization noise sources 
E, through E4 experience a gain with the fomi of (16) [IO]. 

Even with two more sources cy and e6 in the 6DFIlt structure, 
its noise variance sum is still much lower than that of the DFIIt 
structure. By using double-precision in the 6.' operators. e< and 

eh can further be elinlinated. Therefore it  is qualitatively verified 
that 6DFIIt is superior to DFIIt in terms of roundoff noise gain. 

4. NOISE MINIMIZATION 

This section performs the minimization of ( 13) under the scaling 
constraint of (7). First, because (7) contains two free variables. 

A I  and A ? ,  a trick is made to transform them into one common 
variable A by putting 

A, = Ak;' , A? = Aky'. (17) 

The scaling factor in (7) becomes 

This expression is a max-function dependent on A and there are 
three possible regions of A corresponding to the three possible 
maxima. Using a similar approach as in [4], each argument in 
(18) is set to be the maximum and solved for its valid region, 
three regions are obtained, namely 

Region 1 where g = IlF,II, 

Substituting g into (13) results in an expression with positive 
powers of 4, thus noise is minimized by choosing A to be the 
lower bound. 

Region 2 where g = 116 I(_ k , h '  

In this case, the optimum 4 that minimizes the gain ratio lies 
somewhere within the region. 

Region 3 where g = I/< I/_ k,k,A-' 

Using similar argument. the optimum A in this region occurs at 
the upper bound. 

Previous analyses [ 3 ] ,  [4] implicitly set k ,  = k ,  = 1 ,  and the 
optimum was chosen by comparing the effect of the local minima 
in different regions on the noise gain. In [3] and [4], the optimal 
A is given by 

In our approach, the sub-optimals in the three regions are 
brought to converge to a global optimal on the real number line 
by setting 
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Table 1. Various expressions for the 6DFIIt structure. 

Section BZ Section B3 
-1.98883573 -1.98540165 
0.98938327 0.98552386 

19.9887 19.0695 
19.7033 17.4691 
0.2854 1.6005 

Table 2. Noise gain comparison for two example sixth-order lowpass fillters 

From (17), the optimal A,  and (denoted by asterisks) are 

With (24). optimal filter coefficient expressions and the noise 
variance in the proposed 6DFIIt section [Fig. I(c)] can be 
obtained (see Table I ). For efficient hardware implementation, 
the optimized A s  can be rounded to the nearest powers of two 
such that scaling can be accomplished by simple bit shifting. 

5. NUMERICAL EXAMPLES 

Several second-order sections are taken from [4] to test against 
the proposed approach. Sections A iand sections B i (i=1,2,3) 
are cascade sections for two sixth-order narrow-band lowpass 
filters. Each section is pre-scaled using its L- -norm. with scaling 
embedded into the numerator coefficients. To eliminate the effect 
of word precision on the output noise variance, the word-length- 
independent noise gain 05/01 is evaluated for each section. 
Two approaches, namely the Aop in ( 2 2 )  and the proposed A; 
and A’, in (24). are tested. From Table 2 ,  it is clear that there is 
always reduction in roundoff noise gain in the proposed 
structure. When each three sections are cascaded, in whichever 
order, the total reduction in noise gain will further be improved. 
In fact, as noted in Section 3, even bigger improvement can be 
observed when the pole angles in a second-order section come 
closer to zero (e.g., in the case of very narrow-band filters). From 
the viewpoint of circuit implementation, a fixed A may save 
complexity in DSP coding. However, for ASIC design, the 
advantage of separate A optimization over a fixed A is certainly 
worthwhile. 

6. CONCLUSION 

In this paper the concept of optimizing different A s in a second- 
order 6DFIIt section has been introduced. This approach leads to 
further minimization of output roundoff noise gain as compared 

to using a single optimal A only. The theoretical minimum noise 
gain and expressions for the optimal filter coefficients have been 
derived analytically. Qualitative graphical noise analysis has 
been presented. Using numerical examples, roundoff noise 
performance of this modified structure has been demonstrated to 
be better than the best results obtained so far. 

7. REFIERENCES 
R. H. Middleton and G. (3. Goodwin , Digital Corirrol mid 
Estimatior?: A Unified Aypr-ocich. Englewood Cliffs, NJ: 
Prentice Hall, 1990. 
G. C:. Goodwin, R. H. Middleton. and H. V. Poor. “High 
speed digital signal processing and control”. Proc. IEEE, 
Vol. 80, pp. 240-259. Feb. 1992. 
J. Kauraniemi. T. I. Laakso. I. Hartimo. and S.  J. Ovaska. 
“Roundoff Noise Minimization in a Direct Form Delta 
Operator Structure”, in Pr-oceedirigs of I996 Ititerrintirnml 
Col? ference on Acoustics.. Speech. mid Sigr id  Proccssirig. 
Atlanta, Georgia. USA, May 1996. 
- , “Delta Operator Realizations of Direct-Form IIR 
Filters”. IEEE Trnnsnctioris on Cirarits arid S~vstenis-II., 
Vol. 45, No. I ,  pp. 41-52, Jan 1998. 
J. Kauraniemi and T. I. 1,aakso. “Roundoff Noise Analysis 
of blodified Delta Operator Direct Form Structures”. IEEE 

M. Eraluoto, J. Kautraniemi. I .  Hartimo, “VLSI 
Implementation of High !Speed Digital Filters Using Direct 
Form Delta Structures”, I%EE 39th Midwest syrirpsizrrii o r 7  
Circ~its arid Systems, 1996. 
G. L.i and M. Gevers, “Roundoff Noise Minimization Using 
Delta Operator Realizations”. IEEE TlZlis. S i g r i d  
Processirig, Vol41, pp. 629-637. Feb. 1993. 
- , “Comparative Study of Finite Wordlength Effects in 
Shift and Delta Operator Parameterizations”, IEEE Tram. 

L. E. Jackson. Digital Filters Cllid Signal P~-ocessir?g. 2nd 
ed.. Boston. MA: Kluwer Academic Publishers. 1989. 

~ 1 7 t ~ ~ l 7 C l ~ i f l 1 7 d  S ~ ~ f l 7 ~ f l S ~ L l l l 7  017 C i V C l l i t S  Ulld SYStCI l IS ,  1997. 

ALlt017?. C O I ? ~ ~ . .  Vol. 38, pp. 803-807, May 1993. 

[IO] A. Oppenheim. R. Shaffer. Discrete-Tim S i g r i d  
Processirig. Prentice-Hall, New Jersey, 1989. 

11-776 


