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Abstract 
In this paper, the small gain theorem will be used to establish 
a criterion for the stability of a feedback system containing a 
feedfotward neural network. A method for the determination 
of the gain of a piecewise-linear feedforward neural network is 
introduced and applied to the stability analysis for a control 
system consisting of a LTI SISO system with a dynamic ANN 
controller. 

where I, E %" is the state vector, k E N denotes the time and 
f :  %" + %'. The system can be represented as shown in Fig. 
1. We are interested in the stability of the system when the 
map f contains a neural network. 

Without loss of generality, we will assume that the origin is an 
equilibrium state. i.e. f(0) = 0, as this condition can always 
be met by translating any equilibrium state under study to the 
origin through coordinate transformation. 

1. Introduction 
Artificial neural networks have been used extensively in the 
control and identification of dynamical systems. New learning 
control algorithms, capable of controlling partially known, 
complex nonlinear systems, have been proposed [I], [2], [3]. 
It is noted, however, that the stability of control systems 
containing neural networks is rarely addressed in the 
literature. This may be due to the inherent complexity of 
multilayer neural network, especially the nonlinearity of the 
activation function, which does not readily lend itself to 
stability analysis. In order to facilitate analysis, the piecewise- 
linear saturation function is used as the activation function for 
the nodes in the hidden layer rather than the usual sigmoid 
function. 

This paper is organized in the following way. In section 2, the 
small gain theorem will be used to establish a criterion for the 
stability of a feedback system containing a neural network. 
The stability result is given in terms of tha gain of a state map. 
In section 3, a method for the determination of the gain of a 
piecewise-linear feedfonvard neural network with one hidden 
layer will then be introduced. Some concluding remarks will 
be given in section 4. 

The notation for multilayer feedfotward neural network 
introduced in [2] will be used. A multilayer feedforward 
neural network denoted by fRz: ,",,. .,nN has no input, n, outputs 
and (N - 1) hidden layers, the Z th of which contains nl nodes. 

2. Stability Theory 
Consider an autonomous discrete-time dynamical system 
described by the state equation 

x i+ ,  = f(',) (1) 
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Define the gain of the network as 

The system (I) is stable if 

Therefore, a sufficient condition for the system to be stable is 
that the gain of the network is less than unity. 

As a motivation for our study, we will show that a dynamical 
system containing a neural network controller can be cast in 
the form of Fig. 1. 

Let a npth order SISO LTI system be described by the state 
space model: 

' k + I  = * p  ' , + B p  ' k  

Yk = 'p ' k  

(4) 



I, 
BP CP ' 

x? 

Y' 

The neural network controller gives 

' k  = m c ( v h )  

= W, ~ ( W , V ,  +b,)+b,  

- 
n, delay elements 

where v, = ( y , , ~ ~ - , , . . . , y ~ - " ~ ~ ~ ,  W, is the connection weights 

from the input to the hidden layer, W, is that from the hidden 
layer to the output, bland b, are the biases to the hidden layer 
and the output layer respectively, and o( .) is the activation 
function of the nodes in the hidden layer. The activation 
function of the output layer nodes is the identlfy function. 

The delay line can be described by the state-space model: 

where 

As a result, the closed-loop system shown in Fig. 2 is of order 
np + nc. Now, define a cascaded state vector as zk = [ x: , t i  )r 
Combining (4) and (6) and making use of (9, we have 

This shows that the system depicted in Fig. 2 can be put into 
the form of (1) and therefore we can apply the condition (3) to 
assess the stability of the system. The next question that arises 
is how one may check condltion (3) if the function f contains 
a neural network. 

3. Gain Estimation for a Neural Network 
The sigmoid function (hyperbolic tangent) commonly used in 
multilayer feedforward networks makes the estimation of gain 
analytically untractable. As an approximation, a piecewise- 
linear saturation function will be used instead in our analysis. 

The saturation activation function is defined by 

o( .) =sat(r) 

(9) 

Consider a feedforward network belonging to 9Zio,a,,Rz. Such a 
network has no inputs, n, nodes in the single hidden layer and 
n, outputs. The outputs are related to the inputs through 
equation (5 ) .  

Alternatively, we can write 

Y = f ( x )  

where x ~ % " ' , y ~ % " ' , f  :gn0 +%"', wIf is the j t h  row of 
W,, w2; is the j th column of W,, and b,, is the j th element 
of b,. 

In order for the gain of f to be finite, we require that y = 0 
when x = 0. This implies that 

b, = -pZJ W J l J )  
,=I 

As a result, (10) becomes 

(12) 

We will next exploit the piecewise-linear nature of (12) by 
partitioning the input space. 

J = I  

3.1 Geometry of the input space 

Each processing element (neuron), has two decision 
boundaries given by the (no - 1)dimensional hyperplanes 
w x = - l i b  (j=l...n,) . These two hyperplanes partition 
the n,-dimensional input space into three regions, namely one 
linear and two saturation regions. As a result, the input space 
is partitioned into a cell complex (termed arrangement in [4]) 

13 1, 
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induced by the 2n, (no - 1)-dimensional hyperplanes. For a 2- 
dimensional input space, the arrangement consists of vertices 
(intersections of lines), edges (maximal connected components 
of the lines containing no vertex), and regions (maximal 
connected components of %* containing no edge or vertex). 
The notion of 2-dimensional arrangement is easily generalized 
to three and higher dimensions. In general, the arrangement 
consists of open convex n,-dimensional polytopes and various 
open convex k dimensional polytopes (k -faces) bounding 
them, for 0 I k I no - 1. In each of these faces, y is affine in 
x . An algorithm to construct a representation for the cell 
complex defined by n hyperplanes in ddimensions in 
optimal O(n,) time was proposed in [4]. M e r  the 
arrangement is determined, we can find the maximum gain 
over each region. 

3.2 Gain Evaluation in Cell Complex 

In a n,-dimensional arrangement, we will show that the gain 
over the no-dimensional polytopes is bounded by that of the 
bordering k -faces (0s k l n ,  -1). First, let us start from 
single input single output case. 

Case 1 : Single Input Single Output ( SISO ) 

Consider x , y  E %, f : 8 -+ % with 

Y =f (x) 

= 2 w: [sat(w:r + b: )-sat(b: 11 
F1 

In this case, the arrangement consists of open line segments 
bounded by points. Consider one of these segments, say (a, 6). 
Over this interval, x can be expressed as an affine 
combination of the end-points. 

v x  ~ ( a , b ) ,  x = a a + ( l - a ) b ,  forsomeO<a<l, 

As y is an affine function of s , so it can be expressed as 

y = f ( x )  =a f( a )  +( 1 -a) f ( b )  o <a < 1, (13) 

I f ( x ) I  

1x1 
Let G ( x )  = - 

Now, we have to consider two cases: 1). If y does not change 
sign in the interval ( 4 6 ) .  G(x) is monotonic in x . 
Therefore, maximum of G occurs at a or b . 2). If y changes 
sign in the interval (a, 6) at a point d , i.e. f( d )  = 0, d E (a, 6). 
the interval (a ,b )  can be subdivided into two sub-intervals 
( a , d ]  and [ d , b ) .  In each of these two intervals, G(s) is 
monotonic. Therefore, G is bounded at endpoints a , d , or 
b . Since G(d) = 0 ,  maximum G occurs at either of the end- 
points (i.e. a or b ). Hence 

g ( f )  = SUP (3x1 
l = I * O  

= max{G(a),G(b)} 

Case 2 : Single Input Multi-Output ( SIMO ) 

Consider I E%, y E %"', f : % + %%, with 

Y =f(4 

= 5 w,j[sat(w,i~+4,)-sat(qi)~ (14) 
j= I 

The input space is partitioned into intervals over which the 
output y is sine in t . By a similar argument as above, in 
any one of the intervals, (a, 6), we have 

V x  ~ ( a , b ) ,  x =a a +(I -a) 6, for some 0 <a < 1, 

f (x) =a f (a) + (1 -a) f (b) 

As the norm operator is convex by the triangular inequality, it 
follows that 

(15) 

Comparing (15) with (13), we can apply the result of the SISO 
case to show that C ( x )  is maximum at the end-points. 

Case 3 : Multi-Inputs Multi-Output (SIMO) 

Consider x ~ % " o , y E % " ' , f :  -+%"*, with 

llfk) 112 4 ( 4  112 +(WlIfPJ) 112 

Y =f@)  

In any one of the open nodimensional polytope T"', y can 
be written as 

y=JJx+c, XEFP (17) 

where Jt is the Jacobian of f in the region FJ'" 

If we fix all the elements of x except t,, we can apply the 
result of SIMO case to show that the maximum C(x) cannot 
occur in the interior of the nodimensional polytope. Hence, 
we only need to consider the k-faces bounding the no- 
dimensional polytopes (0 < k < n, - 1 ). 

Let the k-face (denoted by F h )  be a k-simplex. i.e. the vectors 
p, -Po,  i=l;** ,k are linearly independent where 
po, p , , . . - ,p ,  are its vertices. Using the barycentric 
coordinates, any point x in F h  can be written as 

x = a l p l  +a2p2 +...+a,p, +(l-a, - - - - - a r ) p o  

= X k  

where 

x =[PI -Po P2-Po *.* P, -Po Po] 
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k =[al a, a, lIr 

subjected to the constraint that x lies in the interior of the k- 
face, i.e. 

at > O ,  i=l...k, t a t  <1 (20) 
r r l  

(Note: If <* is not a k-simplex, i.e. it has more than k + l  
vertices, we can choose k + l  vertices po ,pI , . - - ,pn  s.t. 
p, -pol i = l,..., k are linearly independent. In the case where 
y' is unbounded, we can choose k + l  affine independent 
points pa, pl, . a - ,  p, on it. In both cases, the constraint (20) 
will need to be modified.) 
Using equation (18), y can be written as 

~ = J x + c  

= J X k + c  (21) 
= Y k  

where 

The gain is 

G(x)=- II y 112 

II = 11, 

The stationary points of G can be found by setting the 
gradient V, G2 = 0. After some simplifications, we have 

Y'Yk-G'X'Xk=O (24) 

which is a generalized singular value problem. By using the 
generalized singular value decomposition (GSVD) [ 5 ]  (which 
is essentially a simultaneous diagonalization of both the 
matrices Y'Y and X'X), given Y E%'~('+I) and X E % ~ ' ( ' + ~ ) ,  

we can find orthogonal matrices U E%'"*' and V E%""' 

and an invertible matrix W E % ( ' + l l x ' r + l )  s.t. 

urxw=c 
=diag(cI;.-,cq) c, 20, q=min(n,,(k+l)) (25) 

and 
V'YW=S 

=diag(sI,....s,) s, 20, r=min(n,,(k+l)) (26) 

w,+,] are the generalized The columns of W=[wI 
singular vectors of the pair (Y, X) , satisfLing 

( s;YrY - (x'x) w2 = 0 i = 1. * *k + 1 

It follows that if st # O ,  then (Y'Y-ofXTX)w2 = O  where 
IS, = c,/s, is the gain at one of the stationary points of G.  The 
vector k corresponding to 0, can then be found by scaling the 
vector w, so that the last element is unity. If it satisfies (20), 
it means that there is a stationary point of C in the interior of 
the k -face F'. The maximum IS, is the maximum gain of G 
among all the stationary points (including the local maximum, 
ifiiny) in the interior of F h .  ~ f t h e r e  is no  oca^ maximum in 
?*, the gain over the k -face is bounded by the gain over the 
bordering j -faces, 0 < j < k,  and we will apply the procedure 
to these j -faces. 

The maximum gain of the network is then the maximum of 
the maximum gain over all the k -faces, 0 5 k 5 no - 1. 

4. Conclusion 
We have shown how the small gain theorem can be used to 
assess the stability of a dynamical system containing a 
multilayer feedforward neural network and delay elements. In 
order to apply the small gain theorem, it becomes necessary to 
estimate the gain of a feedfoward neural network. A method 
to estimate the gain of a feedforward neural network with one 
hidden layer of nodes with piecewise-linear activation function 
is proposed. This provides a means for applying the stability 
result developed here to the kind of systems shown in Fig. 2. 
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