The HKU Scholars Hub The University of Hong Kong 7§ t;% A %—i’ ’E-?ﬂ—' ﬁﬁ&
i,‘?(f;r:_._ ! -;-':-\- 5) ‘i - i

|2 BAH
| #0| 54 |

Cs®

P
B
3

Implementation of parallel algorithm for transient stability

fliltle analysis on a message passing multicomputer

Author(s) Hong, C; Shen, CM

St IEEE Power Engineering Society Winter Meeting, Singapore, 23-
27 January 2000, v. 2, p. 1410-1415

Issued Date | 2000

URL http://hdl.handle.net/10722/46209

Rights Creative Commons: Attribution 3.0 Hong Kong License

Implementation of Parallel Algorithms for Transient Stability Analysis on a Message
Passing Multicomputer

C. Hong
Department of Electrical Engineering
Wuhan University of Hydraulic & Electric Engincering
‘Wuhan, 430072, P.R. China

Abstract: Real time transient stability analysis is a challenging
computing problem. In order to speed up the solution of this
problem, parallel processing technologies have been applied. In this
paper, the implemientation of parallel algorithms for transient
stability analysis on a message passing multicomputer is described.
Both parallelism-in-space and parallelism-in-time are exploited.
Test simulations are performed for two large-scale power systems
using an IBM SP2 parallel computer. Speedup results are presented
to show the performance of the proposed algorithms,

Keywords: Transient stability analysis, parallel algorithm, message
passing multicomputer.

I. INTRODUCTION

Time domain transient stability analysis is one of the most
computationally intensive power system problems and the
industrial need for faster real time solutions to this problem
has generated a great interest in finding new algorithms.
Due to the availability of a number of commercial
multiprocessor machines, a variety of parallel processing
algorithms have been investigated [1-9).

The typical serial methods for transient stability
simulations use implicit trapezoidal integration to change
the differential equations into difference equations which are
solved iteratively with the network equations. Traditional
methods utilize Newton-like procedures to solve this
algebraic problem in a step-by-step mode. Parallelism can be
exploited by applying traditional parallel-in-space
approaches [5,6]. An alternative to this step-by-step method
is to solve transient stability problems on multiple time steps
by exploiting parallelism-in-time [2,9]. However, the
speedup results reported in [9] suggested that a moderate
degree of parallelism-in-time could be used to reduce several
times the execution time of transient stability codes. For
efficient parallel processing of transient stability problems, it
is essential to exploit parallelism inside a single time step
and parallelism between the different time steps.

In this paper, parallel algorithms for time domain
transient stability analysis are presented. The proposed
parallel-in-space algorithm is essentially a paraliel version of
the Very Dishonest Newton (VDHN) method where a
parallel method for solving linear sparse matrix equations
has been developed and incorporated into the VDHN
algorithm. The proposed network clustering method, which
is based on the structure of the factorization path tree
associated with the sparse network miatrix, can be séen as a
generalization of the subtree-to-subcube mapping scheme
proposed in [10]. Using the proposed scheduling scheme,

0-7803-5935-6/00/$10.00 (c) 2000 IEEE

C.M. Shen
Department of Electrical & Electronic Engineering
The University of Hong Kong
Pokfulam Road, Hong Kong

coarse-grain parallelism is achieved for effectively solving
sparse network equations on message passing
multicomputers. In the parallel-in-time approach, a
successive over relaxed (SOR) Newton algorithm is
implemented in a pipelined-in-time fashion to solve transient
stability problems on multiple time steps concurrently. The
algorithm take advantage of the traveling window technique
[6] to reduce the processor idling deriving from the
sequential convergence characteristic of the parallel-in-time
algorithm. The method for initialization of state variables
over multiple time steps is studied. Parallel algorithms
exploiting both parallelism-in-space and in-time have been
implemented on an IBM SP2 parallel computer using the
Message Passing Interface (MPI). Test results for an actual
China power system and a 450-generator, 3021-bus power
system are presented and discussed.

1. TIME DOMAIN TRANSIENT STABILITY
SIMULATION

The problem of power system transient stability
simulation consists, basically, in the solution of an initial
value problem for a mixed set of Ordinary Differential
Equation (ODE) and algebraic equation:

X=f(xV), ¢)]
I(xV)=Y(XyV , ®
X(t)=X, 3)

where X represents the state variable vector and ¥ represents
the nodal voltages of the network. In (3), X, denotes the state
vector at the initial time £, in steady state conditions. For
time domain solution, (1) can be discretized by the

trapezoidal rule and rearranged as:
h h
R; =X, _Ef(Xi’V!)-Xl—l _'z'f(Xl-hV'-l)’ @
and (2) can be written as the following format:
Ry =I(X,,V,)-Y(X,)V, =0, (5)

where ¢=12,-.,T denotes time steps, A represents the step
length. Equations (4) and (5) can be compacted in the form:

R(ysy4)= {:G ((j ')y“l)}

where 3, =[XI.VT .

Traditional methods solve this nonlinear system in a step-
by-step mode using Newton-type procedures. The linearized
form of the nonlinear difference-algebraic equations for
iterations at each time step can be described as:

=0, ©

1410

e I %
Ryl e niav)’

where AG=%, Jy =Y+l =%, BG=%,Q, CG=—§(L. Y
is the network admittance matrix and ¥, is a diagonal matrix
obtained from the derivatives of nonlinear load currents with
respect to nodal voltages. The R; and R, represent the
residuals in satisfying (4) and (5) with the current estimates
of Xand V.

The solution of (7) exploits the block structure of the
Jacobian matrix [12]. Reduction of matrix gives the equation
for AV as:

~JyAV = Ry @®
where Jy =Y +Y, +¥;, and ¥; =-Cg4g'B; is the sum of the
effects of the generators on the admittance matrix. The right-
hand side of (8) is the network residuals modified by the
effect of doing a Newton-type iteration. That is:

Ry =Ry ~CgAG'R; - ©)

Once the AV are calculated from (9), the AX can be
calculated by backward block substitution into:

AGAX = R; - BGAV
for all generators.

Equations (8) and (10) can be solved iteratively to update
V and X at each time step. The standard Newton’s method is
to calculate the Jacobian matrix for every iteration. This
method is characterized by quadratic convergence. Many
production grade programs iteratively solve these equations
using VDHN method which does not update the Jacobian
unless the system undergoes significant change or the
iteration number exceeds a pre-determined threshold value.
In this case, the convergence is no longer quadratic but the
solution speed is improved.

10

II. PARALLEL-IN-TIME FORMULATION

To present the parallel-in-time formulation of Newton-
based method for transient stability analysis, (6) is
formulated for the solution of T time steps simultaneously:

R(y)=0 an)
Where 5= 47 31 .,y7 5] » A0 R=[RT AT oo BT o RE]

Equation (11) merely represents the nonlinear equations
over the T time steps, The rigorous Newton procedure for
solution of this nonlinear problem can be formulated as:

P o
9"=ﬁ“‘-[§] kG, (12)
& |

where k is an iteration index and [éﬁ/@]y‘ denotes the

global Jacobian of R evaluated at $=3*. The global
Jacobian of R has a block-lower triangular structure where
the bandwidth is equal to / since the trapezoidal rule is used.
It is apparent that parallel-in-time approaches using this
formulation may suffer the waiting problem due to the
coupling effects between neighboring time steps. To

0-7803-5935-6/00/$10.00 (c) 2000 IEEE

climinate the coupling effects, relaxation schemes were
proposed to decompose equation (11) in T independent
nonlinear systems, each corresponding to a window time step
[3.4]. For each of the T independent nonlinear systems,
Newton-like procedure were used to solve the algebraic
equations. The coupling effects denoted by the off-diagonal
blocks of the global Jacobian matrix were concurrently
neglected. According to the Gauss-Seidel-Newton method
[4], the following formula can be used to update the
variables corresponding to each time step of a window:

-1
" —[ﬁJ . RO,
f }',‘.V,'
Yr1™Ye
where ¢ =12,--,T. It is known from (4) and (5) that the effect
of the time step (¢-1) on time step 7 is fully represented in
evaluating the residual R (y,,,_,) -

The global nonlinear systems can be solved in parallel
using a pipelined-in-time fashion [4]. In the present
implementation, a task scheduling scheme is presented for
implementing the parallel-in-time algorithm (13). The
processing arrangement is shown in Fig. 1. After computing
¥, on processor P, the calculation of the first iteration value
¥, of the second time step starts on processor P; in parallel
with the calculation of the second iteration value y? on
processor P;. In this computation arrangement, each
processor is devoted to the computation of the variables of a
single time step for all the iterations required to achieve the
convergence. The parallelism is exploited by calculating
different iterations of multiply time steps concurrently on
parallel processors.

V= (13)

4 Processors

4

1]

I

7 .
Herstion Counts

Fig. 1. Sequence of paralle! operations for the Gauss-Seidel method

For the first time step of a window, good initial estimates
are always available, which are either from the steady state
conditions or from the converged values of the transient
problem at the time step prior to the first time step of the
current window. However, the estimates for the following
time steps of the window are much less certain. The
proposed computation arrangement introduces an
initialization scheme to guess a possible solution of the
problem for the state variables at each time step in a window.
The y, calculated on processor P, may be used as the initial
estimates for the calculation of the second time step

1411

processed on processor P,. This initialization method can be
used to initialize the time steps from 2 to T for each iteration
in the current window.

As far as the first time step of a window is concerned, (10)
is equivalent to a traditional Newton-like procedure. The
convergence of the first time step of a window always
precedes the convergence of the subsequent ones. As a result,
processors for the earlier steps sit idle or do the redundant
calculations after reaching convergence, and thus introduce
inefficiencies. To reduce the processor idling, the traveling
window technique [6] is used. The converged first time step ¢
of a window will be replaced with the first unassigned time
step, which is actually at the end of the new window. Also
the proposed initialization scheme can be used to give initial
values for the state variables of the new time step.

IV. PARALLEL-IN-SPACE APPROACH

In (7), the coefficient matrix A is diagonally blocked
since each machine only interacts with the rest of the system
through the bus it attaches to. Thus the solution of this
portion can be easily parallelized However, the
paralielization of the machine equations only is not enough
to achieve high speedup gains because the network solution
then becomes a serious bottleneck [5,6].

The coefficient matiix J,, in (8) is usually extremely
sparse, typically incidence symmetric, and with 2x2 blocked
structure. The most efficient sequential method for solving
this linear sparse matrix equation is accomplished using LU
factorization followed by forward and backward
substitutions. The factorization path tree is one of the most
important tools for understanding the factorization-based
solution of sparse linear matrix equations, and it provides
appropriate task models for parallel sparse factorization and
F/B substitutions [11]. In this approach, we use the
factorization path tree to develop a block clustering scheme
suitable for parallel implementations on message passing
multicomputers. The proposed network clustering method
can be seen as a generalization of the subtree-to-subcube
mapping scheme {10].

A given factorization path tree can be partitioned into a
number of disjoint subtrees by removing a (small) set of
nodes from the tree. The removed nodes form a separator of
the factorization path tree. Coarse grain parallelism can be
achieved by grouping disjoint subfrees so that precedence
relationships for each group are wholly contained within the
group.

To implement the subtree-to-subcube mapping approach
efficiently, a balanced elimination tree is desirable. However,
popular fill-reducing ordering methods, such as the
minimum degree algorithm and most of its variations, often
produce unbalanced factorization path trees. When an
unbalanced factorization path tree is partitioned, the sizes of
the resulted disjoint subtrees are usually different. Thus,
assigning the system buses to processors directly with “one
subtree to one processor” scheme may result in much

0-7803-5935-6/00/$10.00 (c) 2000 IEEE

unbalanced computational tasks among processors. To
overcome this problem, the disjoint siibtrees are grouped to
obtain a number of independent clusters which will be
assigned to parallel processors with the “one cluster to one
processor” scheme. Each cluster may consist of at least one
disjoint subtree with the consideration of roughly balancing
the computational load among all the clusters.

After the independent clusters have been determined,
network buses can be reordered to arrange the network
matrix into the bordered block diagonal form (BBDF). The
reordering of the optimally ordered buses should be a
topological ordering [11] of the factorization path tree where
the buses in each cluster corresponding to one or more
subtrees are numbered contiguously and the buses in the
separator are numbered last. From [11], it is known that this
reordering does not alter the precedence relationships-in the
factorization and F/B substitution phases, thus no extra fill-
ins will be introduced and sparsity of the factor matrices will
be preserved.

Supposing that the original network has been divided into
p clusters using the proposed clustering method, applying
the reordering scheme described above, the matrix Jj, will
have BBDF structure. Thus, (8) can be formulated as:

H Jie AV [| Rin
Ja S [A2 N2
. E T £ BT I (14)
J}P "PC AVP ;JP
Ja Jo Jq» Joe { AV, R
where subscript ¢ indicates the separator block. It is clear
that the p clusters are mutually independent and can be
processed in parallel. However, solution of the separator
block equations should be processed in serial to avoid -
massive communication requirements.

V. PARALLEL IMPLEMENTATION USING MPI
A. The Parallel Hardware and Software

The test bed used in this research, the IBM 9076 SP2
system installed in the University of Hong Kong consists of
two frames. Each frame contains 16 IBM POWER2 RISC
processors with theoretical peak performance 266 MFLOPS
per processor. Individual node has its own local 64 MB
RAM and local 2 Gbytes of disk storage. Nodes in a frame
are connected to each other by a native High Performance
Switch (HPS), and the two frames are also linked up by an
inter-frame HPS. Also, all 32 nodes are connected by
Ethernet. Inter-node communication occurs through explicit
message passing.

Each SP2 node runs a full version of AIX, IBM's version
of UNIX. It includes all the UNIX features plus specific tools

“and libraries for programming and executing parallel

programs. MPI [17], the Message Passing Interface that is a
standard specification for a library of functions
implementing the message-passing model of parallel

1412

0-7803-5935-6/00/$10.00 (c) 2000 IEEE

computation, can be used from FORTRAN 77 and C
programs.

In the present applications it is desirable to divide up the
available processors to allow different groups of processors
to perform computations involved in different time steps
while processors in different groups are able to communicate
to each other. These features are provided in MPI through
communicators that specify communication domains. An
intracommunicator can be used for point-to-point
communication as well as collective operations within a
single group of processors. An intercommunicator can be
used for point-to-point communication between two disjoint
groups of processors.

B. Implementation of the Parallel-in-Space Approach

In the parallel-in-space approach, the work associated
with each time step is partitioned into p subtasks so that p
processors can work on one integration step. To keep the
communication requirements as low as possible, the machine
equations and the network equations of the machine terminal
bus are assigned to the same processor. If the terminal bus of
a machine is in the separator, the machine equations can be
assigned to any one processor with the consideration of
balancing computational loads among the processors.

The linear nétwork equation (19) can be solved in parallel
using p processors. All the communication between the
parallel processors is via the separator block J... In order to
make local use of local data as much as possible, a
distributed separator block mapping scheme is introduced.
The network matrix allocated on the i-th (i e[, p}) processor
is shown in Fig. 2(a). The right-hand vector R}, of the
separator equations can be scheduled accordingly. The
distributed separator block matrix J;, and the network

residual vector Ry, satisfy the following requirements:

24,, =J as)
i=1
3 R = R 16
1=]
2 . Partial U,
Factorization
—_—
L
Ja Jee, Ja,
(a) (b)

Fig. 2, Partial factorization performed on the i-th processor

During the parallel factorization phase, partial
factorization halted before the distributed separator block of
the Jacobian matrix can be conducted in parallel, as shown

schematically in Fig. 2. Processors 1,.-., p calculate the L,, U,
(i=1,---,p) factors concurrently. They also calculate the
updates of elements belonging to the separator block and
transfer the distributed block J;, into Jg (i=1:-,p). No
communication is needed in this course. Once the i-th
processor completes the partial factorization shown in Fig. 2,
the partial factors I, is used to perform forward substitution
immediately on the same processor. In this course, the
separator residuals vector Ry, will be transferred into Ry,

(i=1,-,p). After the partial factorization and forward
substitution described above have been conducted on the p
processors, the following operations must be performed to
obtain the full updated separator block matrix and right-
hand vector:

et

=1

R=3 R,
i=

The above computations imply that global sum operations
are required. An MPI “AllReduce” collective computation
operation [17] can be used to accomplish the required
communications and computations. MPI global reduction
operations can perform a global reduce operation (such as
sum, max, etc.) across all the processors of a group. An all-
reduce collective computation returns the result of the
reduction at all processors in the group. Therefore, after the
collective computation operation, ¢ach of the p processors
obtains a copy of matrix J, and vector R, of the separator
equations. Then, the solution of the separator equations can
be conducted on the p processors concurrently. Though no
speedup gain improvement can be achieved when all
processors perform the very same calculations, the proposed
processing scheme can eliminate the communication
requirement during the backward substitution phase since
the solution elements of the separator buses are “local” data
for all the processors. Therefore, only one MPI collective
computation operation is required during each iteration.
When the factorized network matrices stored in each
processor are reused in a VDHN iteration, there is still only
one MP! collective computation operation required during
the forward substitution phase, and no communication
operation needed during the backward substitution phase.

The proposed scheduling scheme can reduce the
communication overhead and increase the amount of the
uninterrupted computation during each iteration. The coarse
grain scheduling scheme is suitable for implementations on
message passing parallel computers.

an

(18)

C. Parallel-in-Space and in-Time Implementation

Fig. 3 illustrate the implementation scheme for the
parallel-in-space and in-time approach with p processors
working on one integration step and T time steps being

1413

processed simultaneously. The P, represents the group of p
processors working in parallel on the time step f, where
t=12,--T. To exploit the parallelism-in-space, the p
processors in the group P, (+=12,--,T) is scheduled
according to the scheduling scheme described in the previous
subsection. MPI intracommunicator is used for
communication among the group of processors where
collective computation operations are required. To exploit
the parallelism-in-time, MP] intercommunicator is used for
communication between processors that processing the same
cluster of the netwotk on different time steps. During each
iteration, the p processors of group P, solve the system
equations of the current iteration exploiting parallelism-in-
space. After the iteration, each of the p processors sends the
state variables and voltage vector belonging to the
corresponding cluster to the processor calculating the same
cluster in group P,.;, and receives data from corresponding
processor in group P,;. To implement the traveling window
approach, group P; should also send messages to group P,.
When group P; works on the first time step of the current
window, the data received from Pr will not be used.
However, when the first time step achieves convergence, the
group P; will work on the time step (7%1). Then, the data
received from processor Pr will be used by group P; for
solving the new time step. The main feature of the proposed
implementation scheme is that the communication pattern is
fixed until the last window of the study interval, where the
groups of processors at different time steps exit in the order
of their convergence and the last step processors exit last.

Fig. 3. Structure of the implementation scheme
VI. TEST RESULTS AND DISCUSSIONS

An actual 150-machine, 1007-bus Chinese power system
and a 450-machine, 3021-bus power system were tested.
Parallel programs were written in FORTRAN 77 plus MPI.
A fifth order model was used for the synchronous machines
and each generating unit was equipped with an excitation
system TEEE DCI1 [13]. Nonlinear electrical loads were
represented as functions of frequency and voltage. For all the
tested cases, a bus three-phase fault with a fault clearing
time of 0.06 seconds, a total simulation time of 1 second, and
an integration time step of 0.02 seconds were assumed. A
convergence tolerance of 10 p.u. on the voltages and on the
state variables was enforced. The execution times of the
sequential VDHN program on one IBM SP2 node were 3.27
seconds for the 1007-bus system and 10.40 seconds for the
3021-bus system.

When only the parallel-in-space is exploited, the parallel
speedup results for the two cases are shown in Tables 1. The
speedup G(p) is computed using:

0-7803-5935-6/00/$10.00 (c) 2000 IEEE

G(p_) =7T(%, (19)

where T(p) represents the execution time (wall-clock time) of
the parallel algorithm on p processors and T(1) is the
execution time of a sequential VDHN algorithm with the
same test case and on the sameé computer.

Table 1. Speedup gains obtiined when only the parallelism-in space being

exploited for the two test systems
Num. of Processors 2 3 4 6 8
1007-bus system 1.837 2616 3.175 3442 3.633
3021-bus system 1.937 2.826 3.649 4.952 5.474

It can be found from Table 1 that the larger system give
higher gains, which is certainly a desired feature for parallel
computing. Using the proposed parallel-in-space algorithm,
the best speedup gain obtained is 5.474 for the 3021-Bus
power system when eight IBM SP2 nodes are used. For the
1007-Bus system, the execution time spent to perform
parallel transient stability simulation on eight IBM SP2
nodes is only 0.90 seconds for an 1 second simulation
interval, which is faster than real time simulation although
the speedup gain is only 3.633.

Speedup gains tend to saturate when large parallelism-in-
space ate exploited. This phenomenon can be analyzed using
Amdah!’s Law:

o(p)=—0

3
Ty + Toy + 22
p

(20)

where T, and T; are the shares of parallelizable and the
sequential part, and T, represents the overheads. For the
parallel-in-space algorithm, the sequential computing time
Ty is mainly derived from the serial processing of the
separator network equations and the overhead T, is mainly
the time spent on the communication operations. When more
processors are used, the original networks have to be
partitioned into more independent, well-balanced clusters by
applying the proposed clustering scheme. However,
increasing the number of independent clusters may cause a
corresponding increase in the size of the separator group,
thereby decreasing the parallelizable computational loads,
i.e., the sequential overhead 7; will increase while T,
decreases. Moreover, the time T, generally increases when
more processors are involved in the collective operations.
From (20), it is quite clear that the increased T, T; and the
decreased T, may cause a fast saturation in speedup gains.

The speedup results for the parallel-in-space and in-time
approach with p processors working on one time step and T
time steps being solved concurrently were obtained using
different values of p and T. The developed programs
executed in batch mode, where the application has dedicated
use of the allocated nodes. The totally available processors
were limited to 28 IBM SP2 nodes since 4 nodes of the
parallel computer ran in interactive mode. Table 2 presents
some of the test results for the two test systems.

1414

Table 2 Speedup gains of the two test systems with p processors working on one
time step and T time steps being solved concurrently
_pxT Processors 3x8 4x6 6x4 8x3

1007-bus 7249 | 8652 | 9.076 | 7.920
3021-bussystem | 7.958 | 9.969 | 13.36 | 1123

From Table 2, we can sée that substantial speedup gains
can be achieved via exploiting both parallelism-in-space and
parallelism-in-time. The best speedup gain cbtained is 13.36
for the 3021-bus system when six IBM SP2 nodes working
on one time step and four time steps being processed
simultaneously, where the parallel execution time to simulate
the transient dynamics for 1.0 second is only 0.78 seconds.
This means that on modern parallel computing systems, it is
quite possible to achicve the real time transient stability
simulation for very large power systems.

With the same number of available processors, exploiting
different degree of parallelism-in-space and parallelism-in-
time may result in much different speedup gain results, as
shown in Table 2. During the tests, we found that the
maximum achievable speedup gains of the parallel-in-time
algorithm is lower than that obtained with the proposed
parallel-in-space implementation of the VDHN algorithm.
The main factors limit the speedup gains of a parallel-in-
time algorithm are the sequential convergence nature of the
algorithm and the load balancing problem when VDHN
method is used. Obviously, there is an optimal arrangement
for a given case, which is shown from Table 2 to be using 6
nodes working on one time step and 4 time steps being
solved concurrently when 24 SP2 nodes are used.

VIL. CONCLUSIONS

In this paper, the implementation of parallel transient
stability analysis algorithms on a message passing
multicomputer were presented. For the proposed parallel-in-
space algorithm, the communication overhead and sequential
overhead cause a fast saturation in speedup gains when large
parallelism-in-space is exploited. High speedup gains are
achieved when a moderate degree of both parallelism-in-
space and in-time are exploited.

Modern niessage passing hardware and software provide
high computational capability and allow the developed codes
portable to other architectures. Effectively utilizing these
parallel systems that have several tens of fast processing
units, it is quite possible to achieve the real time transient
stability analysis for very large power systems.

ACKNOWLEDGEMENTS
The authors gratefully acknowledge Mr. C.M. Woo of the

Computer Center at the University of Hong Kong for his
helpful suggestions in the programming work.

0-7803-5935-6/00/$10.00 (c) 2000 IEEE

REFERENCES

[1] IEEE Committee Report, “Parallel Processing in Power Systems
Computation,” IEEE Trans. on Power Systems, Vol. 7, No. 2, May, 1992, pp.
629-638.

[2] F.L. Alvarado, “Parallel Solution of Transient Problems by trapezoidal
Integration,” IEEE Trans. on Power Apparatus and Systems, Vol. PAS-98, No.
3, May/June 1979, pp. 1080-1090.

{3] M.L. Scals, M. Brucoli, F. Torelli, and M. Trovato, “A Gauss-Jacobi-
Block-Newton Method for Parallel Transient Stability Analysis,” IEEE Trans,
on Power Systsms, Vol. 5, No. 4, Novémber 1990, pp. 1168-1177.

[4] M.L. Scals, R. Sbrizzai and F. Torelli, “A Pipelined-in-Time Parallel
Algorithm for Transient Stability Analysis,” TEEE Trans. on Power Systems,
Vol. 6, No. 2, May 1991, pp. 715.722.

[5) J.S. Chai, N. Zhu, A. Bose and D.J. Tylavsky, “Parallel Newton Type
Method for Power Systemn Stability Analysis Using Local and Shared Memory
Multiprocessors,” IEEE Trans. on Power Systems, Vol. 6, No. 4, November
1991, pp. 1539-1545.

[6) J.S. Chai and A. Bose, “Bottlenecks in Parallel Algorithms for Power
System Stability Analysis,” IEEE Trans. on Power System, Vol. 8, No. 1,
February 1993, pp. 9-15.

{71 G.P. Granelli, M. Montagna, M.L. Scala and F, Torelli, “Relaxation-
Newton Methods for Transient Stability Analysis on a Vector/Parallet
Computer,” IEEE Trans on Power Systems, Vol. 9, No. 2, May 1994, pp. 637-
643.

[8] FZ. Wang, “Parallel<instime Relaxed Newton Method for Transient
Stability Analysis,” IEE Proc.-Gener. Transm. Distrib., Vol. 145, No. 2, March
1998, pp. 155-159.

(9] M.L. Scala and A. Bose, “Relaxation/Newton ‘Methods for Concurrent
Time Step Solution of Differential-Algebraic Equations in Power System
Dynamic Simulations,” IEEE Trans. on Circuits and Systems-I: Fundamental
Theory and Applications, Vol. 40, No. 5, May 1993, pp. 317-330.

[10] G.A. Geist and E. Ng, “Task scheduling for Parallel Sparse Cholesky
Factorization,” International Journal of Parallel Programming, Vol. 18, No. 4,
1989, pp. 291-314.

[11] JW.H. Liu, “The Role of Elimination Trees in Sparse Factorization,”
SIAM J. MATRIX ANAL. APPL., Vol. 11, No. 1, pp. 134-172, January 1990.
[12] Extended Transient-Midterm Stability Package: Technical Guide for the
Stability Program, EPRI EL-2000-CCM-Project 1208, Jan. 1987,

[13] P.M. Anderson and A.A. Fouad, Power System Control and Stability. The
Towa State University Press, 1977.

[14] Marc Snir, et al., MPI: The Complete Reference. MIT Press, 1996.

BIOGRAPHIES

Chao Hong received his B.Sc.(Eng.) and M.Sc.(Eng.) degrees in Electrical

ineering from Wuhan University of Hydraulic & Electric Engineering in
1987 and 1990 respectively. From 1995, he has been a Ph.D. candidate at the
University of Hong Kong. He is currently working at Wuhan University of
Hydraulic & Electric Engineering as a Lecturer. His rescarch interest is in
power system analysis and control, parallel processing in power systems
computation.

Dr C.M. Shen received his B.Sc.(Eng.) and M.Sc.(Eng.) degrees in Electrical
Engineering from the University of Hong Kong in 1963 and 1965 respectively
and his Ph.D. degree in Electrical Engincering from the Queen Meary College,
University of London in 1969. Since then he has joined the University of Hong
Kong as a lecturer, later retitled associate professor. His research interest is in
power system analysis, operation and control. He is an executive committee
member of the Specialized Section in Power, IEE Hong Kong and is in the
Organizing Committee of the international conferences Advances in Power
Systems Control, Opération and (APSCOM) héld biennially in
Hong Kong since 1991. In APSCOM-95 he was the Chairman of Technical
Programs.

1415

