
Title Implementation of parallel algorithm for transient stability
analysis on a message passing multicomputer

Author(s) Hong, C; Shen, CM

Citation IEEE Power Engineering Society Winter Meeting, Singapore, 23-
27 January 2000, v. 2, p. 1410-1415

Issued Date 2000

URL http://hdl.handle.net/10722/46209

Rights Creative Commons: Attribution 3.0 Hong Kong License

Implementation of Parallel Algorithms for Transient Stability Analysis on a Message
Passing Multicomputer

C. Hong
ofElcdxid Engiataing

Wuhaa Umvcmly of Hydraulic de E l d c F m g
Wuhen, 430072, P.R China

Abstrast: Real time transient stability analysis is a challenging
computing problem. In order to speed up the solution of this
problem, parallel processing technologies have been applied. In this
paper, fhe implemmim of pfiillel trlgdtithnis BY tanslent
stability analysis on a message passing multicomputer is d d b e d .
Both parallelism-in-space and parallelism-in-time arc exploited.
Test simulations are performed fbr two 1-e power systems
using an IBM SP2 parallel computet. Speedup results am m t e d
to show the perfbrmance ofthe pmpod algorithms.

Keywords: Transient stability analysis, parallel algorithm, message
piis.$ing multicomputer.

I. INTRODUCTION

Time domain transient stability analysis is one of the most
oomputatimally intensive power system problems and the
industrial need for faster real time solutions to this problem
has generated a great interest in tinding new algorithms.
Due to the availability of a number of commercial
multiprocessor machines, a variety of parallel processing
algorithms have been investigated €1-91.

The typical serial methods f& transient stability
simulations use implicit trapezoidal integration to change
the differential equations into difkrence equations which are
solved iteratively with the network equations. Traditional
methods utilize “ton-like procedures to solve this
algebraic problem in a step-by-step mode. Parallelism can be
exploited by applying traditional parallel-in-space
approaches [5,6]. An alternative to this step-by-step method
is to solve transient stability problems on multiple time steps
by exploiting parallelism-in-time [2,9]. However, the
Speectup results reported in [9] suggested that a moderate
degree of parallelism-in-time owld be used to reduce several
Wes fhe execution t h e of transient !#abiIiQ’ &e. For
efficient parallel processing of transient stability problems, it
is essenfial to exploit parallelism inside a single time step
and parallelism between the diffkent t h e steps.

In this paper, parallel algorithms for time domain
transient stability analysis are presented. The proposed
parallel-in-space algorithm is essentially a parallel version of
the Very Dishonest Newton (VDI-IN) method where a
parallel method for solving linear sparse matrix equations
has been developed and incorporated into the VDHN
algorithm. The network clustering method, which
is based on the structure of the Eactorization path tree
&at& with the sparse nwwk matrix, can be seen as a
generalization of the subtree-to-subcube mapping scheme
proposed in [lo]. Using the proposed scheduling scheme,

coarse-grain parallelism is achieved far e!%ctively solving
sparse network equations on message passing
multicomputers. In the parallel-in-time approach, a
successive over relaxed (SOR) Newton algorithm is
implemented in a pipelined-in-time W o n to solve transient
stability problems on multiple time steps ooncurrently. The
algorithm take advantage of the traveling window technique
[6] to reduce the processor i d h g deriving from the
sequential convergence c h a r a c t d c of the parallel-in-time
algorithm. The method for initialization of state variables
over multiple time steps is studied. Parallel algorithms
exploiting both parallelism-in-space and in-time have been
implemented on an IBM SP2 parallel computer using the
Message Passing Intedhce (MPI). Test results for an actual
China power system and a 450-generator, 3021-bus power
system are presented and discussed.

II. TIME DOMAIN TRANSIENT STABILITY
SIMULATION

The problem of power system transient stability
simulation consists, basically, in the solution of an initial
value problem for a mixed set of Ordinary Differential
Equation (ODE) and algebraic equation:

x - f (X , V) Y (1)
Z(X,V) = Y(X)V , (2)
X(rJ = x0 , (3)

where X represents the state variable vector and Y represents
the nodal voltages of the network. In (3), Xo denotes the state
vector at the initial time to in steady state conditions. For
time domain solution, (1) can be discretized by the
trapezoidal rule and rearranged as:

(4)
h h

and (2) can be written as the following format:

RG =4 -p,,y,)-x,-l - ~ @ , - i , K i) ,

where t = 1,2,...,T denotes time steps, h represents the step
length. Equations (4) and (5) can be compacted in the form:

c ..

~raditional methods solve this nonlinear system in a step
by-step mode using Newton-type procedures. The linearized
form of the nonlinear dif€erenwalgebraic equations for
iterations at each time step can be described as:

0-7803-5935-6/00/$10.00 (c) 2000 IEEE 1410

(7)

is the network admittance matrix and Y, is a diagonal matrix
abtaitled &an the derivatives of nonlinear load currents with
respect to nodal voltages. The R, and RN represent the
residuals in satisfjing (4) and (5) with the ament sstimates
ofXand K

The solution of (7) exploits the block structure of the
Jacobian matrix [121. Reduction of matrix gives the equation
for AV as:

where &=Y+Y,+YG, and YG=-CG&BG isthesumofthe
efExts of the generators on the admittance matrix. The right-
hand side of (8) is the network residuals modified by the
efkct of doing a Newtun-type iteration. That is:

- JkAV = Rk (8)

RN = RN - CG&& .

A& = % - BGAV

(9)

(10)

h c e the AV are calculated fim (91, the AX can be
calculated by backward block substitution into:

for all generators.
Equations (8) and (10) can be solved iteratively to update

VandXat each time step. The standard Newton’s method is
to calculate the Jacobian matrix for every iteration. “his
method is characterid by quadratic convergence. Many
production gra& programs iteratively solve these equations
using VDHN method which does not update the Jacobian
unless the system undergoes significant change or the
itemtion number exceeds a pre-determined threshold value.
In this case, the convergence is no longer quadratic but the
solution sped is improved.

III. PARALLEL-IN-TIME FORMULATION

To present the parallel-in-time bnulation of Newton-
based method for transient stability analysis, (6) is
formulated fix the solution of T time steps simultaneously:

f i (j) = 0 (1 1)
WhW $=[y:,y: ,..., yr ,..., $1’. &Id j $ = [~ : , R f , . . . , ~ , r ,..., $1’.

Equation (1 1) merely represents the nonlinear equations
over the T time steps. The rigomus Newton procedure for
solution of this nonlinear problem can be formulated as:

-1

j k =jit-l +E] &jq, (12)
?‘-I

where k is an iteration index and [&/413, denotes the

global Jacobian of evaluated at $=$’. The global
Jacobian of has a block-lower triangular structure where
the bandwidth is equal to I since the trapezoidal rule is used.
It is apparent that parallel-in-time approaches using this
formulation may su& the waiting problem due to the
coupling effects between neighboring time steps. To

eliminate the coupling effects, relaxation schemes were
prqmed to decompose equfion (11) in T independent
nonlinear systems, each corresponding to a window time step
[3,4]. For each of the T independent nonlinear systems,
Newtm-like procedure were used to solve the algebraic
equations. The coupling Gffec ts denoted by the off-diagonal
blocks of the global Jacobian matrix were concurrently
neglected. Acmrding to the Gauss-Seidel-Newton method
[4], the following formula can be used to update the
variables corresponding to each time step of a window:

where t = U,--,T. It is known &om (4) and (5) that the effect
of the time step (t-1) on time step t is fWy represented in
evaluating the residual~o,.y,-,).

The global nonlinear systems can be solved in parallel
using a pipelind-in-time fashion [4]. In the present
implementation, a task scheduling scheme is presented for
implementing the parallel-in-time algorithm (13). The
processing arrangement is shown in Fig. 1. After computing
yi on processor PI, the Calculation ofthe first iteration value
y: of the second time step starts on processor Pt in parallel
with the calculation of the second iteration value y: on
processor PI. In this computation arrangement, each
processor is devoted to the computation of the variables of a
single time step for all the iterations required to achieve the
convergence. The parallelism is exploited by calculating
dif€ment iterations of multiply time steps concurrently on
parallel processors.

For the first time step of a window, g d initial estimates
are always available, which are either *om the steady state
conditions or from the converged values of the transient
problem at the time step prior to the first time step of the
current window. However, the estimates for the following
time steps of the window are much less certain. The
proposed amputation arrangement introduces an
initialization d e m e to guess a possible solution of the
problem for the state variables at each time step in a window.
The y: calculated on processor P, may be used as the initial
estimates for the calculation of the second time step

0-7803-5935-6/00/$10.00 (c) 2000 IEEE 141 1

processed (HI processM P2. This initialization method can be
w d to i&ialiZe fhe W e steps fitmi 2 U) T for each itemfion
in the current window.
As far as the first time step of a window is concerned, (10)

is equivalent to a traditional Newton-like procedure. The
convergence of the first time step of a window always
precedes the convergence of the subsequent ones. As a result,
processors for the earlier steps sit idle or do the redundant
calculations after reaching convergence, and thus introduce
inefficiencies. To reduce the p r o " idling, the traveling
window technique [6] is used The converged first time step t
of a window will be replaced with the first unassigned time
step, which is actually at the end of the new window. Also
the proposed initialization scheme c ~ n be used to give initial
values for the state variables of the new time step.

IJ& ... J i p "1- Jpc AVp

J,., Jc2 Jcp JA AY,

IV. PARALLELIN-SPACE APPRQACH

- - -"1 Rhjl 9

(14)

Rhc - -

In (7), the coefficient matrix AG is diagonally blocked
since each machine only interacts with the rest of the system
through the bus it attaches to. Thus the solution of this
portion can be easily parallelized. However, the
parallelization of the machine equations only is not enough
to achieve high speedup gains because the network solution
then becomes a serious bottleneck [5,6].

Tlie Wffident ma- J k in (8) is Wiially extnz"ly
sparse, typically incidence symmetric, and with 2x2 blocked
structure. The most efficient sequential method for solving
this linear sparse matrix equation is accomplished using LU
factorization followed by farward and backward
substitutions. The factorization path tree is m e of the most
important tools for understanding the fsctorization-based
solution of sparse linear matrix equations, and it provides
appropriate task models for parallel sparse kctorization and
FfE3 substitutions [ll]. In this approach, we use the
htorization path tree to develop a block clustering scheme
suitable for p d l e l implementations on message passing
multicomputers. The proposed netwurk clustering method
can be seen as a generalization of the subtreeto-subcube
mapping scheme [lo].

A given factorization path tree can be partitioned into a
n u m b of disjoint subtree by removing a (small) set of
nodes fim the tree. The remod nodes form a separator of
the hctorization path tree. Coarse grain parallelism can be
achieved by grouping disjoint subfree& so €hat precedence
relationships for each group are wholly contained within the
group.
To implement the subtree-to-subcube mapping approach

efficiently, a balanced elimination tree is desirable. However,
popular fill-reducing ordering methods, such as the
minimum degree algorithm and most of its variations, often
produce unbalanced kctcwization path trees. when an
unbalanced fhctorization path tree is partitioned, the sizes of
the resulted disjoint subtrees are usually different. Thus,
assigchg the system buses to processors directly with "one
subtree to one processor" scheme may result in much

V. PARALLEL IMF'LEMENTATION USING h4PI

k The Parallel Hardware and Software

The test bed used in this research, the IBM 9076 SP2
systan installed in the University of Hong Kong consists of
two fhnes. Each fiame contains 16 IBM BOWER2 RISC

per processar. Individtlal node has its own l m l 64 MB
RAM and local 2 Gbytes of disk storage. Nodes in a frame
are conneded to each other by a native High Performance
Switch (HPS), and the two fhmes are also linked up by an
i n t e r - h e HPS. Also, all 32 nodes are connected by
Ethernet. inter-node communication occurs through explicit
message passing.
Each SP2 node nms a full version of AD(, IBM's version

of UNIX. It includes all the UNIX features plus specific tools
and libraries for programming and executing parallel
programs. MPI [17], the Message Passing Int& that is a
standard specification for a library of functions
implementing the messagepassing model of parallel

p"s with theurdal peak perfarmance 266 m o m

0-7803-5935-6/00/$10.00 (c) 2000 IEEE 1412

computation, can be used ficm FORTRAN 77 and C
programs.

In the present applications it is desirable to divide up the
available processors to allow different groups of processors
to perform CQmplltatiOns involved in difkrent time steps
while procmms in different groups (v8 able to communi-
to each other. These features are provided in h4PI through
communicators that p i @ communication domains. An
intracommunicator can be used for point-to-point
communication as well as collective operations within a
single group of processors. An interammunicator can be
used for point-tepoint communication betwm two disjoint
groups of processors.

B. Implementation of the Parallel-in-Space Approach

In the parallel-in-space approach, the work associated
with each time step is partitioned into p suwasks so that p
prooessors can work on one htegration step. To keep the
communication requirements as low as possible, the machine
equations and the network equations of the machine terminal
bus are assigned to the Same proc.;essar. If the terminal bus of
a machine is in the separator, the machine equations can be
assigned to any one processor with the consideration of
balancing computational loads among the processors.

The linear fit%” equation (19) tan be sdved in parallel
using p processors. All the communication between the
parallel processors is via the separator block JL. In order to
make local use of local data as much as possible, a
distributed separator block mapping scheme is introduced.
The network matrix allocated on the i-41 (i ~[l,p]) processor
is shown in Fig. 2(a). The right-hand vector Rhc of the
separator equations can be scheeailed accordingly. The
distributed separator block matrix J&, and the network
residual vector Rhq satisfy the followhg requirements:

Fig. 2. Partial faotorization parfiormed 011 the i-th proctssor

During the parallel faotorizatian phase, partial
factorization halted before the distributed separator block of
the Jacobian matrix can be conducted in parallel, as shown

schematically in Fig. 2. Processors l,-,p calculate the 4, U,
(i= l , . - . ,p) mors concurrently. They also calculate the
updates of elements belonging to the separator block and
transfer the distributed block J& into Jg, (i=I , . . . ,p) . No
communication is needed in this course. Once the i-th
processor completes the partial factorization shown in Fig. 2,
the partial factors 4 is used to perform forward substitution
immediately on the same processor. In this course, the
separator residuals vector RLq will be transferred into R&,
(i= l , . - ,p) . After the partial fsctorization and forward
substitution described above have been conducted on the p
p”, the following operations must be performed to
obtain the 111 updated separator block matrix and right-
hand vector:

1 4

1-1

The above computations imply that global sum operations
are required. An MPI “AllReduce” collective computation
operation [17J can be used to accomplish the required
communications and computations. MPI global reduction
operations can perform a global reduce operation (such as
sum, max, etc.) across all the processors of a group. An all-
reduce collective computation returns the result of the
reduction at all processors in the group. Therefore, after the
collective computation operation, each of the p processors
obtains a copy of matrix JL and vector R i c of the separator
equations. Then, the solution of the separator equations can
be conducted on the p processors concurrently. Though no
speedup gain improvement can be achieved when all
processars perform the very same calculations, the proposed
processing scheme can eliminate the communication
requirement during the backward substitution phase since
the solution elements of the separator buses are “local“ data
for all the processors. Therefare, only one MPI collective
computation operation is required during each iteration.
When the factorized network matrices stored in each
procesor are reused in a VDHN iteration, there is still only
one h@l collective computation operation required during
the forward substitution phase, and no communication
operation needed during the backward substitution phase.

The proposed scheduling scheme can reduce the
communication overhead and increase the amount of the
mint- computation during each iteration. The coarse
grain scheduling scheme is suitable for implementations on
message passing parallel computers.

C. Parallel-in-Space and in-Time Implementation

Fig. 3 illustrate the implementation scheme for the
parallel-in-space and in-time approach with p processors
working on one integration step and T time steps being

0-7803-5935-6/00/$10.00 (c) 2000 IEEE 1413

processed simultanewsly. The P, represents the group of p
pr-s wormg in patallel w the time sfep t, wllere
t=l,2, .- ,T. To exploit the parallelism-in-space, the p
processars in the group P, (t= i&- ,T) is scheduled
according to the scheduling scheme described in the previous
subsection. MPI intracommunkator is used for
communicsltion among the group of processors where
collective computation operations are required. To exploit
the parallelism-in-time, h4PI interwmmmicator is used for
communication between processors that processing the same
cluster of the network on difWent time steps. During ea&
iteration, the p processom of group P, solve the system
equations of the current iteration exploiting parallelism-in-
space. After the iteration, each of thep proceossrs sends the
state variables and voltage vector belonging to the
corresponding cluster to the processor calculating the same
cluster in group P,+l, and receives data fiom correspanding
processor in group P,-l. To implement the traveling window
approach, group PI should also send mewages to group P I .
When group PI works on the first time step ofthe current
window, the data received fiom PT will not be used.
However, when the first time step achieves convergence, the
@oup PI -hill work on the time step (T+l). Then, the data
received from processor PT will be used by group PI for
solving the new time step. The main &atme ofthe praposed
implementation scheme is that the communication pattern is
fixed until the last window of the study interval, where the
groups of processors at different time steps exit in the order
of their convergence and the last step processors exit last.

N u m . o f P I "
1007-bas systan
302 1-bUS

Fig. 3. Structure of the implanentstion scheme

2 3 4 6 E
1.837 2.616 3.17s 3.442 3.633 ,

1.931 2.826 3.649 4.952 SA14

VI. TEST RESULTS AND DISCUSSIONS

~ ~~~

An actual 15O-machine, 1007-bus Chinese power system
and a 450-machine, 3021-bus power system were tested.
Parallel programs were written in FORTRAN 77 plus MPI.
A fifth order model was used for the synchronous machines
and ea& generating unit was equipped with an excitation
system IEEE DCl [13]. Nonlinear electrical loads were
represented as hctions of fieciuency and voltage. For all the
tested case^^, a bus thr-phase fault with a hult clearing
time of 0.06 seconds, a total simulation time of 1 second, and
an integration time step of 0.02 seconds were assumed. A
convergence tolerance of lo-' p.u on the voltages and on the
state variables was enforced. The execution times of the
sequential VDPIN program on one IBM SP2 node were 3.27
S W I I ~ S for the IOO7-bus
3021- US system.

and 10.40 sc~ands t$r the

When only the parallel-in-space is exploited, the parallel
speedup results for the two cases are shown in Tables 1. The
speedup G@) is computed using:

(19)

where Tb) represents the execution time (wall-clock time) of
the parallel algorithm on p processors and T(1) is the
execution time of a sequential VDHN algorithm with the
m e test case and 6n the &me con~puter.

It can be f m d fiom Table 1 that the larger system give
higher gains, which is certainly a desired fkature for parallel
computing. Using the ptoposed parallel-in-space algotithm,
the best speedup gain obtained is 5.474 for the 3021-Bus
power system when eight IBM SP2 nodes are used. For the
1007-Bus system, the execution time spent to perfm
parallel transient stability simulation on eight IBM Sp2
nodes is only 0.90 seconds for an 1 second simulation
interval, which is faster than real time simulation although
the speedup gain is only 3.633.

Speedup gains tend to saturate when large parallelism-in-
space are exploited. This pham"on can be analyzed using
Amdahl's Law:

(20) T(') G(P) =
G + T o H + b '

P
where Tp and T, are the shares of parallelizable and the
sequential part, and TOM represents the overheads. For the
parallel-in-space algorithm, the sequential computing time
T, is mainly derived &om the serial processing of the
separator network equations and the overhead ToH is mainly
the time spent 0x1 the communication operations. When more
processors are used, the original networks have to be
partitioned into more independent, well-balanced clusters by
applying the proposed clustering scheme. However,
increasing the number of independent clusters may cause a
comsponding increase in the size of the separator group,
thereby decreasing the parallelizable computational loads,
i.e., the sequential overhead T, will increase while T-
decreases. Moreover, the time ToH generally increases when
more processors are involved in the collective operations.
From (20), it is quite clear that the increased T,,, T, and the
decreased Tp may cause a fhst saturation in speedup gains.

The speedup results for the parallel-in-space and in-time
approach withppr- working on one time step and T
time steps being solved concurrently were obtained using
&&rent d u e s of p and T. The developed programs
executed in batch mode, where the application has dedicated
use of the allocated nodes. The totally available processors
w e limited fo 28 IBM SP2 nodes since 4 nodes of the
parallel computer ran in interactive mode. Table 2 presents
some of the test results for the two test systems.

0-7803-5935-6/00/$10.00 (c) 2000 IEEE 1414

Froni Table 2, we c8n see that submntial speedup gains
can be achieved via exploiting both parallelism-in-space and
parallelism-in-time. The best speedup gain obtained is 13.36
for the 3021-bus system when six IBM SP2 nodes working
on one time step and four time steps being prooessed
simultaneously, where the parallel execution time to simulate
the transient dynamics for 1.0 second is only 0.78 seconds.
This means that on modern parallel compufing systems, it is
quite possible to achieve the real time transient stability
simulation for very large power systems.

With the same number of available processors, exploiting
diffefent wee of parallelism-fn-space and parallelism-in-
time may resuit in much different speedup gain results, as
shown in Table 2. During the tests, we found that the
maximum achievable speedup gains of the parallel-in-time
algorithm is lower than that obtained with the proposed
parallel-in-space implementation of the VDHN algorithm.
The main factors limit the speedup gains of a parallel-in-
time algorithm are the sequential amvergence nature of the
algorithm and the load balancing problem when VDHN
method is used. Obviously, there is an Optimal arrangement
for a given case, which is shown from Table 2 to be using 6
nodes working on one time step and 4 time steps Wig
solved concurrently when 24 SP2 nodes are used.

VII. CONCLUSIONS

In this paper, the implementation of parallel transient
stability analysis algorithms on a message passing
multicomputer were presented. For the proposed parallel-in-
space algorithm, the communication overhead and sequential
overhead cause a fast saturation in speedup gains when large
parallelism-in-space is exploited. High spcedup gains are
achieved when a moderate de@= of both parallelism-in-
space and in-time are exploited
Modem message passing hardware and software provide

high computational capability and allow the developed codes
portable to other architectures. Effectively utilizing thw
parallel systems that have several tens of fast processing
units, it is quite possible to achieve the real time transient
stability analysis for very large power systems.

The authors gratefully acknowledge Mr. C.M. Woo of the
Computer Center at the University of Hong Kmg for his
helphl suggestions in the programming wcrk.

0-7803-5935-6/00/$10.00 (c) 2000 IEEE

REFERENCES

[I] IEEE Committee Report, "Parallel processing in Powa Systems
COElpUUUh," IEEE RanS. 011 POIW Systeras Vol. 7, No. 2, May. 1992, pp.
629-638.
[2] F.L. Aid. "Parallel Solution of Transient Problems by trsptzoidal
~ @ o I I , " IEEE T m . on Power Apparatus and Systems Vol. PAS-98, No.
3, May/iunc 1939, pp. 1086-1690.
[3] ML. scala, M. li)ruColi, F. Torell& and M. Tmvnto, "A Gauss-Jacobi-
Block-NswtDn Method tix Parallel TrpnSient Stability Analysis," IEFZ Trpne.

[SI ML. scala, R Sbrizzai Md F. T d i , "A PipaliWbhtTime parallet
Algorithm 6x Tnmsient Stability Analysis," IEEE T ~ a m on Power Systems,

[5] J.S. Chi, N. Zhu, A. Bost and D.J. Tylamky, "pardlel Newton Type
hfdmd &Power System Stability AaalydsUSiag Local and Shwd Memory
Multipw;assors. EEF, Tram. 011 Powsr Systems, Vol. 6, No. 4, Novemk

[6] J.S. Chai and A. Bose, "Bottlenecks in Parallel Algorithm hr Power
System Stability Andy&,'' tEEE Trans. 011 Power Systcm, Vol. 8, No. 1,

[7] G.P. OrPnetli, M. MonEognq M.L. scplp end F. Torelli, "Rclaxatiob
Newton Mcthds fbr Transient Stability M y x i s on a VcctoriParallel
Computer." IEEE Tran~ ou POWW Systems, Vol. 9, NO. 2, May 1994, Pp. 637-
643.
[8] FZ. Wang, "Parallel.ia3ime Relaxed Newton Method tbr Transient
Stability Adysk," IEE Pmc.(smer. Tranan. Disbib., Vol. 145, No. 2, March

[9] M.L. soala and A Bose, "Rel"Swt0n Molhods fia Concurrent

Dynamic SimuWms," IEEE Trans. on C h i t s and Systems-I Fundamental

[IO] 0.A. oeist and €. Ng. Task scheduling h r Parallel Sparse Cbolesky
Factorhation," International Journal of Parallel Programming, Vol. 18, No. 4,

[ll] J.W.H. Lh, "The Role of Elimination Trees in Sparse Fa~%orization,"
SIAMJ.MATRIXANAL.APPL.,Vol. 11,No. I,pp. 134-172, January 1990.
1121 Exkndal T r a n s i " Stability Padcnge: TcdmicnI Guide lbr the
Stability Propram, EPRI EL-2oooCCM-Rojsot 1208, Jan. 1987.
[13] P.M. AD&SOU and AA. Fouod, P m SysCan Coatrol and Stability. The
Iowa State UniVagitY Pmss, 1977.
[14] Marc Snir, et el., MPI: Thc Complete Ft&mnx. MIT Press, 19%.

On PcW& Sy$t&&, Vol. 5. NO. 4, N6-h 1990, pp. 1 168-1 177.

Vol. 6, NO. 2, May 1991, p ~ . 715-722.

1991,pp. 1539-1545.

Fsbnrary 1993, m. 9-15.

1998, m. 155-139.

T h e Step Solution O f D M - A l g h k Equations in PO- System

%O?Y and A p p h i ~ n n , Vol. 40, NO. 5, May 1993. pp. 3 1 7-330.

1 9 8 9 , ~ . 291-314.

BIOGRAPHIES

Chao Hong recoked his B.So.(F.ng.) and M.Sc.(Enk) dcgmu in El-
Engbrhg fiom Wuban University of Hydraulic & Electric Epgineering in
1987 and 1990 mpcctivcly. From 1995, hc has been a %D. candida00 at the
University of H o q b u g . He is aumtly working at Wuhan Univasity of
Hydraulic & Electric En@m#iug as a Lcctura. His march intaust is in
pow system analysis and control, parallel processing m porm systems
computation.

Dr C.M. Shea "I his B.Sc.(EaS.) and M.Sc.(Eng.) degrees in Electrid
EaslMar&e hfn the Univadty Of Hoag Kong ia 1963 aad 1%5 nspectivCly
and his PhD. in Elsasriaal Eaginasriae firom the Queen Mary College,
UnivagitY of Laadon in 1969. Since h he has joined the UniMSity of Hong
l h g as a lectunr, latermtitied asocbte pm-r. His resear& intcmt $ in
pow# system analysis, opaation and contrd. He is an executive ccm"
member of& Specialid Sectkm io Pow, IEE Xoag Kong and is in the
cQ@Zingc-ofh- * conke" ApMaces in Power
Sysacms C m l , W hbqp" (APSCOM) Wd b h o i d y io
Hone KO- eiace 1991. IU APSCOM-95 he WWJ the Chairman of Tachnical
proprama.

1415

