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Abstract - An evaluation of a low-cost, small sized solid state 
accelerometer is described in this paper. The sensor is intended 
for positioning of a mobile robot or platform. Acceleration 
signal outputted by the sensor is doubly integrated with time 
which yields the traveled distance. Bias offset drift exhibits in 
the acceleration signal is accumulative and the accuracy of the 
distance measurement deteriorates with time due to the 
integration. Kalman Filter is used to reduce errors caused by 
random noises. The random bias drift of the accelerometer was 
found by experiment to be 2.5mg. The accelerometer was moved 
back and forth three times for a distance of 40cm with an 
acceleration of 8 d s 2 .  The final distance error accumulated was 
-1.OScm. The bias drift rate due to temperature was O.lOSpg/s 
when the accelerometer was placed at room temperature. The 
results show that the accelerometer could be a viable solution as 
a short duration distance-measuring device for a mobile robot or 
platform. 

I. INTRODUCTION 

Positioning technologies could broadly be divided into two 
main streams: relative positioning and absolute positioning. 
Absolute position means that the currently calculated position 
does not depend on the previous positions. Example of an 
absolute positioning system is the Global Positioning System 
(GPS). The advantage of this system is that there is no 
accumulation of drift error. Howevgr, GPS has the signal 
blockage problem in outdoors environment. Also, it cannot be 
used indoors and has relatively low output rate. For a relative 
positioning system, dead reckoning method is employed to 
find the position. The angle and distance data are used to find 
the current position. One of the commonly used relative 
positioning system is Inertial Navigation System (INS). Dead 
reckoning positioning with gyros and accelerometers is called 
inertial navigation. The gyro measures the angular rate and 
the accelerometer senses the accelerations. Integration of 
angular velocity with time yields angle data. Distance data 
could be obtained by double integration of acceleration with 
time. INS is a self-contained device which requires no 
external electromagnetic signals. Thus, INS does not have the 
signal coverage problem found in GPS. Moreover, the data 
output rate of INS could be much faster than GPS. However, 
the disadvantage of INS is the bias drift problem. These 
errors would be accumulated and the accuracy deteriorates 
with time due to integration. Methods such as Kalman Filter 
are employed to reduce errors due to the random bias drift. 

Compared to an odometer, a 3-axis accelerometer can sense 
three-dimensional movements while the former can only 
sense single-axis movements. Also, the data rate of an 
accelerometer can be much higher than that of an odometer. 
Moreover, an accelerometer is a self-contained device while 
an odometer must be fixed to the shaft of some wheels which 
could be inconvenient in some cases. A solid-state 
accelerometer also has the advantages of small sized, low 
cost and being self-contained. Thus, this kind of 
accelerometer could be a viable solution as a short duration 
distance-measuring device for mobile robot or platform. 

An interesting description of inertial sensors and some 
innovative applications of the sensors can be found in [l]. 
Abbott and Powell [2] present a quantitative examination of 
the impact that individual navigation sensor has on the 
performance of a navigation system. An evaluation of an 
Inertial Navigation System for a mobile robot can be found in 
[3]. Mostov [4] has described about systematic and random 
errors in an accelerometer. Methods are proposed to reduce 
the effect of random errors which includes proper modeling 
of the accelerometer and using feedback system. Reference 
[5] talks about how to find the bias and scale factor errors by 
using inertial data and absolute position data. 

Below is an outline of this paper. The reduction of random 
noise of the accelerometer data using Kalman Filter is 
introduced in Section 11. In section 111, the accelerometer and 
the evaluation experiment setups are described. The 
evaluation methods and experimental results are explained in 
section IV. In section V, discussions of the results are given. 
Finally, a conclusion of this paper is given in section VI. 

11. REDUCTION OF RANDOM NOISE USING 
KALMAN FILTER 

Kalman filter is a commonly used method for random noise 
reduction and data fusion for positioning applications. In this 
method, statistical characteristics of a measurement model is 
used to recursively estimate the required data. A brief 
introduction of Kalman Filter is given in the following text. 

Kalman Filtering is basically a statistical method that 
combines a knowledge of the statistical nature of system 
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errors with a knowledge of system dynamics, as represented 
by a state space model, to provide an estimate of the state of a 
system. Any number of unknowns can be included in the 
states. In a navigation system, we are usually concerned with 
position and velocity. The state estimate is obtained using a 
weighting function called the Kalman gain, which is 
optimized to produce a minimum error variance. [6] A 
Kalman filter can be used to fuse measurements from 
multiple sensors and provide both an estimate of the current 
state of a system and a prediction of the future state of the 
system. The algorithm of Kalman Filter is show in Fig.1 [7] 
and the notation of the algorithm is shown in the followings. 

Enterpnor estimate?,(-) and its 
error E O V B n a n C e  Po(-) 

I 
I 

Update estimate with measurement I, 

?*(+) = ?e(-) t f?*[r, - H$,( - ) ]  

Fig. 1. The Kalman Filter algorithm 

Notation: 

xk is the system state 
zk is the measurement 
wk is the plant noise with its covariance Qk 
vk is the measurement noise with its covariance Rk 
"(-)" indicates the a priori values of the variables (before the 
information in the measurement is used). 
"(+)" indicates the a posteriori values of the variables (after 
the information in the measurement is used). 
K is the Kalman gain. 
mk is the transition matrix at time tk 

pk is the error covariance matrix 

Hk is the measurement matrix 

For reduction of random noises in the accelerometer signal, a 
process model (Fig.2) with three integrators in cascade was 
used for processing a single axis of acceleration data. The 
system parameters are shown in Fig.3 and Fig.4. [SI The 
power spectral density of the input white noise W is 
l(m/s2)2/(rad/sec), and the sampling time At equals1/206.6 s. 
The value of W was obtained after some experiments to 
provide better results. 

i_l velocity Postion 

Fig.2. The process model of the accelerometer data 
for the Kalman Filter 

Fig.3. The state transition matrix for the Kalman Filter 

w w  -At' -At2 wAt 
6 2 

Fig.4. The error covariance matrix for the Kalman Filter 

111. THE ACCELEROMETER EVALUATION 
EXPERIMENTAL SETUPS 

A..  The Accelerometer 

The accelerometer (interface circuit shown in Fig.5) that has 
been evaluated is called ADXL202 produced by Analog 
Device. It is a low cost, low power 2-axis micromachined 
accelerometer with a measurement range of f 2 g  (19.6m/s2). It 
can measure both dynamic acceleration and static 
acceleration. The outputs are digital signals whose duty 
cycles are proportional to the acceleration in each of the two 
axes. [9] The output can be measured directly with a MCU 
timer system. This accelerometer is selected for evaluation as 
a distance measuring sensor due to its small size, low cost 
and acceptable performance. 

Fig.5. The accelerometer interface board 
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B. The Microcontroller and Data Acquisition Board 

The microcontroller used in the data acquisition board is 
Motorola 68HC11F1. It has 512 bytes of EEPROM, 1024 
bytes of RAM, an enhanced 16-Bit timer system, three Input 
Capture (IC) channels, an enhanced NRZ Serial 
Communications Interface (SCI).[ 101 The data acquisition 
circuit board is shown in Fig. 6. 

The data output by the accelerometer is a 200Hz square wave 
whose duty cycle depends on the acceleration. Input Capture 
1 (IC1) pin of the MCU was used to detect the signal from the 
accelerometer. The MCU would transmit the data to the PC 
via the Serial Communication Interface (SCI). A Visual Basic 
program was used at the PC to receive and save the data to 
the hard disk. A C program was written to process large 
amount of accelerometer data. The recorded data is 
downsampled by averaging the acceleration data within each 
downsampling period. The downsampled data was then 
stored in a file which could be plotted using MATLAB. For 
the results obtained, the data was averaged every twenty-five 
seconds to give a downsampled data. 

Fig.6. The data acquisition board with the microcontroller 

C. The Sony Robot Arm 

The robot arm used to move the accelerometer is a Sony 
SRX-410 High Speed Assembly Robot. It was designed for 
high assembling speed and high performance industrial 
applications. The system consists of a robot arm, a controller, 
a panel and a PC for programming the robot arm. Fig.7 shows 
a photograph of the accelerometer evaluation hardware setup. 
The block diagram of the experimental setup is shown in 
Fig.8. 

Fig.7. The accelerometer evaluation experiment 
hardware setup 

Accelerometer 

200Hz 
Variable 

duty cycle 
signal 

v 
IC1 

MCU Module 
SCI 

38400 
bps 

Corn Port 

Fig. 8. Accelerometer data acquisition block diagram 

IV. EVALUATION METHODS AND 
EXPERIMENTAL RESULTS 

A.  14-hour of Stationary Accelerometer Data 

Fourteen hours of stationary accelerometer data was taken in 
order to study the effect of temperature on the bias drift. The 
recorded data occupied 8 1.3 Mbytes of hard disk space. The 
data was processed to give the acceleration readings which 
was then downsampled for plotting using MATLAB. 

The duty cycle of the accelerometer output is proportional to 
the acceleration. The microcontroller was used to measure the 
duty cycle using the timer system. The timer counts was 
converted to ASCII and then sent to the PC for recording. 
The data was processed according to Fig.9. 

Fig. 10 and Fig. 1 1 show the 14-hour acceleration data without 
and with Kalman filter processing respectively. The thermal 
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bias drift rate of the accelerometer placed at room 
temperature was found by this experiment to be 0.108pgk. 

ASCllbmerwunter 0 Q CJ 
- - - r - - - Y Y  

-7 -y  

\/ 

value (4 Bytes) 

value (2 Bytes) 
Binary timer wunter m m  m t l  
Timer counter value m p j  LIH 
difference (2 Bytes) 

Duty Cycle 
(floating point) 

Acceleratlon 
(floating point) 

Data structures involved in calculating the acceleration 

Fig.9. Data processing diagram for the acceleration data 

B. Experiments Carried Out Using Sony Robot Arm 

Experiments for the accelerometer evaluation were carried 
out using the Sony Robot Arm. Twenty three sets of 
experiment with different velocity and acceleration 
combinations were conducted. The velocities range from 0 
m/s to 1 m/s and the accelerations ranges from 0 m/s2 to 
10m/s2. Three different sets of results with low, moderately 
high and high acceleration is presented in the following 
subsections. 

(1) Low Acceleration ( a = 3  m/s2) 

Figures 12-15 show the results of the experiment with 
acceleration at 3 m/s2 which is quite low and with velocity at 
0 . 3 d s .  The accelerometer was moved from left to right and 
vice versa for a distance of 40cm. Such motions were 
repeated for three times. Figures 12 and 13 show the 
acceleration data without and with Kalman Filtering. Due to 
the random bias drift problem, the acceleration data was 
divided into regions for different bias reductions. The biases 
in the fvst seven regions were manually tuned to optimize the 
accuracy. The last six regions were not calibrated for 
comparison purpose. These calibrations also helped to 
estimate the random bias drift of the accelerometer. The 
values of the manually tuned biases are plotted in Fig. 16. Fig. 
14 shows the velocity which was calculated by integrating the 
acceleration data with time. Only the first two velocity cycles 
are calibrated with manually tuned acceleration biases. Fig. 
15 shows the distance which was calculated by integrating the 
velocity data with time. Only the first two distance cycles are 
calibrated with manually tuned acceleration biases. This 
graph shows the affection of the random bias drift on the 
distance data after double integration of the accelerometer 
data. 

Fig. 10. Acceleration data in 14 hours without Kalman Filter processing 

Fig.12. Data of acceleration at 3 m / s 2  without Kalman Filtering 

Fig. 1 I .  Acceleration data in 14 hours with Kalman Filter processing 
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Fig. 16 Manually tuned biases for the first seven regions 
of the acceleration data 

Fig. 13. Data of acceleration at 3 m / s 2  after Kalman Filtering was partitioned 
and calibrated with different biases 

(2) Moderately High Acceleration (a= 8 d s 2 )  

Figures 17-20 show the results of the experiment with 
acceleration at 8 m / s 2  which is quite high and with velocity at 
0.8 m/s. Again, the accelerometer was moved from left to 
right and vice versa for a distance of 40cm. Such motions 
were repeated for three times. The acceleration was calibrated 
with a constant bias to reduce the zero offsets. 

Fig. 17 shows the acceleration data without Kalman Filter 
processing. This has resulted in a signal disturbed with 
random noises. A clearer shape of the signal obtained by 
using Kalman Filter is shown in Fig.18. The integrated 
velocity is shown in Fig.19 and the integrated distance is 
shown in Fig.20. The final distance was found to be -1.08cm 
while the actual final distance should be zero. 

Fig.14. Velocity with and without manually tuned acceleration biases 
reduction (only first two velocity cycles are calibrated) 

Fig. 17. Acceleration results for acceleration of 8 d s 2  and velocity of 0.8m/s 
without Kalman Filter processing 

Fig. 15. Distance traveled with and without manually tuned acceleration 
biases reduction (only the first two distance cycles are calibrated) 
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(3) High Acceleration (a= I O  mh2) 

Figures 21-24 show the results of the experiment with 
acceleration equals 10 m / s 2  which is relatively high and 
velocity equals I d s .  The accelerometer was moved from left 
to right and vice versa for a distance of 40cm. Such motions 
were repeated for eight times. The acceleration was calibrated 
with a constant bias to reduce the zero offsets. 

Figure 21 and 22 show the acceleration without and with 
Kalman Filter processing respectively. The velocity and the 
distance are shown in Fig.23 and Fig.24 respectively. The 
final distance was found to be +1,55cm. 

Fig. 18. Acceleration results for acceleration of 8mf’ and velocity of 0.8md 
with Kalman Filter processing 

Fig.21 Acceleration results for acceleration of IOms-’ and velocity of Ims-’ 
without Kalman Filter processing 

Fig. 19. Integrated velocity results for acceleration 
of 8ms.’ and velocity of 0.8ms-’ 

Fig.22 Acceleration results for acceleration of 10ms.’ and velocity of lms-’ 
with Kalman Filter processing 

Fig. 20. Integrated position results for acceleration 
of 8mS-* and velocity of 0.8ms-’ 
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B. Experiments Carried Out Using Sony Robot Arm 

( I )  Random Bias Drift 

From the graph of manually tuned biases (Fig.l6), the range 
of the biases deviations is about 2-3 mg which is fairly large. 
Better navigational grade accelerometer has about 0.1 mg 
random bias drift. The velocity error and the position error 
built up could be calculated by the equations below [ 121: 

Velocity error = 0.589 m l s  per mg per min 
Position error = 17.66 m per mg per min2 

Thus, for a bias error of 2mg, the velocity errors built up in 
one minute is 1.178m/s. Moreover, the position error built up 
in one minute for a bias error of 2mg is 35.32m. Thus, if the 
random bias could be modeled properly, the accuracy in 
distance measurement can be greatly improved. Fig.23 Velocity results for acceleration of 10ms.’ and velocity of lms-’ 

(2) Relation Between Magnitude of Acceleration and 
Accuracy in Distance Measurement 

Fig. 24 Distance results for acceleration of 10ms-2 and velocity of lms-’ 

V. DISCUSSIONS 

A. Behavior of the 14-hour Stationary Accelerometer Data 

From the result shown in Fig. 1 1, it is observed that the bias or 
zero offset of the accelerometer generally increased after 
powering up. After about seven hours, the bias settled down 
to fairly stable values. The results are due to the thermal bias 
drift of the accelerometer. The internal temperature of the 
sensor increases when it is warming up. The thermal bias drift 
rate when the accelerometer is placed at room temperature is 
found in this evaluation to be 0.108pg/s. If these bias drifts 
due to the temperature are not compensated, the results would 
be affected after operating for long duration. Compensation 
methods can be done by using low cost temperature sensing 
IC and crystal oven. [ 1 11 

From the distance graphs of Fig.20 and Fig.24, distortions are 
observed which were due to the random biases of the 
accelerometer. The random bias drift error is one of the major 
sources of the positioning error. When the acceleration is 
higher, the errors caused by the random bias are less 
significant. 

The integrated final distance was found to be -1.08cm and 
+1.55cm when the accelerations were 8 m/s2 and 10 m/s2 
while the actual final distances should both be zero. Thus, the 
results are quite close to the ideal ones. These good results 
were due to the relatively large acceleration imposed on the 
accelerometer. As the accelerometer can measure up to 2g 
which is 19.6133 m / s 2  of acceleration, the applied 
acceleration which are 8 m / s 2  and 10 m l s 2  are relatively large. 
When compared with Fig. 14, the distortions in distance 
measurement for higher accelerations are less. This means 
when the acceleration is higher, the errors caused by the 
random biases are less significant. 

VI. CONCLUSIONS 

The experimental results have provided a useful evaluation of 
a low-cost solid state accelerometer. The performance of the 
accelerometer is shown to be acceptable as a short duration 
distance-measuring device for mobile platform or robot. Such 
an accelerometer could be a self-contained sensor to give a 
low cost and small-sized distance-measuring device for 
mobile robot, platform or vehicle. It can be combined with 
gyroscope and odometer to form a dead reckoning 
positioning system for a mobile robot or platform. Further 
research would be on the proper modeling of the 
accelerometer in order to reduce the effect of random bias 
drift.[4] Moreover, the combination of digital compass, 
gyroscope, odometer and beacon signals with the 
accelerometer would be studied. 
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