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Abstract 

This paper presents the concept of automated virtual loop 
assignment and loop-based motion estimation in vehicle- 
type identification. A major departure of our method from 
previous approaches is that the loops are automatically 
assigned to each lane; the size of virtual loops is much 
smaller for estimation accuracy; and the number of virtual 
loops per lane is large. Comparing this with traditional ILD, 
there are a number of advantages. First, the size and number 
of virtual loops may be varied to fine-tune detection 
accuracy and fd ly  utilize computing resources. Second, 
there is no failure rate associated with the virtual loops and 
installation and maintenance cost can be kept to a minimum. 
Third, virtual loops may be re-allocated anywhere on the 
frame, giving flexibility in detecting different parameters. 

1. Introduction 

One very important aspect of traffic management is the 
timely acquisition of travel parameters on the road network. 
Information such as vehicle speed and count using a 
particular road at a particular time provides a glimpse of its 
flow rate, queue length and even the degree of congestion. 

Traditionally, such information is acquired through 
inductive loop detectors (ILD) [l]. Although the ILD 
concept is simple and parameters such as speed, count and 
type classification can be extracted, it needs to be physically 
installed under the surface of the road. Once it is installed, it 
would be difficult to alter its detection configuration, let 
along re-deploying it to a new location. Despite the high 
installation cost, its application is further hindered by its 
high failure rate (25-35%) and maintenance cost. Due to 
these reasons, other type of sensors such as ultrasonic, radar, 
laser, infrared detectors and video cameras have also been 
developed and evaluated in the hope of finding a new and 
better solution [2]. However, most of these sensors operate 
in a similar manner as the ILD and acquire similar 
parameters, except for the video cameras. 

Video or CCTV cameras have been extensively deployed 
for visual surveillance in many countries. These cameras are 
usually mounted by the roadside or overhead at strategic 

locations on freeways or junctions, with video links to a 
control center. The video outputs may be inspected by 
traffic officials, from which decisions are made. The 
attraction of this video surveillance approach is that it offers 
a far richer information content than those obtained from 
ILD and similar sensors. However, processing video 
information creates a new set of problems too. If these 
problems are resolved, then visual surveillance methods 
present an attractive alternative to ILD. 

Since the late S O ' S ,  a number of papers have been 
published on detecting and/or tracking moving vehicles 
using image and video processing techniques [3-51. 
Dubuisson & Jain [6] classified them into four categories 
according to how the camera is mounted or whether motion 
information is used. In general, they can be grouped into 
two broad classes: model-based approach and those that are 
not. Model-based here refers to those approaches that use a 
parameterized or polygonal model to describe and represent 
a vehicle. By-and-large, model-based approach is the most 
popular and has been adopted widely by many researchers 

For most deformable models, the vehicle shape and 
interior attributes are fitted with pre-defined parameterized 
models consisting of 20-30 vertices. It can distinguish the 
vehicle types in a limited sense and indicate the vehicle 
directions if there is no occlusion. However, computation 
complexity increases with the number of vertices used to 
define the model, and better accuracy requires more vertices. 
For polygonal models, the vehicle outline is fitted with a 
polygon. It does not suffer from occlusion but it does not 
distinguish the vehicle types, dimensions and orientations 
either. For both methods, vehicle motion can be estimated 
using techniques proposed by [ 14, 171. For non-model-based 
approaches, there are quite a few cases reported too [ 15, 17- 
191. The simplest approaches are probably those that 
manually define a bounding area per lane on the video 
sequence where vehicles can be detected and their motion 
estimated [20-231. AUTOSCOPE is one system that 
employs this approach and claims that it can replace ILD 
directly [20]. 

From the above, we can observe that the automated 
tracking and modeling methods are usually generic and 
flexible but complex and computation demanding. Whereas 
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the non-model-based approaches are simpler but require a 
high degree of human interaction in their operations 
especially when zoom, pan and tilt (ZPT) actions are 
involved. 

To tackle these issues, we propose in this paper the 
concept of automated virtual loop assignment and loop- 
based motion estimation. A major departure of our method 
from previous approaches is that first, the loops are 
automatically assigned to each lane. This allows ZPT 
actions without needing further region definition manually. 
Second, the size of virtual loops is much smaller for 
estimation accuracy. This enables us to use standard block- 
based motion estimation techniques developed for video 
coding. Third, the number of virtual loops per lane is large. 
This offers a more reliable and robust approach in motion 
estimation. Comparing this with traditional ILD, there are a 
number of advantages. First, the size and number of virtual 
loops may be varied to fine-tune detection accuracy and 
fully utilize computing resources. Second, there is no failure 
rate associated with the virtual loops and installation and 
maintenance cost can be kept to a minimum. Third, virtual 
loops may be re-allocated anywhere on the frame, giving 
flexibility in detecting different parameters. 

This paper is organized in the following: Section 2 
presents the virtual loops concept, assignment criteria and 
their limitations. Section 3 discusses the assigned virtual 
loops can be used for type identification based on unique 
‘signatures’. This paper is concluded in Section 4. 

2. Virtual loops 

To emulate the functionality of ILD, VL may be defined 
as regions within an image frame over the entire image 
sequence such that processing may be confined to the VL 
instead of the whole image. The question is how this can be 
done automatically and what should be the size and number 
of VL per lane. 

To begin with, let us assume the video camera is 
mounted by the roadside on a 3-meter post, with optical axis 
along the road direction and its field of view (FOV) covers 
all the lanes in one travelling direction. The camera settings 
are assumed to be fixed while the VL are automatically 
assigned, without ZPT actions. This assignment is expected 
to be repeated if there are ZPT actions. It is also assumed 
that the camera operates under normal day light and road 
conditions. The road direction and the number of road lanes 
are assumed known a priori. A typical view near a junction 
with such camera setting is depicted in Figure 1. 

Let us define the ifh VL in frame f to be an NxN block 
given by si (n,, ny , f) for i= 1 ,. . . ,M, where M is the number 

of VL in the frame and (n,,n ) is the spatial coordinates of 
the VL center. The initial assignment of the VL starts from 
the line dividing the lanes or from the stop line [24]. If none 
of these information are available, the assignment will start 
at (X/2, Y/4), where X and Y are the width and height of the 
frame respectively, and the origin is assumed at the lower 
left-hand comer. In fact, the initial number of virtual loops 
and their locations can be arbitrary to some extend as most 
of these VL will be removed subsequently. A typical initial 
assignment is depicted in Figure 2. 

Y 

The philosophy of virtual loop (VL) is to emulate the 
functionality of ILD on the image sequence. In essence, ILD 
are inductive loops buried under the surface of the road 
junction. In theory, when a metallic object passes over the 
loop and interferes with the loop’s magnetic field, the 
change in loop current indicates the presence of a vehicle. 
As different types of vehicles produce different ‘signatures’ 
in theory, therefore ILD may be used for vehicle-type 
identification. 

mounting. 

For a two-lane road, an initial M is found to be between 
100 and 200. As the lane number is known a priori, we can 
set M accordingly for roads with more lanes. This concept is 
significantly different from those of [20-231 where they only 
use one assigned region per lane for detection, apart from 
the fact that they are drawn manually. By using large M, we 
are able to reduce N such that block-based or loop-based 
motion estimation per virtual loop can be performed. In 
addition, M is inversely proportional to N ,  where N is upper 
bounded by 16. Although there is no formal criterion for the 
selection of N, it is observed that based on the assumed 
camera setting, N between 13 to 15 gives reasonable 
detection results. This can be explained as while the vehicle 
moves away from the camera, large N tends to exaggerate 
the panning out effect of the vehicle, giving a poor match in 
motion estimation. On the other hand, if N is small, the 
number of VL has to increase to ensure a correct detection. 
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This increases the overall computing delay in motion 
estimation as well as the latency of the overall detection. 

After the initial assignment, A4 is reduced by the 
following method. Over a short image sequence of N,, 
frames (10-20 frames) with vehicles passing under the FOV, 
the MAD (Mean Absolute Difference) of the it' VL between 
consecutive frames,fandf+ 1 is determined by the following 
equation: 

and d,,d,:Id,,dyl<r, ~,L(d,,dY)-f3,,,l<p, where Y is 

the search range and p is a constrained search angle in the 
calculation. The values of r and are dependent on the 
camera view, frame rate and the maximum allowable 
vehicle speed on that section of the road. For a maximum 
vehicle speed of 50kph, Y is set to 50 pixels and for the 
assumed camera setting, p is set to 45". Essentially, the 
relationship between vehicle speed and r is governed by the 
frame rate. In this case, Y was chosen to be proportional to 
vehicle speedframe rate. For 10 frameshec and 50kph, this 
works out to be 1.38dframe. From the camera setting, this 
is equivalent to just less than 50 pixels. Therefore, Y is 
chosen to be 50. This equation is a modification of the 
standard MAD calculation. The first reason for doing this is 
that the direction of the vehicle should be roughly along the 
road direction in the normal instance. Secondly, with high 
object speed in traffic video compared with typical coding 
scenery, the search range is extended to accommodate the 
possible large motion. From Eqt. ( l ) ,  the motion vector 
(MV) corresponding to the iIh VL is calculated using the so- 
called loop-based direction biased three-step search [25]: 

The mean and standard deviation of the MV magnitude 
( IYJ) and orientation ( Lv, ) of the i'' VL are computed over 
N ,  as follows: 

From Eqt. (2) and (3), those VL with MV that satisfy all 
the following conditions are retained in the final assignment: 

(1) Large mean magnitude and small standard deviation; 
(2) Its mean orientation is in the direction of the road; 
(3) Its orientation standard deviation is small. 
Condition (1) retains those VL that has consistent large 

motion, i.e., significant motion due to vehicle. Condition (2) 
retains those VL that lie along the direction of the road 
direction. The VL that have motion due to other objects are 
eliminated. Condition (3) further eliminates those VL with 
large orientation deviations. Such deviation in orientation 
often represents motion due to other sources, for example, 
shadows. 

From the final set of VL, they are hr ther  divided into 
groups according to the number of lanes the FOV covers. 
This is achieved by considering their MV magnitudes in 
each frame. In the two-lane case presented in Figure 1, 
vehicles motion on the outer lane (right) only cause the VL 
in the outer lane to record large MV magnitudes, but not the 
inner lane (left). On the other hand, vehicles motion in the 
inner lane may cause large MV magnitudes in both lanes. 
Over N,, based on the above conditions, the VL can be 
divided accordingly. Figure 3 depicts these VL that have 
been divided into two groups for two lanes. In this case, 
there are 8 final VL in the left lane, and 10 in the right lane. 
It should be noted that if the camera is overhead mounted, 
the motion detected in each lane will be separated and 
therefore the division of VL in to groups will be more 
distinct. 

To estimate vehicle motions on the road, we first 
compute the MV, v,V;f+l) (Eqt. ( 2 ) )  over the final set of 
VL. The resulting MV are also depicted as straight line 
segments in Figure 3. 

3. Vehicle-type identification 

In the case of ILD, vehicle-type identification is based on 
the signature of individual vehicle recognized by the ILD. 
The 1D signature may be current magnitudes or counts 
verstp time depending on the type of ILD used. For 
example, a private car would have a I D  signature that 
consists of a high and sharp peak, while a truck would have 
a flat peak of much lower magnitude but perhaps twice as 
wide over time (Figure 4). 
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0 0.1 0.2 0.3 0.4 0.5 
time Is) 

Figure 4. Vehicle signatures from ILD. 

To perform the same functionality using the virtual loops, 
we propose to analyze the function of the averaged MV 
magnitude over time for each lane. In theory, when a vehicle 
moves across the VL, MV are estimated in the loops, and 
their magnitudes will only diminish when the vehicle has 
passed. Therefore, by taking an average of the VL in each 
lane, we are able to detect the presence of vehicle as in the 
case of ILD, as well as extracting its 'signature' by 
compiling and analyzing this information over time. 

In order to verify this approach, we have chosen a traffic 
video taken from an existing camera post at the Wang Chiu 
Road, Kowloon Bay, Hong Kong. The post was roughly 3m 
high by the side of the road. During the experiment, the 
camera setting was fixed and the time of recording was 
chosen to be a sunny afternoon, where a large shadow from 
a nearby tree is evident on the road. Such sequence is 
chosen to represent a realistic and practical scenario. 

The traffic video was subsequently digitized and 
processed by our proposed algorithm on a Pentium PC, 
where virtual loops were automatically assigned, reduced 
and divided into groups per lane. From the VL, loop-based, 
direction biased three step search was performed on each 
VL and their average per lane was calculated over time. 
From these results, Figure 5 depicts the MV signatures of 
three vehicles: car, van and truck. 

Mid-section of Vehicle end 

1 2 3 4 5 6 7 8 9 1011 1 2 1 3 1 4  

frame no. 

(a) 'Van' 

1 3 5 7 9 11 13 15 17 19 21 

frame no. 

(b) 'Truck' 

fire engine 

v -  

1 3 5 7 9 11 13 15 17 19 21 23 25 

frame no. 

(c) 'Fire engine' 
Figure 5. MV signatures of vehicles. 

From Figure 5, it can be observed that all three MV 
signatures have common and unique characteristics. The 
common characteristic is the twin peak in all cases, which 
the left peak denotes the mid-section of the vehicle and the 
right peak denotes the vehicle end. For the van, its signature 
is 13 frames, while the big truck has 2 1 frames, and the even 
bigger fire engine has 25 frames. In this case, the difference 
between the truck and fire engine may be arguable, but the 
van can be clearly identified. 

4. Conclusions 

From the above results, we can conclude that the virtual 
loop concept is an effective mean for vehicle-type 
identification. The method proposed here offers an 
automated approach to virtual loop assignment and 
reduction. Based on motion estimation, the final set of 
virtual loops works effectively and is road independent. The 
selection of larger number of loops and smaller loop size 
compared with existing manual methods also enable us to 
use a loop-based direction biased three step search to 
construct a motion vector signature of the vehicle. The 
unique description of the vehicle type allows us to identify 
vehicle types reasonably easily. This is verified by our 
experiment of analyzing a real and practical traffic video. 
Future direction in this research will be focused on the 
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further sub-division of vehicle types and a more extensive 
analysis of the signatures. 
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