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An Adaptive Fuzzy Approach to Obstacle Avoidance 

N. H. C. Yung and C. Ye 
Department of Electrical & Electronic Engineering 

The University of Hong Kong 
Chow Yei Ching Building, Pokfulam Road, Hong Kong SAR 

ABSTRACT 

Reinforcement learning based on a new training method 
previously reported guarantees convergence and an almost 
complete set of rules. However, there are two shortcomings 
remained: first, the membership functions of the input sensor 
readings are determined manually and take the same form; and 
second, there are still a small number of blank rules needed to 
be manually inserted. To address these two issues, this paper 
proposes an adaptive fuzzy approach using a supervised 
learning method based on back propagation to determine the 
parameters for the membership functions for each sensor 
reading. By having different input fuzzy sets, each sensor 
reading contributes differently in avoiding obstacles. Our 
simulations show that the proposed system converges rapidly to 
a complete set of rules, and if there are no conflicting input- 
output data pairs in the training sets, the proposed system 
performs collision-free obstacle avoidance. 

1. INTRODUCTION 

The problem of mobile vehicle (MV) navigation particularly 
through a dynamically changing environment is a challenging 
one. The case of navigation through a static obstacle course is 
more manageable than the dynamic case as obstacles and the 
environment remain time-independent throughout. Many 
solutions have been proposed in the past with reasonable 
success, although real environments and situations are hardly 
that simplistic. The case of navigation through a dynamic 
obstacle is a lot more demanding in many ways. As the 
environment may contain moving obstacles or its topological 
properties may be changing, it has to be considered unknown 
and time-varying, as in most practical environments. The crux 
of the problem is how obstacle avoidance is performed. 

Apart from those assuming a known environment, many 
methods have been proposed to tackle the obstacle avoidance 
problem utilizing on-line information acquired from 
environment sensors. Of the various schemes proposed, the idea 
of the reactive system stands out above the rest [l]. Its main 
focus is to build a mapping from the perceived situations to the 
correct actions and to refine the mapping until a goal is reached. 
This approach seems logical in describing the navigation task 
and much effort has been devoted to using neural network or 
fuzzy logic to construct the situation-action relationship [2]. 
Between the two methods for constructing such relationship, 
fuzzy logic seems promising as it deals with the various 
navigation situations without requiring the construction of an 

analytical model of the environment. When compared with the 
neural network approach, it has an added advantage that each 
rule of the rule base has an associated physical meaning and 
deals with a specific situation. This makes it possible to tune the 
rules by using expert knowledge. However, the way in which 
the rule base is constructed becomes extremely important. This 
is because real world environments are inherently complex, and 
it is rather difficult to formulate a consistent set of rules for 
tasks such as obstacle avoidance, even if expert knowledge is 
readily available. For this reason, research effort has been 
directed to how the rule base can be constructed correctly and 
efficiently [3]. Overall, many rule bases constructed suffer two 
limitations: consistency of the rules is hard to maintain and 
tuning the rules is time consuming. 

To tackle these, supervised learning methods using neural 
networks have been proposed [4]. Unfortunately, these methods 
require a large set of representative patterns to characterize the 
environment when training the network, which contain no 
contradictory input/output pairs. This problem is partially 
resolved by using reinforcement learning. The reinforcement 
signal ensures the input/output pairs are consistent, and allows 
the rules to be tuned to some extent [SI. However, the 
theoretical limitations of reinforcement learning inevitably 
result in a slow convergence and incomplete rule base. The 
issue of learning speed and convergence was dealt with by [6],  
where a new training method for the reinforcement learning was 
proposed. This method guarantees convergence and an almost 
complete set of rules. However, there are two shortcomings 
remained: first, the membership functions of the input sensor 
readings are determined manually and take the same form; and 
second, there are still a small number of blank rules (3 out of 
243) needed to be manually inserted. The reasons are first, the 
fuzzy sets determined manually for the input variables may not 
be optimal, and second, the sensors should contribute 
differently when avoiding obstacles. The fuzzy terms of very 
near, near, and fur should ideally be determined through 
learning rather than manually. 

To address these two issues, this paper proposes an adaptive 
fuzzy approach using a supervised learning method based on 
back propagation to determine the parameters for the 
membership functions for each sensor reading. By having 
different input fuzzy sets, each sensor reading contributes 
differently in avoiding obstacles. Given a fuzzy logic system 
fk(d), our approach determines the parameters, xri and bj, such 
that for a given input-output pair ( A  yd), where yd is the desired 
output of the fuzzy system, the actual output of the fuzzy 
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system y converges to the desired output. The difference 
between ya and yd  is use'd to train the fuzzy logic system, f k (d) .  
Our simulations show that the proposed system converges 
rapidly to a complete set of rules, and if there are no conflicting 
input-output data pairs in the training sets, the proposed system 
performs collision-free olistacle avoidance. 

2. ADAPTIVE FUZZY LOGIC SYSTEM 

2.1 General Overview 
As an extension to the re:search described in [6], let us consider 
an Adaptive Fuzzy Logic System (AFLS) for obstacle 
avoidance as depicted in Fig. 1 .  The AFLS consists of two 
almost identical five-input, single-output fuzzy systems, with 
desired output (vd and A @ )  and feedback. The input variables 
are the sensor readings, di for i=1,.5, while the control variables 
are vu and ABa for obstacle avoidance. 

At each learning step, two input-output pairs, (d ,  vd) and (d ,  
A&) are provided, where d=(dl ,  ..., d5) is the sensor input 
vector, vd and ABd are !.he desired velocity and the desired 
steering angle for avoidance. For each input vector d,  the AFLS 
determines the output vu and AB, by fi(d) and fi(4 
respectively. The differenlce between vu and vd is then used to 
train the fuzzy logic system adaptively, i.e. to tune its rule base 
and parameters for the membership functions of d, , until the 
system error is below some pre-defined value. As the two fuzzy 
logic systems take a similar form, our task can be reduced into 
the design of a fuzzy logic system y=f(d), of which y stands for 
either vu or AB, and f(d) is either f i(d) orjj(d). Taking the usual 
approach, the design offi'd) involves six steps: ( 1 )  define the 
membership functions for the sensor input and control output 
variables, (2) fuzzify the input variables, (3) construct the rule 
base, (4) cany out optimization through supervised learning, 
(5) perform fuzzy inference, and (6) defuzzify the output 
variables to obtain vu and AB,. Details of these steps are given 
in the following sections. 

2.2 Definition of the Membership Functions 
The membership functions of the input and output variables are 
illustrated in Fig. 2. In Fig. 2(a), di is the crisp value of each 
input variable, which is bounded by the minimum value: 
dmin=Rv+lmin and the marimum value: dmgx=Rv+lmax, where 
Rv is the radius of the vehicle, lmin is the minimum detectable 
distance by the sensors and I,, is the maximum detectable 
distance. The crisp value O F  di is fuzzitied and expressed by the 
fuzzy sets: VNi, NRi and AFRl where they stand for very near, 
near andfur, respectively. The subscript i denotes the fuzzy set 

for the ith sensor reading. The parameters, xri for ~ 1 ,  ..., 7 ,  are 

dmin<xmUxldmar, and denote the details of the membership 
functions. 

bounded by xmin and Xmm, for xmin= dmin and 

(a) Input (b) Output 
Fig. 2: Membership functions of di and y 

With reference to Fig. 2(b), the output variable y denotes one of 
the two actions of the vehicle: vu or AB,. Its upper bound and 
lower bound are ym, and ymin, respectively. With three 
linguistic values and five distance sensor inputs, the fuzzy rule 
base has 243 rules. As a result, it requires 243 fuzzy sets, r j  for 
j=1, ..., 243, to represent the action spacey. These fuzzy sets r j  
take the shape of the triangular membership functions of which 
their centers b,, are also determined by the learning algorithm. 
As the parameters, xri are to be tuned based on the error, e, 
between vd and y ,  the different metric used by Xri and e must be 
normalized first. In other words, the input di and the output y 
must be normalized to 4 and J respectively by the following: 

d, - =- d. -dmin , 

y = -  - Y -Ymin . (2) 

(1) 
dnw -&in 

Ymas -Ymin 

Similarly, the parameters x,.i and b, are normalized to 2" and 
6, , respectively . 

2.3 Fuzzification of Normalized Input Variables 
The membership functions of the fuzzy sets E,, m, and zi 
can be described by: 

(F3, -L7,)/(Z3, - q j )  z,j s z  sz3i 
0 5 Isi < z,i 9 (3a) 

P ~ , < 4 , , =  1 
otherwise 

-F2i)/(F4j -Z21) F2, 5 4  5 q i  

-&)/(Z6i -F4i) Z4j < d i  5F6i 
- > (3b) 

10 

otherwise 

otherwise 

2.4 Rule Base Construction and Fuzzy Reasoning 
According to the definition of the fuzzy sets for the input 
variables, the fuzzy rules are denoted by: 

where Rj denotes thejfh rule; 
the universe of discourse U?, 

linguistic value of m, , m, or m, , and 
jj in the universe of discourse U ,  

Rj: IF L7, isD,, AND ... AND is D,5, THEN is c ,  
denote the fuzzy sets for 2, in 

R in the jrh rule, which take the 

is the fuzzy set for 
R in thejrh rule. As the@ 
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rule R, can be represented as a fuzzy relation, 

RI : D,l x x DJ3 x D14 x D,, -+ 9 the rule base can be 
represented as the union of all the rules: 

143 - 
R="[D/~ x ZS,, x ir,, x o14 x D~, --f 51. (4) 

1 4  

Therefore, thejth rule, ~q is a fuzzy relation in the product 

space, U -  U _ ,  where U -  = U -  U -  uJ4 uJ5 . Thus, the 

rules can be implemented as fuzzy relations with their 
corresponding membership functions. The membership value of 
the j th rule, q can be denoted by ( 2 , ~ ) .  Consider the 

input 2' =(Jl',...,&), which can be treated as fuzzy singleton 
=(q,,,,,~;) in the universe of discourse u., the fuzzy control 

action, T can be inferred by Larsen's product rule of inference 
as given below: 

d v  d dt d? 

where * denotes a product operation. If Larsen's product 
operation is applied to the fuzzy relations, the membership 
value of 5 is calculated by 

where ,,(a.) denotes the fire strength of the j'h rule for the 
inputs a' = (al',...,&) , which is given by 

PJ (2') = Puis,, (4')Puis,* (Jhjj, (24')Puis,5 (25') . (7) 
It should be noted that the use of Larsen's product rule is to 
ensure a continuous derivative of pJ (2') with respective to zn. 

2.5 Defuzzification of Output Variables 
In order to determine the crisp output action, y ,  from the fuzzy 
control action, P' , first, defuzzification is required, which 
follows by de-normalization using Eqt. (2). For the reason of 
limiting the computing cost, the method of height 
defuzzification is used. 

3. SUPERVISED LEARNING 

3.1 Learning Algorithm in Delta Rule Form 
The output action in a de-normalized form is expressed as: 

where 1-243 and 243 As y is determined by 

and bj, Eqt. (8) can be solved by finding a set of xrr and 
bj, such that for a given input-output pair (d', yd), the actual 
output of the fuzzy logic system y is as close as possible to the 
desired output, yd. This optimization is carried out on the mean- 
square error as defined below: 

y =  f ( d ' ) = h l g ,  (8) 

h =  z # , ( d ) b ,  g = s p , V ) '  
/ -I  1-1 

(9) 

where J is the cost function of the fuzzy logic system. For the 
given value of yd, J is a function of Xrj and b~ Therefore, the 
optimization becomes a search of xrj and bj on the error surface 
that give a minimum J in the global sense. To do that, the 
method of Steepest Descent (SD) is adopted. According to this 
method, the parameters, Xri and b,, assume a time-varying form, 
and move along the error surface with the aim of converging 
them progressively toward the optimum solution. In principle, 
such movement is in the direction of the steepest descent on the 
error surface. 

Let xyi(k) and bj(k) denote the values of the parameters, Xrj and 
bj at iteration k by the SD method, respectively. In the same 
way, the gradients of the error surface with respect to xrj and bj 
at iteration k are denoted by df(k)/b?cri(k) and d J ( k ) / B j ( k )  
respectively. According to the SD method, the updated values 
of xrj and bj at the next iteration k+l  is calculated as 

N k )  > x,i (k + 1) = x,(k) - 17- 
(k) 

where q. 0 < 77 6 1,  defines the learning rate and Eqt. (10) & 
(1 1) are called the Delta Rule. 

As y (hence J) depends on xri through h and g, while y (hence J) 
depends on bj only through h. Therefore, by using the chain 
rule, the gradients of the error surface with respect to xrj and bj 
in general are given below: 

here e (d9  is denoted by @ for simplicity. Substituting Eqt. 
(12) into (lo), and Eqt. (13) into ( l l ) ,  we obtain the learning 
algorithm for xrj and b, as follows 

6, ( k  + 1) = b, ( k )  - v- y ( k ) - y d  pJ ( k )  t (15) 
g 

where y(k) and @(k) denote the system's actual output and the 
value of e at iteration k, respectively. Similarly, 
a p , ( k ) / a r i ( k )  is the value of 8pj/Lkri at iteration k, which 

is 

where 3pD,,(,ji)/&e can be derived directly from Eqt. (3) as 

follows: 

, (1%) (x3, - 4 ) k  -%I2 XI, < d ;  sx3, 
d,' = xli 
otherwise 
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Therefore, xrj(k+l) and bJ(k+l) can be determined by Eqt. (14) 
& (15). A network representation of the above process is 
depicted in Fig. 3. 

tu 
Layer3 

'I,," s XI, X,,(O) 

x,, (0) x,, i xmx 

(XI, + x , , ) / 2  5 73, 5 x41 

XI, 5x2, 5 ( x , , + x 4 , ) / 2  

(XI, + x , , ) / 2  5 X6, 5 x7; 

,Y" b, s Ymx 

(3x,, + x 7 ; ) / 4 < x , ;  5(3x,, + x , , ) / 4 '  (20) 

'41 ' xS, ' (xC +x71)12 

4 dz d ,  d, d, 
Fig. 3: Network representation of the training process 

Forward Procedure 
Starting with a sets of normalized initial values, z,,(o) and 
%(o), at each iteration k, the sensor input d' vector is 

normalized and encoded into p,(k) ,  forj=I, ..., 243. Then p,(k) 

are fed forward to the network where E ,  g and the AFLS's 

where kr, (k - 1) = x,(k) - x , ( k  - 1) and a is positive 
number called the momentum constant. These two equations are 
called the General Delta Rule (GDR), in which the Delta Rule 
as in Eqt. (14) & (15) is a special case. Eqt. (21) can be 
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rewritten as a time series with index t which goes from an initial 
time 0 to the current time k, as given below: 

R, = 23 
xSi(0) = 183 

Eqt. (28) may be viewed as a 1st-order difference equation on 
the weight correction b w , ( k ) .  Hence, solving this equation for 
Ax, ( k ) ,  we have 

x,i(O) = 83 xZi(0) = 83 x>i(O) = 183 xai(0) = 183 
xgi(0) = 283 x,i(O) = 283 xmin(0) = 43 ~ ~ ( 0 )  = 

323 

Similarly, Eqt. (22) can be rewritten as 

From these two equations, the following observations can be 
made: First, the variation in h,  ( k )  and ultimately A ~ ,  ( k )  , 
represents the sum of an exponentially weighted time series. For 
the time series to converge, the momentum constant must 
satisfy the condition that 0 2 (a1 < 1 .  Second, when the partial 
derivatives, a@)/ ar, (t)  and &(t) / a, ( t )  , have the same 
algebraic signs between consecutive iterations, the 
exponentially weighted sums h r , ( k )  and ~y,(k) grow in 
magnitude. Thus, the momentum term tends to accelerate 
descent in steady downhill directions. Third, when the partial 
derivatives, a(t)/&(t> and a(t)/a, (I), have opposite 
signs, the exponentially weighted sums hr, ( k )  and AY, ( k )  
shrink in magnitude. Thus, the inclusion of this momentum 
term has a stabilizing effect on oscillations in signs. Fourth, the 
incorporation of the momentum term in the back-propagation 
algorithm represents a minor modification to the way in which 
the weights are updated, and yet it can have significant benefits 
to the learning behavior of the algorithm. It also has the ability 
of avoiding local minimum on the error surface. 

4. SIMULATION AND ANALYSIS 

The simulation is based on the EXPECTATIONS simulator 
reported in [SI. Learning is carried out in a restricted area 
populated with cylindrical static objects, where two additional 
views are supported. The first allows the human expert to view 
from the vehicle's when supervising the navigation. The second 
consists of controls buttons. Using this combination of views 
and control, the human expert may control the movement of the 
vehicle while inspecting its location with respect to the 
obstacles. 

At each navigation step, the vehicle's obstacle avoidance 
actions (vd and ABd) as a result of the manual control of the 
vehicle by a human expert, and the five distance sensor readings 
derived from a distance sensor simulator, are composed into 
two input-output data pairs: (d, vd) and (d, A @ ) .  These input- 
output pairs are utilized by the ALFA as described in this paper. 

Without losing generality, the radius of 23cm of a practical 
mobile robot and its ultrasonic range were used to determine 
dmjn and dmm, which subsequently determined Xmjn and xmM. 

Moreover, a constant velocity of 3 0 c d s  is assumed. This 
simplifies the whole simulation by having to consider the AFLS 
for A@j Only. 

The average elapsed time consumed by graphic rendering was 
about 0.1s when executing on an SGI Indy R5000 with IRIX 
6.2 operating system. Therefore, considering a possible on-line 
AFLS, a navigation step of 0.2s was used in the simulation. 
Given the maximum rotation velocity of the vehicle of 60 
degveeh, the minimum and maximum steering in a navigation 
step are -120 and 120, respectively. This means that the 
boundary values of the fuzzy sets for the steering angle (Fig. 2) 
areymjn=-0.2094 a n d y w 0 . 2 0 9 4 .  The initial value of b, is set 
by Eqt. (26) 

( j  - ')(Ym.x - Ymin) , forj=1..,243. (26) 
242 6, (0) = Y m i n  + 

The initial values of the other parameters used for the 
simulation are tabulated in Table 1 .  The convergence criterion 
for the simulation was .&I S23x 10-6, which is equivalent to the 
system's output error of 0.10. 

I I 
Table 1: Initial simulation parameters (unit: cm) 

In order to compare the learning performance of the AFLS, the 
fuzzy logic system without optimization, i.e. only tunes the 
value of b,, is considered as a Non-Adaptive Fuzzy Logic 
System (NFLS). Consider the Delta Rule given by Eqt. (14) & 
(1  5) ,  simulation based on the AFLS and the NFLS were carried 
out at different learning rate q for a input-output pair (d, 
A@$), where d=(46.7,  46.7, 159.2, 159.2, 79.2) and 
-0.2094, the number of iteration n when the convergence 
criterion was achieved is tabulated in Table 2. 

~ 

I 0.9 I 4 I 810 
n w 7 162 

I I 1 I Y Y  

Table 2: Performance comparison of AFLS and NFLS 

From lablc 2, a number of points are observed: ( 1  ) it is obvious 
that the ALFS converges exceptionally Isst, particularly for 
large 7. The NFLS was at best 140 times slower, and at worst 
256 timcs slowcr. (2) For this specific input-output pair, both 
the AFLS and the NFLS converge faster with larger learning 
rate '7. Many other input-output pairs have also been tested and 
similar results were obtained. 
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The learning curve (J versus n )  of these two systems at the 
learning rate 71’0.6 i s  studied in details in Fig. 4. For 
simplicity, only the firs1 40 iterations are shown in both cases. 
As seen in Fig. 4, the AFLS converges after 7 iterations, while 
the NFLS takes 1217 iterations for convergence. We can also 
observe that the convergence of the NFLS slows down rapidly 
after 5 iterations due to the fact that the descent on the error 
surface becomes very slow and small. As it is, the NFLS is very 
time consuming compared with the AFLS 

9.008-02 - - . - . 

8.00E-02 
7.00E-02 
6.00E-02 
5.00E-02 
4.OOE-02 
3.00E-02 
2.00E-02 

0 5 10 15 20 25 30 35 46l 

NLFS = Solid line; ALFS = Solid line with x 

Fig. 4: Learning curve of the ALFS and NLFS ( ~ 0 . 6 )  

For the Delta Rule (DR) algorithm and the General Delta Rule 
(GDR) algorithm in order to carry out a smooth search in the 
weight space, a small learning rate, q=0.2 and a small 
momentum constant, a=0.2 were used for the comparison. For 
the same input-output pair (d, AB$), where dI=(46.7, 46.7, 
159.2, 159.2, 79.2) anti -0.2094, simulations were 
conducted to verify each learning algorithm and the results are 
compared in Fig. 5.  

~ - - - _ _ ~ _ _  - 

- ~- __ __ 
~- ~. - __ _ _ _  _ _ _  - 

_ _ _ ~  

I 
-1 - _ _ _ _  _ _  

- - - - . - - _ - - 

n 
_-_- - - - -~ ~ 1 

Fig, 5: Learning curves of the three AFLS ( ~ 0 . 2 ,  ~ 0 . 2 )  

From Fig.5, it can be observed that the DR algorithm has the 
slower relative convergence speed. It approaches zero at n=8 
The GDR algorithm converges faster in that it approaches zero 
at n=5. For larger q, the convergence rate is expected to 
increase for both algorithms. Finally, it should also be noted 
that even for the DR algorithm, its convergence speed is two 
orders of magnitude faster than the NFLS. 

5. DISCUSSION AND CONCLUSION 

In this paper, an adaptive fuzzy logic system for obstacle 
avoidance has been presented. Instead of having the same 
manually determined input membership for all the inputs, this 
approach allows the parameters of the input membership 
functions and the rule base to be tuned, through the 
minimization of the error between the actual output and the 
desired output. In the error minimization, the steepest descent 
method was used to locate the global minimum in the error 
surface, from which the corresponding input and output 
parameters define the optimal input/output membership 
functions. Based on this, two learning algorithms have been 
considered: the Delta Rule algorithm and the General Delta 
Rule algorithm, The GDR is the most general form of the back- 
propagation approach, incorporating the learning rate and the 
momentum term in its equations. The DR is a special case 
without taking the momentum term into account. From our 
simulation trials, it is found that the AFLS using the DR as 
learning algorithm converges at some two orders of magnitude 
faster than a non-adaptive fuzzy system, at any learning rate. 
When comparing the AFLS using DR or GDR, the results 
indicate that the GDR converges faster than the DR algorithm. 
In the study presented in this paper, although the input 
membership functions are optimal, the major uncontrollable 
factor is the quality of the training data set. Comparing this with 
the reinforcement learning method discussed in 161, the 
resulting rule base offers collision-free navigation, but its 
learning is slow and the membership functions are not 
optimized. 
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