
Title An adaptive fuzzy approach to obstacle avoidance

Author(s) Yung, NHC; Ye, C

Citation
IEEE International Conference on Systems, Man, and
Cybernetics Conference Proceedings, San Diego, California,
USA, 11-14 October 1998, v. 4, p. 3418-3423

Issued Date 1998

URL http://hdl.handle.net/10722/46151

Rights

©1998 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

An Adaptive Fuzzy Approach to Obstacle Avoidance

N. H. C. Yung and C. Ye
Department of Electrical & Electronic Engineering

The University of Hong Kong
Chow Yei Ching Building, Pokfulam Road, Hong Kong SAR

ABSTRACT

Reinforcement learning based on a new training method
previously reported guarantees convergence and an almost
complete set of rules. However, there are two shortcomings
remained: first, the membership functions of the input sensor
readings are determined manually and take the same form; and
second, there are still a small number of blank rules needed to
be manually inserted. To address these two issues, this paper
proposes an adaptive fuzzy approach using a supervised
learning method based on back propagation to determine the
parameters for the membership functions for each sensor
reading. By having different input fuzzy sets, each sensor
reading contributes differently in avoiding obstacles. Our
simulations show that the proposed system converges rapidly to
a complete set of rules, and if there are no conflicting input-
output data pairs in the training sets, the proposed system
performs collision-free obstacle avoidance.

1. INTRODUCTION

The problem of mobile vehicle (MV) navigation particularly
through a dynamically changing environment is a challenging
one. The case of navigation through a static obstacle course is
more manageable than the dynamic case as obstacles and the
environment remain time-independent throughout. Many
solutions have been proposed in the past with reasonable
success, although real environments and situations are hardly
that simplistic. The case of navigation through a dynamic
obstacle is a lot more demanding in many ways. As the
environment may contain moving obstacles or its topological
properties may be changing, it has to be considered unknown
and time-varying, as in most practical environments. The crux
of the problem is how obstacle avoidance is performed.

Apart from those assuming a known environment, many
methods have been proposed to tackle the obstacle avoidance
problem utilizing on-line information acquired from
environment sensors. Of the various schemes proposed, the idea
of the reactive system stands out above the rest [l]. Its main
focus is to build a mapping from the perceived situations to the
correct actions and to refine the mapping until a goal is reached.
This approach seems logical in describing the navigation task
and much effort has been devoted to using neural network or
fuzzy logic to construct the situation-action relationship [2].
Between the two methods for constructing such relationship,
fuzzy logic seems promising as it deals with the various
navigation situations without requiring the construction of an

analytical model of the environment. When compared with the
neural network approach, it has an added advantage that each
rule of the rule base has an associated physical meaning and
deals with a specific situation. This makes it possible to tune the
rules by using expert knowledge. However, the way in which
the rule base is constructed becomes extremely important. This
is because real world environments are inherently complex, and
it is rather difficult to formulate a consistent set of rules for
tasks such as obstacle avoidance, even if expert knowledge is
readily available. For this reason, research effort has been
directed to how the rule base can be constructed correctly and
efficiently [3]. Overall, many rule bases constructed suffer two
limitations: consistency of the rules is hard to maintain and
tuning the rules is time consuming.

To tackle these, supervised learning methods using neural
networks have been proposed [4]. Unfortunately, these methods
require a large set of representative patterns to characterize the
environment when training the network, which contain no
contradictory input/output pairs. This problem is partially
resolved by using reinforcement learning. The reinforcement
signal ensures the input/output pairs are consistent, and allows
the rules to be tuned to some extent [SI. However, the
theoretical limitations of reinforcement learning inevitably
result in a slow convergence and incomplete rule base. The
issue of learning speed and convergence was dealt with by [6],
where a new training method for the reinforcement learning was
proposed. This method guarantees convergence and an almost
complete set of rules. However, there are two shortcomings
remained: first, the membership functions of the input sensor
readings are determined manually and take the same form; and
second, there are still a small number of blank rules (3 out of
243) needed to be manually inserted. The reasons are first, the
fuzzy sets determined manually for the input variables may not
be optimal, and second, the sensors should contribute
differently when avoiding obstacles. The fuzzy terms of very
near, near, and fur should ideally be determined through
learning rather than manually.

To address these two issues, this paper proposes an adaptive
fuzzy approach using a supervised learning method based on
back propagation to determine the parameters for the
membership functions for each sensor reading. By having
different input fuzzy sets, each sensor reading contributes
differently in avoiding obstacles. Given a fuzzy logic system
fk(d), our approach determines the parameters, xri and bj, such
that for a given input-output pair (A yd), where yd is the desired
output of the fuzzy system, the actual output of the fuzzy

0-7803-4778-1 /98 $1 0.00 0 1998 IEEE 341 8

system y converges to the desired output. The difference
between ya and yd is use'd to train the fuzzy logic system, f k (d) .
Our simulations show that the proposed system converges
rapidly to a complete set of rules, and if there are no conflicting
input-output data pairs in the training sets, the proposed system
performs collision-free olistacle avoidance.

2. ADAPTIVE FUZZY LOGIC SYSTEM

2.1 General Overview
As an extension to the re:search described in [6], let us consider
an Adaptive Fuzzy Logic System (AFLS) for obstacle
avoidance as depicted in Fig. 1 . The AFLS consists of two
almost identical five-input, single-output fuzzy systems, with
desired output (vd and A @) and feedback. The input variables
are the sensor readings, di for i=1,.5, while the control variables
are vu and ABa for obstacle avoidance.

At each learning step, two input-output pairs, (d , vd) and (d ,
A&) are provided, where d=(dl , ..., d5) is the sensor input
vector, vd and ABd are !.he desired velocity and the desired
steering angle for avoidance. For each input vector d, the AFLS
determines the output vu and AB, by fi(d) and fi(4
respectively. The differenlce between vu and vd is then used to
train the fuzzy logic system adaptively, i.e. to tune its rule base
and parameters for the membership functions of d, , until the
system error is below some pre-defined value. As the two fuzzy
logic systems take a similar form, our task can be reduced into
the design of a fuzzy logic system y=f(d), of which y stands for
either vu or AB, and f(d) is either f i(d) orjj(d). Taking the usual
approach, the design offi'd) involves six steps: (1) define the
membership functions for the sensor input and control output
variables, (2) fuzzify the input variables, (3) construct the rule
base, (4) cany out optimization through supervised learning,
(5) perform fuzzy inference, and (6) defuzzify the output
variables to obtain vu and AB,. Details of these steps are given
in the following sections.

2.2 Definition of the Membership Functions
The membership functions of the input and output variables are
illustrated in Fig. 2. In Fig. 2(a), di is the crisp value of each
input variable, which is bounded by the minimum value:
dmin=Rv+lmin and the marimum value: dmgx=Rv+lmax, where
Rv is the radius of the vehicle, lmin is the minimum detectable
distance by the sensors and I,, is the maximum detectable
distance. The crisp value O F di is fuzzitied and expressed by the
fuzzy sets: VNi, NRi and AFRl where they stand for very near,
near andfur, respectively. The subscript i denotes the fuzzy set

for the ith sensor reading. The parameters, xri for ~ 1 , ..., 7 , are

dmin<xmUxldmar, and denote the details of the membership
functions.

bounded by xmin and Xmm, for xmin= dmin and

(a) Input (b) Output
Fig. 2: Membership functions of di and y

With reference to Fig. 2(b), the output variable y denotes one of
the two actions of the vehicle: vu or AB,. Its upper bound and
lower bound are ym, and ymin, respectively. With three
linguistic values and five distance sensor inputs, the fuzzy rule
base has 243 rules. As a result, it requires 243 fuzzy sets, r j for
j=1, ..., 243, to represent the action spacey. These fuzzy sets r j
take the shape of the triangular membership functions of which
their centers b,, are also determined by the learning algorithm.
As the parameters, xri are to be tuned based on the error, e,
between vd and y , the different metric used by Xri and e must be
normalized first. In other words, the input di and the output y
must be normalized to 4 and J respectively by the following:

d, - =- d. -dmin ,

y = - - Y -Ymin . (2)

(1)
dnw -&in

Ymas -Ymin

Similarly, the parameters x,.i and b, are normalized to 2" and
6, , respectively .

2.3 Fuzzification of Normalized Input Variables
The membership functions of the fuzzy sets E,, m, and zi
can be described by:

(F3, -L7,)/(Z3, - q j) z,j s z sz3i
0 5 Isi < z,i 9 (3a)

P ~ , < 4 , , = 1
otherwise

-F2i)/(F4j -Z21) F2, 5 4 5 q i

-&)/(Z6i -F4i) Z4j < d i 5F6i
- > (3b)

10

otherwise

otherwise

2.4 Rule Base Construction and Fuzzy Reasoning
According to the definition of the fuzzy sets for the input
variables, the fuzzy rules are denoted by:

where Rj denotes thejfh rule;
the universe of discourse U?,

linguistic value of m, , m, or m, , and
jj in the universe of discourse U ,

Rj: IF L7, isD,, AND ... AND is D,5, THEN is c ,
denote the fuzzy sets for 2, in

R in the jrh rule, which take the

is the fuzzy set for
R in thejrh rule. As the@

341 9

rule R, can be represented as a fuzzy relation,

RI : D,l x x DJ3 x D14 x D,, -+ 9 the rule base can be
represented as the union of all the rules:

143 -
R="[D/~ x ZS,, x ir,, x o14 x D~, --f 51. (4)

1 4

Therefore, thejth rule, ~q is a fuzzy relation in the product

space, U - U _ , where U - = U - U - uJ4 uJ5 . Thus, the

rules can be implemented as fuzzy relations with their
corresponding membership functions. The membership value of
the j th rule, q can be denoted by (2 , ~) . Consider the

input 2' =(Jl',...,&), which can be treated as fuzzy singleton
=(q,,,,,~;) in the universe of discourse u., the fuzzy control

action, T can be inferred by Larsen's product rule of inference
as given below:

d v d dt d?

where * denotes a product operation. If Larsen's product
operation is applied to the fuzzy relations, the membership
value of 5 is calculated by

where ,,(a.) denotes the fire strength of the j'h rule for the
inputs a' = (al',...,&) , which is given by

PJ (2') = Puis,, (4')Puis,* (Jhjj, (24')Puis,5 (25') . (7)
It should be noted that the use of Larsen's product rule is to
ensure a continuous derivative of pJ (2') with respective to zn.

2.5 Defuzzification of Output Variables
In order to determine the crisp output action, y , from the fuzzy
control action, P' , first, defuzzification is required, which
follows by de-normalization using Eqt. (2). For the reason of
limiting the computing cost, the method of height
defuzzification is used.

3. SUPERVISED LEARNING

3.1 Learning Algorithm in Delta Rule Form
The output action in a de-normalized form is expressed as:

where 1-243 and 243 As y is determined by

and bj, Eqt. (8) can be solved by finding a set of xrr and
bj, such that for a given input-output pair (d', yd), the actual
output of the fuzzy logic system y is as close as possible to the
desired output, yd. This optimization is carried out on the mean-
square error as defined below:

y = f (d ') = h l g , (8)

h = z # , (d) b , g = s p , V) '
/ -I 1-1

(9)

where J is the cost function of the fuzzy logic system. For the
given value of yd, J is a function of Xrj and b~ Therefore, the
optimization becomes a search of xrj and bj on the error surface
that give a minimum J in the global sense. To do that, the
method of Steepest Descent (SD) is adopted. According to this
method, the parameters, Xri and b,, assume a time-varying form,
and move along the error surface with the aim of converging
them progressively toward the optimum solution. In principle,
such movement is in the direction of the steepest descent on the
error surface.

Let xyi(k) and bj(k) denote the values of the parameters, Xrj and
bj at iteration k by the SD method, respectively. In the same
way, the gradients of the error surface with respect to xrj and bj
at iteration k are denoted by df(k)/b?cri(k) and d J (k) / B j (k)
respectively. According to the SD method, the updated values
of xrj and bj at the next iteration k+l is calculated as

N k) > x,i (k + 1) = x,(k) - 17-
(k)

where q. 0 < 77 6 1, defines the learning rate and Eqt. (10) &
(1 1) are called the Delta Rule.

As y (hence J) depends on xri through h and g, while y (hence J)
depends on bj only through h. Therefore, by using the chain
rule, the gradients of the error surface with respect to xrj and bj
in general are given below:

here e (d9 is denoted by @ for simplicity. Substituting Eqt.
(12) into (lo), and Eqt. (13) into (l l) , we obtain the learning
algorithm for xrj and b, as follows

6, (k + 1) = b, (k) - v- y (k) - y d pJ (k) t (15)
g

where y(k) and @(k) denote the system's actual output and the
value of e at iteration k, respectively. Similarly,
a p , (k) / a r i (k) is the value of 8pj/Lkri at iteration k, which

is

where 3pD,,(,ji)/&e can be derived directly from Eqt. (3) as

follows:

, (1%) (x3, - 4) k -%I2 XI, < d ; sx3,
d,' = xli
otherwise

3420

Therefore, xrj(k+l) and bJ(k+l) can be determined by Eqt. (14)
& (15). A network representation of the above process is
depicted in Fig. 3.

tu
Layer3

'I,," s XI, X,,(O)

x,, (0) x,, i xmx

(XI, + x , ,) / 2 5 73, 5 x41

XI, 5x2, 5 (x , , + x 4 ,) / 2

(XI, + x , ,) / 2 5 X6, 5 x7;

,Y" b, s Ymx

(3x,, + x 7 ;) / 4 < x , ; 5(3x,, + x , ,) / 4 ' (20)

'41 ' xS, ' (xC +x71)12

4 dz d , d, d,
Fig. 3: Network representation of the training process

Forward Procedure
Starting with a sets of normalized initial values, z,,(o) and
%(o), at each iteration k, the sensor input d' vector is

normalized and encoded into p,(k) , forj=I, ..., 243. Then p,(k)

are fed forward to the network where E , g and the AFLS's

where kr, (k - 1) = x,(k) - x , (k - 1) and a is positive
number called the momentum constant. These two equations are
called the General Delta Rule (GDR), in which the Delta Rule
as in Eqt. (14) & (15) is a special case. Eqt. (21) can be

342 1

rewritten as a time series with index t which goes from an initial
time 0 to the current time k, as given below:

R, = 23
xSi(0) = 183

Eqt. (28) may be viewed as a 1st-order difference equation on
the weight correction b w , (k) . Hence, solving this equation for
Ax, (k) , we have

x,i(O) = 83 xZi(0) = 83 x>i(O) = 183 xai(0) = 183
xgi(0) = 283 x,i(O) = 283 xmin(0) = 43 ~ ~ (0) =

323

Similarly, Eqt. (22) can be rewritten as

From these two equations, the following observations can be
made: First, the variation in h, (k) and ultimately A ~ , (k) ,
represents the sum of an exponentially weighted time series. For
the time series to converge, the momentum constant must
satisfy the condition that 0 2 (a1 < 1 . Second, when the partial
derivatives, a@)/ ar, (t) and &(t) / a, (t) , have the same
algebraic signs between consecutive iterations, the
exponentially weighted sums h r , (k) and ~y,(k) grow in
magnitude. Thus, the momentum term tends to accelerate
descent in steady downhill directions. Third, when the partial
derivatives, a(t)/&(t> and a(t)/a, (I), have opposite
signs, the exponentially weighted sums hr, (k) and AY, (k)
shrink in magnitude. Thus, the inclusion of this momentum
term has a stabilizing effect on oscillations in signs. Fourth, the
incorporation of the momentum term in the back-propagation
algorithm represents a minor modification to the way in which
the weights are updated, and yet it can have significant benefits
to the learning behavior of the algorithm. It also has the ability
of avoiding local minimum on the error surface.

4. SIMULATION AND ANALYSIS

The simulation is based on the EXPECTATIONS simulator
reported in [SI. Learning is carried out in a restricted area
populated with cylindrical static objects, where two additional
views are supported. The first allows the human expert to view
from the vehicle's when supervising the navigation. The second
consists of controls buttons. Using this combination of views
and control, the human expert may control the movement of the
vehicle while inspecting its location with respect to the
obstacles.

At each navigation step, the vehicle's obstacle avoidance
actions (vd and ABd) as a result of the manual control of the
vehicle by a human expert, and the five distance sensor readings
derived from a distance sensor simulator, are composed into
two input-output data pairs: (d, vd) and (d, A @) . These input-
output pairs are utilized by the ALFA as described in this paper.

Without losing generality, the radius of 23cm of a practical
mobile robot and its ultrasonic range were used to determine
dmjn and dmm, which subsequently determined Xmjn and xmM.

Moreover, a constant velocity of 3 0 c d s is assumed. This
simplifies the whole simulation by having to consider the AFLS
for A@j Only.

The average elapsed time consumed by graphic rendering was
about 0.1s when executing on an SGI Indy R5000 with IRIX
6.2 operating system. Therefore, considering a possible on-line
AFLS, a navigation step of 0.2s was used in the simulation.
Given the maximum rotation velocity of the vehicle of 60
degveeh, the minimum and maximum steering in a navigation
step are -120 and 120, respectively. This means that the
boundary values of the fuzzy sets for the steering angle (Fig. 2)
areymjn=-0.2094 a n d y w 0 . 2 0 9 4 . The initial value of b, is set
by Eqt. (26)

(j - ')(Ym.x - Ymin) , forj=1..,243. (26)
242 6, (0) = Y m i n +

The initial values of the other parameters used for the
simulation are tabulated in Table 1 . The convergence criterion
for the simulation was .&I S23x 10-6, which is equivalent to the
system's output error of 0.10.

I I
Table 1: Initial simulation parameters (unit: cm)

In order to compare the learning performance of the AFLS, the
fuzzy logic system without optimization, i.e. only tunes the
value of b,, is considered as a Non-Adaptive Fuzzy Logic
System (NFLS). Consider the Delta Rule given by Eqt. (14) &
(1 5) , simulation based on the AFLS and the NFLS were carried
out at different learning rate q for a input-output pair (d,
A@$), where d=(46.7, 46.7, 159.2, 159.2, 79.2) and
-0.2094, the number of iteration n when the convergence
criterion was achieved is tabulated in Table 2.

~

I 0.9 I 4 I 810
n w 7 162

I I 1 I Y Y

Table 2: Performance comparison of AFLS and NFLS

From lablc 2, a number of points are observed: (1) it is obvious
that the ALFS converges exceptionally Isst, particularly for
large 7. The NFLS was at best 140 times slower, and at worst
256 timcs slowcr. (2) For this specific input-output pair, both
the AFLS and the NFLS converge faster with larger learning
rate '7. Many other input-output pairs have also been tested and
similar results were obtained.

3422

The learning curve (J versus n) of these two systems at the
learning rate 71’0.6 i s studied in details in Fig. 4. For
simplicity, only the firs1 40 iterations are shown in both cases.
As seen in Fig. 4, the AFLS converges after 7 iterations, while
the NFLS takes 1217 iterations for convergence. We can also
observe that the convergence of the NFLS slows down rapidly
after 5 iterations due to the fact that the descent on the error
surface becomes very slow and small. As it is, the NFLS is very
time consuming compared with the AFLS

9.008-02 - - . - .

8.00E-02
7.00E-02
6.00E-02
5.00E-02
4.OOE-02
3.00E-02
2.00E-02

0 5 10 15 20 25 30 35 46l

NLFS = Solid line; ALFS = Solid line with x

Fig. 4: Learning curve of the ALFS and NLFS (~ 0 . 6)

For the Delta Rule (DR) algorithm and the General Delta Rule
(GDR) algorithm in order to carry out a smooth search in the
weight space, a small learning rate, q=0.2 and a small
momentum constant, a=0.2 were used for the comparison. For
the same input-output pair (d, AB$), where dI=(46.7, 46.7,
159.2, 159.2, 79.2) anti -0.2094, simulations were
conducted to verify each learning algorithm and the results are
compared in Fig. 5.

~ - - - _ _ ~ _ _ -

- ~- __ __
~- ~. - __ _ _ _ _ _ _ -

_ _ _ ~

I
-1 - _ _ _ _ _ _

- - - - . - - _ - -

n
-- - - - -~ ~ 1

Fig, 5: Learning curves of the three AFLS (~ 0 . 2 , ~ 0 . 2)

From Fig.5, it can be observed that the DR algorithm has the
slower relative convergence speed. It approaches zero at n=8
The GDR algorithm converges faster in that it approaches zero
at n=5. For larger q, the convergence rate is expected to
increase for both algorithms. Finally, it should also be noted
that even for the DR algorithm, its convergence speed is two
orders of magnitude faster than the NFLS.

5. DISCUSSION AND CONCLUSION

In this paper, an adaptive fuzzy logic system for obstacle
avoidance has been presented. Instead of having the same
manually determined input membership for all the inputs, this
approach allows the parameters of the input membership
functions and the rule base to be tuned, through the
minimization of the error between the actual output and the
desired output. In the error minimization, the steepest descent
method was used to locate the global minimum in the error
surface, from which the corresponding input and output
parameters define the optimal input/output membership
functions. Based on this, two learning algorithms have been
considered: the Delta Rule algorithm and the General Delta
Rule algorithm, The GDR is the most general form of the back-
propagation approach, incorporating the learning rate and the
momentum term in its equations. The DR is a special case
without taking the momentum term into account. From our
simulation trials, it is found that the AFLS using the DR as
learning algorithm converges at some two orders of magnitude
faster than a non-adaptive fuzzy system, at any learning rate.
When comparing the AFLS using DR or GDR, the results
indicate that the GDR converges faster than the DR algorithm.
In the study presented in this paper, although the input
membership functions are optimal, the major uncontrollable
factor is the quality of the training data set. Comparing this with
the reinforcement learning method discussed in 161, the
resulting rule base offers collision-free navigation, but its
learning is slow and the membership functions are not
optimized.

6. REFERENCES
M. J. Schoppers, “Universal plans for reactive robots in
unpredictable environments”, Proceedings of the Tenth
International Joint Conference on Art$cial Intelligence, pp.

R. A. Brooks, “A robust layered control system for a mobile
robot”, IEEE Journal of Robotics and Automation, 2, pp.14-23,
1986.
E. Tunstel, “Mobile robot autonomy via hierarchical fiizzy
behavior control”, Proc. of 6 International Symposium on
robotics and Manufacturing, 2“d World Automation Congress,
Montpellier, France , 1996.
Prabir K. Pal and Asim Kar, “Mobile robot navigation using a
neural net”, Proc. of IEEE International Conference on
Robotics and Automation, pp. 1503-1 508, 1995.
H. R. Beom and H. S. Cho, “A sensor-based navigation for a
mobile robot using fuzzy Logic and Reinforcement Learning”,
IEEE Trans, Syst. Man Cyber., Vo1.25, N0.3, pp. 464-477,
1995.
N. H. C. Yung and C. Ye, “An Intelligent Mobile Vehicle
Navigator based on Fuzzy Logic and Reinforcement Learning“,
to appear in IEEE Transactions on Systems, Man and
Cybernetics, 1998.
D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagation errors”, Nature (London),
323, pp. 533-536, 1986.
N. H. C. Yung & C. Ye, “EXPECTATIONS - an autonomous
mobile vehicle simulator”, in Proceedings of IEEE International
Conference on Systems, Man, and Cybernetics, pp. 2290-2295,
1997

1039-1046, 1987.

3423

