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Abstract - In spatia1 hearing, complex valued 
head-related transfer function (HRTF) can be 
represented as a real valued head-related impulse 
response (HRIR). Using Karhunen-Loeve expansion, 
the spatial features of the normalized HRIRs on 
measurement space can be extracted as spatial 
character functions. A neural network model based 
on Von-Mises function is used to approximate the 
discrete spatial character function of HRIR. As a 
result, a time-domain binaural model is established 
and it fits the measured HRIRs well. 
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Neural Networks 

1. Introduction 

Extensive physical and behavioral studies have 
revealed that the external ear plays an important role in 
spatial hearing. The external ear provides directional 
amplification of the incident sound pressure level and 
also modifies the spectrum of the incoming sound 
according to the incidence angle of that sound. 
Direction-dependent transformation of the external ear 
is referred as head-related transfer function (HRTF) or 
head-related impulse response (HRIR) to acknowledge 
its primary acoustical importance. 

In virtual auditory space (VAS) applications and 
physiological study, HRTFs in continuous spatial 
locations are often desired. Kistler and Wightman [l] 
established a model based on principal component 
analysis and minimum-phase reconstruction. Principal 
component analysis (PCA) is applied to the logarithms 
of the HRTF magnitudes after the removal of direction- 
independent and subject-dependent spectral features. 
Chen [2 ]  hrther proposed a spatial feature extraction 
and regularization (SFER) model for the HRTFs. In 
this model the HRTFs are expressed as weighted 
combinations of a set of complex valued eigentransfer 
functions. Both the PCA model and the SFER model 
have focused on the frequency components and involve 
complex-valued or logarithmic computation, therefore 
their applicability in real time case is limited. 

In a previous work, Wu and Chan et a1 [3] 
presented binaural model based on the spatial features 
extracted from the measured HRIRs of a cat. In this 
model HRIRs are approximated as weighted 
combinations of a set of real valued basis fimctions. A 
simple linear interpolation algorithm is employed to 
obtain the modeled binaural HRIRs. The real valued 
operations and linear interpolation are very effective 
for speeding up the model computation in real time 
implementation. 

In this paper, we extend this model to the 
measured HRIRs of a KEMAR and develop a neural 
network model to establish the continuous human 
hearing space. 

2. Spatial feature extraction of the HRIR[3] 

The measured HRIRs come from the Media 
Laboratory of MIT[4]. The measurement was 
conducted on a mannequin KEMAR in an anechoic 
chamber. The spherical space around the KEMAR was 
sampled at elevations from -40" (40" below the 
horizontal plane) to 90" (directly overhead) in 10" 
increments. The azimuth increment sizes were chosen 
to maintain approximately 5" great-circle increments. 
In total, 710 locations were sampled. The impulse 
responses were obtained using a maximum length(ML) 
sequence measurement technique with a sampling rate 
of 44.1 kHz. 

Because these data were contaminated by various 
types of disturbances such as random noise and 
acoustic reflections, they must be preprocessed before 
computation. A denoising algorithm based on 
singularity detection with wavelet is adopted. The 
speaker response is also equalized by using the inverse 
filter of the speaker response. After that, the HRIRs are 
shortened to 128-point long and shifted along the time 
axis to remove the ITDs of different locations. 

Let hi denote the HRIR of location (e,,cp,), 
j=1,2;**P, P=710. The HRIRs are the function of both 
space and time and through spatial feature extraction 
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we can separate tlhe spatial features from the temporal 
features. Using Karhunen-Loeve expansion we derive 
orthonormal basis functions ofhi,  that is 

h j  = Qwj i- ha, 
M 

=Cwi(Qj,<pj)qj +ha, + ~ j  (1) 
i=l 

where the ha, is the space sample average and 

Q = [q, , q2 ,e * -q,v ] is an orthonormal transformation 
matrix whose columns are chosen as the eigenvectors 
of the time auto-covariance matrix R h . 

We call g 6=1,2,. . .M) the eigentranfer hnctions 
(EF). EFs only contain the temporal information of the 
HRIRs while the weight vector 

Wj = [w, (0 j ,CP ,i ), wz (0 j ,CP j 1,. * *, wM (0 j ,CP j )I 
only contain the spatial information of the HRIRs. We 
call w,. the spatial character functions (SCF) and w 
is calculated by 

w = Q T  (h, - ha,,) (2) 

In our model, the first 10 components can 
represent more than 95% of the variation in the 
normalized HRIRs. 

3. The neural network model of HRIR in 
continuous hearing space 

Because the SCF we obtained from the spatial 
feature extraction exists only in several discrete space 
locations, we hope: to find the SCF in an arbitrary space 
location. 

In practice, we can use several basis functions to 
approach the SCF in the desired position, that is 

;Y ( ~ , < p ) = ( ~ , f , ( 8 , c p ) + C z f , ( ~ , c p )  

+ .*. +%f” ((0 9 0 )  (3) 

In this case, a two-layer BP (Back-Propagation) 
network is developed to approach the SCF. The inputs 
to the network are the location in the space. The hidden 
layer unit gives thle corresponding output according to 
its input 8 and cp.  Here the Von Mises Function is 
used as the basis fimction[5]: 

VM(8 ,cp) =: exp{k[sincp sin p cos(8 -a) 

+coscp cos p -13) (4) 

where k,a,p are the parameters and a,OE[0,2n], 
p , q ~ [ O , a ] .  The output of the network is SCF. The 
connectivity of the network is indicated schematically 
in figure 1. 

The learning algorithm used here is as follows: 

Q ( n  + 1) = Q ( n )  +q(n)AQ 
+ P [ W )  - Q ( n  - 111 (5) 

where R = [wt T ,  aT , BT , kT 3, 
A n  =[AwtT ,A aT , A  BT ,AkT]. 

awti, = [ti - yi (e ,q )IVM (e ,cp ,a j ,  P j ,  k j  (6) 

A a j  = kj[sincp sin p j  sin@ -aj)] 
N 

x C {[ti - Yi (0 $9 )Iwti,j 1 
1 

(7) 

where tj is teacher and y j  is the output. Among the 

total 710 (e ,cp j )  data sets, 600 are chosen for 
training the net and the rest are used to test the 
generalization performance of the model. 

4. Results 

Figure 2 gives the 3D plot of the first component 
of SCF . Above is the SCF in discrete space locations 
and below is the network output of the SCF in different 
space locations. 

Table 1 gives the final error of the SCF and the 
reconstruction error according to these SCFs. 
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Rms error of the SCF 

Training sed Test set 

Table 1 
Rms error of the HRIR 
using the output SCF 

Rms error of the HRIR 
using original SCF 

Training set I Test set Total space positions 

Components 

of SCF 

0.0829 

0.1148 
1 2  0.0856 0.2483 0.2484 0.24 18 

0.1064 0.1792 0.1870 0.1640 1 3  

0.1118 

0.0822 

0.0661 

0.0402 

0.0393 

0.0337 

1 4  
0.1269 0.1352 0.1379 0.1127 

0.0821 0.099 1 0.1009 0.0728 

0.0722 0.0816 0.0848 0.0533 

0.0521 0.0758 0.0789 0.0464 

0.043 1 0.0673 0.0675 0.0368 

0.0408 0.0503 0.0539 0.0292 
1 9  

0.0521 I 0.0519 I 0.3001 I 0.3041 I 0.2978 I 

0.1024 I 0.1269 I 0.1352 I 0.1379 I 0.1127 I 

Output layer 

Hidden layer 

Input layer 

4 4 4 4 
Output layer 

Hidden layer 

Input layer 

‘ 1  

Figure 1 The neural network model 
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