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Abstract

Jackson's network of queunes model greatly simplifies the
performance analysis of telecommunication networks with
Poisson traffic arrivals and ezponential service times. [t
reduces the analysis of a network into the analysis of indi-
vidual communication links, each of which may be modeled
as an M/M/m queue. Motivated by the growing significance
of self-similar traffic in modeling broadband network traffic,
we propose a new network of gueues model for telecommu-
Our model resembles Jackson’s model
excepl that the arvival is self-similar and the service time
is deterministic. It captures the characteristics of mod-
ern high speed cell-based networks.

nication networks.

We hypothesize a re-
sult analogous to Jackson's Theorem, that cach node of this
network model behaves as a G/D/1 queue with self-similar
arrival. Based on this hypothesis, many network-wide per-
formance measures, such as the end-to-end delay, can be
cvaluated in a simple fashion. Qur hypothesis is strongly
supported by three facts, namely, the sum of independent
self-similar processes, the random splitting of self-similar
processes, and the output process of a deterministic service
time queue with self-similar inpul are all self-similar.

Keywords: Self-similar traffic, Jackson’s Theorem,
network of queunes.

1 Introduction

Traditional telecommunication traffic engineering
has been based on the assumptions of exponential dis-
tributions and Markovian models. The memoryless
properties such models possess lead to high model
tractability. Performance models based on these as-
sumptions have proved to be surprisingly successful.
The main reason is that these assumptions are actually
plausible in many practical situations. For instance,
the use of Poisson processes to describe call arrivals in
circuit-switched networks has been validated by empii-
ical studies. In the past twenty years, packet-switched
networks such as X.25, Frame Relay and Asynchronous
Transfer Mode (ATM) have become more and more
important. Traditional queueing analysis is continu-
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ally being applied on such packet-switched networks.
However, the validity of these Markovian assumptions
on traffic processes has not been verified against real
traflic data.

This situation has changed significantly over the
past few vears as many traffic measurements show that
actual traffic in various packet-switched networks can
be clearly distinguished from traffic generated from
traditional traffic models. In particular, it has been
demonstrated that these traffic exhibit so-called self-
similarity. These studies include investigations of high-
resolution Ethernet LAN traces [1, 2], Wide Area Net-
work (WAN) traffic[3], ISDN traffic (16kps)[4], VBR
video traffic[5, 6, 7] and many others. It has alsc been
shown in many of the above studies that Markovian
based models fail to predict the queueing performance
of systems with self-similar traffic. Traditional traffic
models tend to overestimate the system performance.

In [8], Tagqu et al. studied the underlying processes
which lead to self-similar traffic. They have shown
that the superposition of many on/off sources with
strictly alternating on- and off-periods and whose on-
and off-periods exhibit the Noak Effect (i.e., have high
variability or infinite variance] can produce aggregate
network traflic that exhibits the Joseph Effect (i.e., is
self-similar or long-range dependent). This explains
why many actual traffic patterns in high-speed net-
works show self-similarity. In fact, it is reasonable to
expect that self-similar traffic will constitute a major
component of the traffic in future broadband networks.
This has led many researchers to study a brand new
area in queueing theory, fractal queueing.

Since fractal queueing is still in its infant stage,
there is not much analytical result available in the lit-
erature. Moreover, most studies have focused on the
performance of a single gueue with self-similar arrival.
For example, Norros and his colleagues[9, 10, 11] have
developed some analytical results for queues driven by
Fractional Brownian Motion (FBM) arrival processes
(A simple mathematical model for self-similar random
processes). In this paper, we take one step further
and study networks of queues with self-similar traffic.




We propose a network model that resembles the Jack-
son’s network in classical queueing theory. Jackson's
network of queues model greatiy simplifies the perfor-
mance analysis of telecommunication networks with
Poisson traffic arrivals and exponential service times.
Tt reduces the analysis of the network into the analysis
of individual communication links, each of which may
be modeled as an M/M/m queue. In our proposed
model, instead of Poisson arrivals, we have self-similar
arrivals. Instead of exponential service times at each
node, we have deterministic service times since the
transmission time of a fixed size packet {called a cell
in ATM networks} is deterministic. We hypothesize a
result similar to Jackson’s Theorem. Our hypothesis is
based on three supporting facts regarding self-similar
processes. These three facts are: the sum of indepen-
dent self-similar processes is self-similar, the random
splitting of self-simitar process results in self-similar
processes, and the output process of a G/D/1 queue
with self-similar arrival is self-similar. Together with
the queueing performance of a single fractal queue,
our hypothesis provides a simple way of solving fractal
queueing networks. We believe this will be extremely
useful in the performance analyses of both current and
future high speed packet-switched networks.

This paper is organized as follows. Section 2 de-
scribes the basic definitions of self-similar random pro-
cesses. In Section 3, we present the legacy model for
telecommunication networks and then propose a mod-
ern version of this model. In Section 4, we describe our
hypothesis and its implication, together with the three
supporting facts. We conclude our paper in Section 5.

2 Self-similar random processes

We adopt the definition of self-similar random pro-
cesses in [12]. Let X = {X,,7 = 1,2,...} be a semi-
infinite segment of a covariance-stationary stochastic
process of discrete argument ¢, ¢+ € I, = {1,2,..}.
Let ¢ = EX,; and z, = X; — y. The process X and
x = {2} share the same autocorrelation funciion:

— E{.ITfiEi..'_k}

They also have the same variance, denoted by %, Now
define

r(k) (1)

i 1 m ) ;
x[™ = E;xu_l)mﬁ (2)

The process X(™ = {Xtr‘m),t = 1.2, ...} is called the

aggregated process of X. Let +{™) (k) and ¢™)? denote

the autocorrelation function and variance of X (™),
According to [12], a second-order self-similar pro-

coss can be defined as follows.

Definition: Process X 1s called exactly second-order

self-similar (e.s.0.8.8.) with parameter = 1 — 3/2,
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0 < g < 1, iff its autocorrelation r(k) is:

r(k) = gth) 2 SR =177 =20k + [k +117~7] (3)

D] el

There are several other equivalent definitions. One
of them relates the variances of the process and ifs
aggregated process:

o™ — gt # (4)

The discrete time Fourier Transform (DTFT) of g(k)}

is given by

A s AR NP3
[Eosin apd | F3dp

Hence, in the frequency domain. e.5.0.5.5. process has a

power spectrum f, (A). defined as the DTFT of o”r(k),

of the following form:

h{A)

(3]

o

[

fr(N) = o*h(A) (6)

There is another concept called asymptotically
second-order self-similarity. In [12], it is shown that

()
lim -—— = constant 7
[N A.—si [ ]
implies
] O.(m)‘_’-
lim — = constant (8)

m—os Y-

which furiher implies

lim #" (k) = g(k) (9)
M —r O
In addition, (9) is used as the definition of asymptot-
ically second-order self-similarity, In this paper, we
choose to define it using (8), which can be thought of
as a generalization of the definition of e.5.0.5.5. process
given in (4}.

Definttion:
second-order self-similor (a.s.0.8.8.)
H=1-73/2.0<2< 1. iff (8) holds.

Self-stimilarity manifests itself in a number of ways.
The three most common properties are {1} slowly de-
caying variance, (2) long range dependency, and (3)
1/ f-noise. Interested readers are referred to [13] and
the references there of.

There are many formal mathematical models for
self-similar random processes. Two representative
models arve the fractional Gaussian noise[14] and the
fractional autoregressive Integrated moving-average
{ARIMA) processes[15, 16]. Our regults in this paper
do nol depend on any specific mathematical models.
It applies to any second-order self-similar process.

Process X is called asymptotically
with parameter



3 A new model for telecommu-
nication networks

3.1 Legacy model for telecommunica-
tion networks

The legacy model for telecommunication networks
is best represented by the Jackson’s network of queues.
Jackson [17] studied an arbitrary network of queues, in
which there are N nodes, where the éth node consists of
m; exponential servers of service rates 1/y;, Moreover,
the external arrival to the ith node is a Poisson process
at rate 9;. Upon finishing service at node 7, a customer
will be routed to node j with probability r;;, or departs
the network with probability 1 — Zj\;l ;5. The overall
arrival rates to a given node ¢, denoted by A;, can be
determined by solving the following set of equations:

N

A=y + z AiTyi
=1

1=1,2,.. N (10}

The amagzing result that Jackson showed is that
each node in the network behaves as if it were an inde-
pendent M/M/m system with arrival rate );. Let the
states of the system be (k1, ks, ..., ky) where k; denotes
the number of customers at node ¢ and p{hy, ks, ... kn)
be the equilibrium probability of this state. Let p;(k:)
be the marginal probability distribution of having &;
cugtomers at node ¢{. Jackson’s Theorem states that
the joint distribution for all nodes in the network is
equal to the product of each of the marginal distribu-
tion. In other words,

plhi, ke, o kN = pr(k)pe(ka) - plhy)  (11)

where p;(k;),¢ = 1,2,..., N has the same distribution
as the number of customers in an M/M/m system with
arrival rate ;.

Jackson’s Theorem has been found very useful in
conventional queueing analysis and telecommunication
traffic engineering.

3.2 The self-similar network

Motivated by the fact that real network traffic
exhibits self-similarity, we propose a new model for
telecommunication networks, called the self-similar
network. Figure 1 shows a telecornmunication met-
work consisting of N nodes. The model is basically
the same as Jackson’s network. There are external ar-
rivals of packets to each node. Upon completion of
service at node i, a packet will be routed to another
ncde j with probability r;; so that the probability for
it to depart from the network is equal to 1 — Ef\;l i
However, there are several differences to capture the
characteristics of modern telecommunication systems.
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Figure 1: Proposed model for telecommunication net-
works.

Firstly, instead of external Poisson arrivals, we have
second-order self-similar arrival processes, which can
be clharacterized by the means =, variances ¢° and
Hurst parameters H. Secondly, instead of exponential
service time, we have deterministic service time since
the time needed to transmit a fixed-size packet {or cell
in an ATM network) is constant. Thus if ¥ = 1, we
have a G/D/1 system where the arrival process is gen-
eral but self-similar. We further assume that packets
are served in a FCFS basis.

4 The Decomposition Hypothe-
Sis

Based on three facts (to be discussed in the fol-
lowing) regarding self-similar traffic, we propose the
following hypothesis.

The Decomposition Hypothesis:  Each node of a
self-similar network behaves as a G/D/1 queue with
second order self-similar arrival.

This hypothesis provides an efficient way to eval-
uate many network-wide performance measures in a
modern Jackson network. Without the hypothesis,
there is currently no simple way of obtaining network-
wide performance for such a network. To illustrate
the utility of this hypothesis, consider the problem of
finding the end-to-end average delay T;; between node
i and node j in an N-node network. Let #;; denote
the average delay on the link between node ¢ and node
§, assuming there is such a direct link. Tj; can be
obtained by solving the following set of equations.

T = Z Piw (i + Thy) (12}
(i k)EA
where 4 denotes the set of all direct links in the net-
work.

The difficulty of the problem lies in the evalua-
tion of 1;;’s. But with cur hypothesis, ¢;; can be
ecasily obtained by assuming the particular link (i, 5)
to be a G/D/1 queue with self-similar arrival, whose




mean, variance and Hurst parameter are given. A
number of researchers have attempted to characterize
such individual link performance. See. for example,
[9, 11, 18, 19].

To see why we believe in the Decomposition Hy-
pothesis, we look into the underlying reasons for Jack-
son’s Theorem to hold. Jackson's Theorem iz basically
supported by three facts:

1. The sum of two independent Poisson processes is
Poisson.

2. The random splitting of a Poisson process is Pois-
son.

3. Burke’s Theorem[20]. which says that the steady
state output process of a stable M/M/m queue
with arrival rate A and service-time parameter u
for each of the m servers is in fact a Poisson pro-
cess with the same rate A. Burke also showed that
the output process is independent of any other
processes in the system.

We strongly believe that our hypothesis holds since
we also have the corresponding supporting facts for
the modern Jackson's network.

Fact 1 The sum of self-similar processes is self-
stmilar.

Fact 2 A self-similar process subjeci to random split-
fing is self-similar.

Fact 3 The ouiput process of a G/D/} queue with
self-sinalar arrval 1s self-similar.

We will discuss the above three facts in the following
subsections.

4.1 Fact 1l

The following theorem regarding the merging of self-
similar processes have been proved.

Theorem 1 Let X and Y be {wo uncorielated
€.8.0.5.5. processes with Hurst parameters H, and H,
vespectively. The process Z = X 4+ Y is es.0.55.
if and only of Hy = Hy,. in which case the Hurst
parameler of Z, H, = H,. If H, # H,. Z is
a.s.0.8.8. with H. = max{(H;, H)). If X and Y are
not e.5.0.5.5, but a.s.0.5.5. with Hurst parameters H,
and H, respectively. Z is a.s5.0.s.5. with Hurst pa-
rameter H, = max(Hy, Hy)f21] If X and ¥ are
€.8.0.8.8. OF .5.0.5.5. processes which are correlated in
such a woy that cov(X;, Yipr) = cg(k) with parameter
Bey, where ¢ 18 a positive constant and g(k) i defined
as in (3}, then Z is a.s.o.s.s. with Hurst parameter

H. = max(H:, Hy, H.y), where Hyy = 1 — 3,,/2[22].
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Figure 2: Cell-by-cell random splitting policy.

4.2 Fact 2

In [21], the effect of splitting a self-similar process
using the independent splitting operation is studied.
With independent splitting, a process X, is split into
two subprocesses ¥; with probability p(0 < p < 1), X}
becomes Z; with probability 1 — p. It is shown in this
work that:

Theorem 2 If X, is c.s.0.5.5. with parameter H,
then the splitted processes Yy and Z; are not €.8.0.8.5.,
but a.5.0.s.5., with the same pavameters H. If X, s
a.5.0.5.8. with parameter H. then the splitted processes
Yi and Z; ave also a.s5.0.5.5. with the same parameters
H.

We consider another splitting policy. called the celi-
by-cell random splitiing policy. Suppose X = (X, 1 =
0,1,2...) represents an ATM traffic stream, with X,
being the number of cells at time ¢, In this splitting
operation, each cell of Xy has a probability p of going
to a splitted stream Y, independent of any other cells.
Figure 2 illustrates the case of two-way splitting. Our
result applies to the general situation of multiple-way
splitting.

We are able to show that Theorem 2 is true under
celi-by-cell random splitting[22].

The splitted processes under both splitting policies,
Lhowever, are not uncorrelated. The cross-covariances
between ¥ and Z in both cases are given by{22]:

cov(Ye, Zegpr) = p(1 — pyor(k) (13)

where o2 and r(k) are the variance and autocorrela-
tion function of process X respectively. This and the
facl (see Theorem 1} that self-similar processes corre-
lated in the form eg(k) merge to self-similar process
strongly suggest the possibility that any two processes
in our network model are either uncorrelated, or they
are correlated i the special form of cg(k).

4.3 Fact 3

Fact 3 characterizes the output process of a deter-
ministic service tinie queue with self-similar input, as
itlustrated in Figure 3.

We found it convenient to work In the frequency
domain when dealing with the characteristics of the
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Figure 3: A deterministic service time queue with self-
simtlar input.

output process. The definition for e.s.0.8.5. processes
is given in (6).

It 1s well known that a queneing system is generally
nonlinear. However, the study in [23] revealed that the
input/output relationship in a certain low frequency
band behaves linearly or very nearly so. This is identi-
fied by a coherence spectrum of approxima.telj—' oneina
low frequency band. In other words, the low frequency
traffic stays intact as it passes through a queueing sys-
tem. Although their work is based on MMPP/M/1/KK
queues, our numerical study[22] indicates the same re-
sult for single server queues with self-similar arrivals
and deterministic service time. Therefore, we assume
that the power spectral density of the output process,
fy(A), to be of the following form:

Fe (M)
q(A)

[A] < A

Ae < |A] < 1/2 (14)

fn={

where fr{A) is the power spectrum of the input pro-
cess, A; 18 some constant in the interval (0,%), and
¢(A} is a bounded function characterizing the high fre-
quency component of the output power spectrum. We
are now ready to prove an important result.

Theorem 3 If the mput process X of a deterministic
service time queue is e.s.0.6.8. with parameler H =
1 — /2, and the power spectrums of the input and
oulput processes are related us described in (14), then
the output process is a.s.0.5.5. with the same Hurst
parameter.

Proof: The power spectrum of the aggregated out-
put process ¥ ™) is given by:

(=]

U0y = Y By

k=—o0

y:ﬂ }eAjET(/\k

(15)
where y; = Y: — py is the centralized version of Y;.

It can be shown[22] that this is related to fy(}) as
follows:

s 9 L% Adn
(migy) = S A Su(55) 16
7 m3 n:;ET sin’ w(—*j};") (16)
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Since X is e.5.0.8.5., fo(A) is equal to o?A{A) given
in (6}, so,

>

A+ n A+ n

o ] L
i

A+n A
)= fl(
m T

+ 1 .9
—csin°w
A —)

(17)
for |A—jﬂi| < A¢, or equivalently, for n € ([—mA, —
Al, [mAc — Al), where ¢ 1s a positive constant.

Hence,
. Ao -
) sin 7w EMZ ! i |A +n P
I —
m=7 ma-#& m
n={—mA.—A] £=-o00
L=] ‘
5 q( )\T-;n )
1.2 A4n
n=[mA.—~ A+l sl 7'—( m )
lmAe—2] co
= esin®#®) Z Z [A+n+mé3 4
n=f{-mi.—Ald=—00
25i112 ﬂ')\( E ‘I(A_:Tn‘} )
m3=# sin® m(242)

n={mAio~Al+1

Letting m go to infinity, the second termn goes to
zera since both ¢(A) and 1/sin® n("—;)"]ﬁ) are bounded,
and there are at most m/2 terms in the sum. For the
first term, all terms in the second summation go to
zero except those for which £ = 0. Besides, the limits

of the first smmmation go to +oo. Thus,

m A e ¥ pt oy
nqlgx;dv = csin” 7 Z A4+ a5 = h(A)
n=-oc )
(18)
where ¢’ i3 another constant. Taking inverse DTFT on
both sides and setting k = 1, we arrive at!,

{m)2
lim % =
m—=os T Ii4

(19)

That is, ¥ is a.s.0.8.s.

1-3/2.

with Hurst parameter H =

QED.

We are currently working on the corresponding re-
sult when the input process is a.s.0.s.s. instead of
e.5.0.8.5. Preliminary study shows strong evidence that
the statement also holds for a.s.0.s.8. arrivals.

1 Assuming the uniform convergence of the function

f;m)()\)eﬂ’r)‘k such that we can exchange the order of limit
and integration.




5 Conclusion

Motivated by the fact that future network traffic
15 self~similar and its queueing performance is signif-
icantly different from what conventional Markovian
type models predict, we proposed a model for telecom-
munication networks with self-similar traffic and de-
terministic service times. This model is similar to
Jackson’s network of guenes model in classical queue-
ing analysis. We have hypothesized a result analo-
gous to the Jackson's Theorem. Our hypothesis is
strongly backed by three facts, namely, the sum of in-
dependent self-similar processes is self-similar, the ran-
dom splitting of self-similar processes are self-similar,
and the output process of & G/D/1 queus with self-
similar input is self-sinular.  With our hypothesis.
many network-wide performance measures such as the
end-to-end delay can be obtained in a much simpler
fashion. Each node can be considered separately as
a G/D/1 queue with self-similar arrival. whose mean,
varialice and Hurst parameter can be determined. We
believe that our work greatly simplifies the perfor-
mance analysis of future packet-based networks.
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