
Title EXPECTATIONS - an autonomous mobile vehicle simulator

Author(s) Yung, NHC; Ye, C

Citation Proceedings Of The Ieee International Conference On Systems,
Man And Cybernetics, 1997, v. 3, p. 2290-2295

Issued Date 1997

URL http://hdl.handle.net/10722/46068

Rights Creative Commons: Attribution 3.0 Hong Kong License

EXPECTA - An Autonomous Mobile Vehicle Simul

N. H. C. Yung and C. Ye
Department of Electrical and Electronic Engineering

The University of Hong Kong, Pokfulam Road, Hong Kong

ABSTRACT
This paper describes a fully integrated mobile vehicle
simulator - EXPECTATIONS. The structure of the
simulator is one of modular and object-oriented, where
the virtual environment, static and dynamic objects and
their interactions are hierarchically constructed. It
supports 2D/3D real-time graphic rendering of the
composite environment, which can be visualized on
multiple X-windows in a time synchronized manner, in
which vehicle or object movement can be animated in
accordance with the calculation of the algorithms written
in C/C++. Algorithms such as path planning, behavior
learning, collision avoidance and navigation strategies
can be ‘plug-and-play’ easily through the so called
Action Decision Interchange concept. Apart from
providing a realistic visualization tool for AMV
development, it also supports fast algorithmic study and
development, and the knowledge learnt through the
simulation may potentially be used by the physical
vehicle in real operations.

1. INTRODUCTION
Autonomous Mobile Vehicle (AMV) research over the
past two decades has seen rapid advancement in both
theory and applications of AMV in areas ranging from
flexible manufacturing, fire fighting to highway
automated navigation. Since the late 60’s to early ~ O ’ S ,
many prototypes have been developed, for example, the
JPL Planetary Rover [l], Navlab & Neuro-Nav [2,3] of
CMU, MELDOG of MITI [4], KAMRO [5], of which
visual and non-visual sensors were used for signal
acquisition; artificial neural nets and fuzzy logic were
used for control, path planning and navigation [6] . Apart
from a small number of outdoor cases [7], most of the
AMV development have been for indoor applications.

Concurrently, there is an increasing amount of activities
in learning and studying AMV characteristics and
behaviors through simulation [S,9] which aims at widen
the scope of AMV research beyond physical
experimentation. Th is computer-aided approach provides
a more flexible platform for AMV programming, testing
and debugging. A common practice in AMV simulation
is to perform path planning [lo] and collision avoidance
[11,12] in an environment model. However, such
simulations are offen crude, one-off and custom-made.
As physical experiments are more restrictive, expensive
with lower error margin; and it is unrepeatable in some
case, the use of simulation and visualization tools at the

onset should be considered as an essential and integral
part of AMV development. An obvious choice here is
the Virtual Reality (VR) technology. From the point of
AMV navigation, this technology provides possibilities
for several applications, such as using Virtual
Environment (VE) for off-line knowledge acquisition,
learning /training, teaching and planning. Undoubtedly,
the VR technology in AMV is one of the most timely
and exciting research areas. However, applying VR in
navigation studies is not without problems. For instance,
real AMV and sensor behaviors are often extremely
complex which are hard to be modeled accurately; and
real environment consists of numerous objects having
high degree of variability. In order to reap the benefit of
VR, we must establish our understanding of how VE
knowledge relate to real world environment and how this
man-made and idealized knowledge can be interpreted
and used by the physical AMV when tackling real world
navigation.

This paper describes a fully integrated mobile vehicle
simulator - EXPECTATIONS. The structure of the
simulator is one of modular and object-oriented, where
the virtual environment, static and dynamic objects and
their interactions are hierarchically constructed. It
supports 2D/3D real-time graphic rendering of the
composite environment including tables, chairs, walls,
humans, other AMV and etc., which can be visualized on
multiple X-windows in a time synchronized manner, in
which vehicle or object movement can be animated in
accordance with the calculation of the algorithms written
in C/C++. Algorithms such as path planning, behavior
learning, collision avoidance and navigation strategies
can be ‘plug-and-play’ easily through the so called
Action Decision Interchange concept. Apart from
providing a realistic visualization tool for AMV
development, it also supports fast algorithmic study and
development, and the knowledge learnt through the
simulation may potentially be used by the physical
vehicle in real operations.

The organization of this paper is as follows: Section 2
overviews the simulator platform; Section 3 describes
the graphic rendering aspects of the simulator; Section 4
explains how the virtual environment, vehicle, sensors
and objects are modeled; Section 5 outlines the action
decision interchange concept and how it works; Section
6 presents a case study and depicts results of the study;
and this paper is concluded in Section 7.

0-7803-4053-1/97/$10.00 @ 1997 EEE 2290

Fig. 1 Schematic diagram of the simulator

2. SYSTEM OVERVIEW
The architecture of the simulation platform is depicted in
Fig. 1. The simulator is developed on the SGI IlUX@ OS
and OpenInventor@ (Trademarks of Silicon Graphics Inc.)
platform. There are three modules at the system level:
Graphic Rendering and Control Module (GRC), Virtual
World Module (VWM) and Action Decision Module
(ADM). The GRC supports the 2D/3D real-time
rendering of the VE, camera views and textual display on
time synchronous multiple X-windows, and the control of
the simulation sequence.

The role of the VWM module is to assemble the virtual
world from the VE and available objects, and to ensure
the correctness of the created world. In essence, the
environment is represented by three levels of abstraction.
The frst level is where all the available details of the VE
is described and represented. The second level is a
simplified model of the first level for coarse localization
and estimation of motion. The third level represents a 2D
view of the virtual world map for path and contingency
planning purposes. This three-tier hierarchy gives a
degree of granularity according to the type of actions
required. For instance, a third level map is often sufficient
for path planning, where speed is critical. A second level
representation is good for more detail route estimation,
where visualization and object identification are best
performed at the first level.

The role of the ADM is to provide the decisions made for
the dynamic objects in the VE at each time step. These
decisions are translated via the Action Decision
Interchange (ADI) into actions for the GRC. The sensor

decision functions may be studied and assessed. As
physical AMV may be modeled and it's actions
simulated, knowledge acquired through this concept may
be used as rules and guidelines in real-world AMV
navigation.

3. GRAPHIC RENDERING & CONTROL
Openlnventor is an object-oriented 3D graphics tool built
on top of OpenGL which supports a Scene Description
Language, C/C++ and an *.iv ASCII file format. It is
designed to permit users to focus on creating scene
objects that can be collected in a scene database for
viewpoint-independent rendering. Its programming model
based on the scene database reduces programming time
and extends 3D programming capabilities. Together with
a rich set of objects already defined in Openlnventor,
scenes can be easily created [131.

In principle, a scene is a hierarchical collection of nodes
and associated attributes. The nodes are basically objects
that represent 3D shape, property, or group. Once a scene
graph is created, it can be attached to a scene database
which is a collection of one or more scene graphs and
objects. Inventor programs create or read their own copies
of scene database each time they execute. Fig. 2 depicts a
scene graph in the simulator.

To perform behavior animation, the Openlnventor Engine
object class can be used. Using the behavioral engines
with data sensors and time sensors, animation objects may
be created. By connecting the Calculation Engine to the
Translation Node and Orientation Node of an object, the
object can be moved around in the scene. -

inputs, camera views and etc. are then returned via the
AD1 for further decisions. Using this methodology, real-
time simulation and visualization of the event as it
happens becomes possible and the performance of

To enable visualization of events, Openlnventor also
supports the creation (of multiple view points. In
EXPECTATIONS, a number of view points can be

229 1

specified. The usual two are the AMV camera view and
the 2D plan view. Besides the real-time 3D rendering
capability, key-entry and display of position and
orientation information can also be displayed. As far as
this is concemed, a field sensor is attached to the position
field of the viewer's camera. This sensor then responds to
the changes in the attached field and obtains the camera
position and orientation. It then displays the information
through the use of Text nodes. The node graph of the
AMV camera view is depicted in Fig. 3.

0 Root Separator v

Lighting Static Objects Separator ' VE of CYC Bulldiug

T r m 8 Node <> L A 2
Rotshon Node h f 0 ~ g Obj&
r--

~~

1 output

' IntpUt 14 1 Output L--- i-

i- -, 1 7 -

J 1 lntpnt I4
i Rotalion

Cal Enpte Real Time Tranrlatlon
Cd Engine

Fig. 2 A VE scene graph in EXPECTATIONS

The top view of the VE is generated using the same
method, except that the orthographic projection is used.
As both views are displaying the same event, the two
views must be time synchronized when performing the
rendering. This is achieved by using the Motif-compliant
form widget to lay both graphics rendering components
inside the same X-window. This allows both views to be
synchronized and displaying the same event.

Render Area lor U"

I

Entire VE

cnmPo~Info cnmRotInfo LsestlonNmne

Fig. 3 Node graph of the AMV camera

4. VIRTUAL ENVIRONMENT

4.1 Environment Model
The VE used in this simulator is the floor plan of the
CYC Building of our university. This floor plan file was

originally in 2D where a third dimension (height) was
introduced to create a 3D VE for AMV view. A number
of different VE were then complied into the Virtual
Environment Library and can be invoked separately, or in
some case, for building a more complex one. Fig. 4
depicts two views of the Sh floor VE mentioned above.

Fig. 4 (a) Virtual environment of the C Y C 5th floor

Fig. 4(b) Plan view of the C Y C Sh floor

4.2 Object Model
The 3D objects in the simulator are created from
primitive shapes such as cubes, spheres and cones which
are described by scene graphs. This includes the static
objects such as chair, table, bookshelf and computer; and
dynamic objects such as robot, AMV and human. These
objects are collected in Object Library together. In order
for these objects to be integrated with the VE, the
dimensions of the objects must be measured in the same
SI unit as that of the environment and of the same ratio,
that is, all lengths are measured in millimeters. Further,
the integration is performed by inserting the separator
nodes of the objects to the VE and then translating them
to the correct location. Some of these objects are depicted
in Fig. 5.

2292

ro t Sepa tor 0
MO ing A V !Separator 0

Fig. 5 Object models

4.3 Vehicle and Sensor Model
The AMV models are basically the same as the static
object models except that each vehicle has a list of
attributes such as maximum velocity, maximum
acceleration/deceleration, among others, attached to it.
When a vehicle is inserted into the VE, it’s associated
attributes are made available to the simulator. Moreover,
the insertion of a vehicle into the VE is different from the
static objects because of the dynamic nature of the AMV.
In order to make it moves in the virtual world, the
behavior animation using timer sensors and calculator
engines must be used. Fig. 6 depicts an AMV with a
camera at the top and light sources at the top and sides
and three wheels. The scene graph for animating the
moving of the AMV is given in Fig. 7.

AM Trans1 ilon A VRot ti00 Am nom0 Mobile Vehicle 0 ,--o 0
A -

4 output
I c - l

I input b-,
1- Tu;&-1 AMVRotailon c- ~- ,fFl
c-_ L;- __ j4
AMY Translation

Cal Engine

1 Cal Enginie

- ---A

thetacounter Engine
mal Time

Fig. 7 Calculator engine for AMV animation

The sensor models considered for the simulator are
classified by their function as dead reckoning sensors,
such as odometer, optical encoder; heading sensor such as
gyroscope and geomagnetic sensors; and obstacle
detection sensors such as ultrasonic sensor, laser and
radar. In addition to these, two visual sensors, the
perspective camera and orthographic camera were also
modeled. To model a vehicle with sensing capabilities, a
selection of these sensors are first combined with the
vehicle. This combined model is treated as one model
when integrated into the VE. A camera view of the VE is
depicted in Fig. 8.

Fig. 8 A camera view of the VE

5. ACTION .AND DECISION
The ADM supports two fimctions: interchange of actions
and decisions between the GRC and the algorithm making
the decisions; and the algorithms. The AD1 plays two
roles, of which the first one is to convert the decisions
made by an algorithm into the corresponding
Openlnventor commands that are subsequently
implemented in the VE. Second, it also converts the
sensor inputs from the VE into relevant data structures

2293

that can be passed back to the algorithm for making its
future decisions.

For instance, let us assume one of the AMV-A in the VE
is employing a fuzzy logic collision avoidance algorithm
for its tactical navigation. At each time step, distance
measurements of objects in the vicinity of AMV-A are
taken by the ultrasonic sensors equipped on AMV-A.
These distance measurements are then transmitted from
the GRC through the AD1 to the collision avoidance
algorithm written in C. Based on this information, the
collision avoidance algorithm makes the action decision
for AMV-A for the next time step, which is then
transmitted via the AD1 back to the Calculator Engine in
the simulator to enable the engine to calculate the correct
translation and orientation of AMV-A in the VE. The
same AD1 mechanism is employed for all the algorithms
supported in the ADM.

6. NAVIGATOR IN THE VE
In this case study, the neural/fuzzy based navigator
proposed in [14] was adopted to demonstrate how the
proposed simulator can be used as a platform for
verifying and tuning navigation algorithm as well as
visualizing the navigation event in the VE.

- h AMV i I

tted line-path determine by different navigation algorithms
id line-shortest path determine by Visibility Graph Method

Fig. 9 Navigation in the DIP lab

The VE is chosen to be the DIP lab on the Sh floor of the
CYC Building. Static objects such as tables, chairs,
computers and bookshelves in the VE were arranged as
one would for a laboratory. Five dynamic objects apart
from the operating AMV (A) were inserted into the VE
randomly with a robot sitting on a chair, three humans at
the open space, and another AMV (B) parked behind the
robot. The zoom-in plan view of the VE is depicted in
Fig. 9. A navigation task can be specified by entering via
the mouse or keyboard the start location (& heading
angle) and goal location. After the task was defined, the

navigator began with the acquisition of ultrasonic sensor
distance measurements via the ADI. Based on the
measurements, the navigator made fuzzy decision on the
appropriate actions. These values were converted into
Openlnventor commands that moved AMV-A towards
the goal. This action-decision process continued until the
goal was reached. From start to finish, one X-window
showed the plan view of the VE and all its contents, while
another X-window displayed the camera view of AMV-
A. As these two windows were time synchronized, the
action-decision sequence may be studied carefully. For
instance, the speed of the navigation, acceleration/
deceleration, steering angle, path calculated and obstacle
avoidance actions can all be studied as the event unfolds.
In addition, the paths of using different navigation
algorithms may also be recorded and compared with an
ideal path. The visualization of the event from AMV-A
camera is shown in Fig. 10 where (a) depicts the view just
before entering the lab; (b) depicts the view at p, and (c)
depicts the view midway during the navigation.

Due to the large amount of information provided by the
EXPECTA TlONS simulator, the navigation algorithm was
tuned and refined, and performance analysis was
conducted by changing the number of obstacles (objects)
inside the laboratory and by comparing the paths
determined by different algorithms, or under different set
of parameters. As a result, the navigator achieves better
performance and adaptability.

7. CONCLUSION
In conclusion, a fully integrated and realistic virtual world
simulation platform - EXPE CTATlONS has been
developed. Basic on the Openlnventor platform, it offers
real-time graphic rendering of the virtual world and
visualization of events and supports direct ‘plug-and-
play’ of navigation and decision algorithms written in
C/C++. This structure enables fast algorithm development
and tuning, as well as detailed study of the dynamics and
behaviors of AMV in known or unknown environments.
Besides, the rules and knowledge derived from the
simulator can potentially be used for navigation purpose
in the real world. The case study of navigating in an
indoor VE proves that the simulation methodology can
effective be used for its intended purpose.

Future directions of this research includes first, extending
the VE and object library; second, refining the VE and
object descriptions for more realism; third, incorporating
more algorithms to test out the capability of the
simulation; and fourth, structuring the knowledge and
information through the simulation which may be readily
used by a physical AMV.

8. REFERENCES

[l] U. Rembold & P. Levi, “Sensors and control for
autonomous robots”, Intelligent Autonomous
Systems, 1987, Section 4.

2294

[3 1

C. Thorpe, M. H. Herbert, T. Kanade & S. A.
Shafer, “Vision and navigation for the Camegie-
Mellon Navlab”, IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. 10, No.3, pp. 362-
373, May 1988.
M. Meng & A. C. Kak, “NEURO-NAV: a neural
network based architecture for vision-guided mobil
robot navigation using non-metrical models of the
environment”, Proc. Of the 1993 IEEE/RSJ
International Conf. On Intelligent Robots and
Systems, pp.750-757, 1993.
S. Tachi & K. Komoriya, “Guide dog robot”,
International Symposium on Robotics Research,
V01.2, MIT press, pp.333-340.
J. Zhang & P Bohner, “A fuzzy control approach
for executing subgoal guided motion of a mobile
robot in a partially-known environment”, Proc. Of
the 1993 IEEE/RSJ International Conf. On
Intelligent Robots and Systems, pp.545-550, 1993.
N. H. C. Yung & W. K. Tsang, “On the current
state-of-the-art research in autonomous mobile
vehicledrobots”, Research Report #EEE9500 1-
HCY/WKT, Department of Electrical & Electronic
Engineering, The University of Hong Kong, 1995.
H. Ishiguro, K. Nishikawa & H. Mori, “Mobile
robot navigation by visual sign pattems existing in
outdoor environment”, Proc. of the I992 IEEE/RSJ
Int. Con$ On Intelligent Robots and Systems, pp.

K. Kimoto & S. Yuta, “A simulator for
programming the behavior of an autonomous
sensor-based mobile robot”, Proc. of the 1992
IEEE/RSJ Int. Con$ On Intelligent Robots and
Systems, pp. 1431-1438.
T. Skewis and V. Lumelsky, “Simulation of
Sensor-Based Robot and Human Motion Planning”,
Proc. of the 1992 IEEE/RSJ Int. Conf On

636-64 1.

Intelligent Robots and Systems, pp. 933-940.-
[lo] C. K. Choi et al, “Dynamic Path-Planning

Algorithm of a Mobile Robot Using Chaotic
Neuron Model”, Proc. of the 1995 IEEE/RSJ Int.
Con$ On Intelligent Robots and Systems, pp. 456-
461.
A. Zelinsky et al, “Using Augmentable Resource to
Robustly and Purposefully Navigate a Robot”,
Proc. of 1995 IEEE Int. Con$ On Robotics and
Automation. pp. 2586-2592.
B. J. A. Krose and J. W. M. Van Dam, “Adaptive
State Space Quantization for Reinforcement
Learning of Collision-free Navigation”, Proc. of the
1992 IEEE/RSJ Int. Con$ On Intelligent Robots
andSystems, pp. 1327-1332.
Josie Wemecke, Open Inventor architecture Group,
“The Inventor Mentor”, ISBN 0-2 1-62495-8,
Addison Wesley Publishing Co., 1993.
N. H. C. Yung and C. Ye, “An intelligent navigator
for mobile vehicles”, Proc. of International
Conference on Neural Information Processing, pp.
948-953, 1996.

2295

Furniture$ another AMV HB:I ’ H B l Hb2 Robot
computer

Fig. 10 (b) Camera view at p,

