
Title Parallelization of the H.261 video coding algorithm on the IBM
SP2(R) multiprocessor system

Author(s) Yung, NHC; Leung, KK

Citation
The 3rd International Conference on Algorithms and
Architectures for Parallel Processing, Melbourne, Vic., Australia,
10-12 December 1997, p. 571-578

Issued Date 1997

URL http://hdl.handle.net/10722/46066

Rights

©1997 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

571

PARALLELIZATION OF THE H.261 VIDEO CODING ALGORITHM ON
THE IBM SP2@ MULTIPROCESSOR SYSTEM

N. H. C. Yung and K. K. Leurig
Department of Electrical & Electronic Engineering

The University of Hong Kong, Pokfulam Road HONG KONG
Email: nyung@eee. hku.hk

In this paper, the parallelization of the H.261 video coding algorithm on the IBM SP2
multiprocessor system is described. Based on domain decomposition as a framework, data
partitioning, data dependencies and communication issues are carefully assessed. From these,
two parallel algorithms were developed with the first one maximizes on processor utilization
and the second one minimizes on communications. Our analysiis shows that the first algorithm
exhibits poor scalability and high communication overhead; and the second algorithm
exhibits good scalability and low communication overhead. A best median speed up of 13.72
or 11 frameskec was achieved on 24 processors.

1. Introduction

As video sequences contain a large amount of data both spatially and temporally, the ways in
which these data are coded determines much of the cost for storage and transmission. Among
the varieties of coding methods developed, the setting up of international standards has given
a defined direction to encoder implementation which in turns fueled the rapid expansion of
applications into multimedia computing, information storage, video-phone, medical imaging
and other audiovisual services'. These standards are similar in many facets with different
applications in mind. For instance, the H.261 is designed for audiovisual services at the rates
of px64 kbits/sec (where 1 5 ~ 1 3 0) over an ISDN linez. It employs the discrete cosine
transform in conjunction with motion estimation, compensation and uses variable length
Huffman codes for channel coding. Along this line, the H.;!63 evolved from the H.261 to
achieve a low bit rate at 24 kbits/s for video-phone over ithe PSTN. On the other hand,
MPEG-I (Moving Picture Expert Group) is designed for the storage of CIF (Common
Intermediate Format) video and its associated audio at 1.5 M[bits/s on digital storage media,
which operates random access, flexible frame rate and image size, and has compensation over
one or more frames. The newer MPEG-2 standard aims to be used in all the digital
transmission of broadcast TV quality video at coded bit rates between 4 and 9 Mbitsls3-5.

So far, there are several attempts of parallel implementation of these coding standards.
For instance, Sijstermanss implemented an MPEG- 1 encoder using 100 M68020 processors.
A measured speedup of 32 for a sequence of NTSC images was achieved on 100 processors,
an equivalent of 0.5 frameds. Akramullah et a17 achieved real time performance of MPEG-2
coding on a 400-node Intel Paragon@ XP/S using purely spatial partitioning. a speedup of
128 on 330 nodes. Adopting a more dedicated approach, Akiyama et a18 outlined a pipelined
structure of digital signal processors for different stages of' the coding. Their simulation
showed that real time encoding is possible, but no implementation was given. Bouville et a19
developed a platform based on an array of TMS320C80 processors, and adopted the spatial
parallelization approach, with no real results. Further, Agi & Jagannathanlo implemented an
MPEG-I encoder on a network of workstations and CM5 system, using temporal

(0-7803-4229-1/97/$10.00 1997 IEEE)

572

parallelization. A speedup of 7.5 over a 12-node cluster of Sun SPARC 2 was achieved, an
equivalent of 3 frames/s; and 4.5 frames/s was achieved on a 16 nodes CM5.

The goal of this research is to investigate how best the computing and communication
resources can be utilized using spatial parallelization. The H.261 coding standard is chosen in
this study because it has a high degree of complexity, data dependency and communication
constraints. By considering the data grain size, data dependencies and communication issues,
two parallel algorithms were developed on the IBM SP2 multiprocessor system. The first
algorithm maximizes on processor utilization and the second one minimizes on
communications. Our analysis shows that the first algorithm exhibits poor scalability and
high communication overhead. A best median speedup of 10.5 on 23 processors, i.e. 8.36
frame&, was achieved. For the second algorithm, it exhibits good scalability and low
communication overhead. A best median speed up of 13.72 on 24 processors, i.e. 11.08
frames/s, was achieved. Both their performances agree with the theoretical prediction.

The organization of this paper is as follows: Section 2 outlines the H.261 standard and
it’s computing requirement; Section 3 describes the two parallelized algorithms; Section 4
presents the test conditions and detailed results; this paper is concluded in Section 5.

2.

The H.261 encoder is a hybrid of inter-picture prediction to remove temporal redundancy,
and transform coding of the remaining signal to reduce spatial redundancy of the video. The
functional architecture of the coding algorithm is depicted in Fig. 1, where the major
components are the motion estimation (ME)/compensation (MC), discrete Cosine transform
(DCT) and variable length entropy coding (VLC). In the H.261, macroblock (MB) of size
16x16 is the basic unit for ME, where the last decoded frame is used to estimate the motion
vectors of the current frame. Evaluation of the similarity between two MB’s requires
2 x 1 6 ~ 1 6 integer operations. Searching of the motion vector is limited to an area within 15
pixel offset from the position of the MB. In the worst case, each MB requires 3 1 x3 1 times of
evaluation similarity in order to determine the most similar MB inside the area. For an CIF
frame with 12 Groups of Blocks (GOB) and 33 MB’s per GOB, the computing requirement
for motion estimation of one frame alone is approximately 194 million operations. The
computing requirement for motion compensation is much smaller than the estimation.

Overview of the H.261 Video Encoder

I n p u t F r a m e

1 -i

1 I n v e r s e M o t i o n

D c c o d e d f r a m e o f

l a s t picture M o t i o n E s t i m a t i o n b-
M o t i o n C o m p e n s a t i o n C o m p e n s a t i o n

I t

T r a n s f o r m

Q u a n t i z a t i o n
I

C o s i n e T r a n s f o r m

1
O u t p u t H 2 6 1 B i t s t r c a m

Figure I : Functional block diagram of an H.261 Encoder

573

After motion compensation, DCT is performed on each 8x8 block to obtain the
transformed coefficients. The computing requirement for this is 3 3 x 1 2 ~ 4 ~ 3 ~ 8 4 where 3x(8)4
is the number of operations for computing the DCT directly. i.e. approximately 19.5 million
operations. The transformed coefficients of the DCT are then quantized to clamp most of the
values to zero. The quantized DCT coefficients are then arranged into a zigzag pattern for the
run-length coding. As the quantization and zigzag arrangement are simple operations, the
computing requirement for these two functions is small. On the other hand, the VLC requires
a number of comparisons and table lookups which the codin,g of each 8x8 block depends on
the number of zeros preceding a non-zero coefficient, and the: speed of assemtiling these. It is
assumed to be similar to that of the DCT.

Considering only the major components, the computiing requirement Ibr coding one
frame is roughly -250 MOPS. For a 266 MFLOPS POWER2, the expected frame time would
be around 1 second. This is a conservative estimation as it has excluded the overheads due to
input/output, buffering and programming.

3.

In this research, the domain decomposition method is chosen, in which the input frame data is
partitioned into a number of units and are mapped to the processors for comlputation, while
the computations performed by each processor are identical. As the H.261 coding algorithm
uses techniques based on reducing the spatial and temporal redundancy of an
image sequence, there are naturally data dependencies between the MB’s, GOB’S and frames.
Within an image frame, the organization of the MB’s and the distribution of the blocks to the
processors becomes a non-trivial task.

Parallelization of the H.261 Algorithm

3. I Data Partitioning, Dependency and Communication Issues

Theoretically, the unit of data partitioning can be as small as a pixel, although ,such fine grain
partitioning introduces a huge amount of communications during MEIMC and other
processes. As an MB is the basic unit used for ME/MC, it is natural to consideir an MB as the
smallest unit. However, if a unit is larger than a MB, then some of the parallelism would be
lost because these MB’s can be processed in parallel. In general, if the MI3’s are evenly
partitioned, for a frame containing m MB’s and system having, n processors, eai;h processor is

Regarding data dependency, it exists between different MB’s of the same frame while
performing ME/MC, and in the VLC step when the MB address (MBA), motion vector data
record (MVD) and MB type (MTYPE) are coded relative to its preceding neighborhood MB
within the same GOB. The ME/MC step can be parallelized to some extend but the data
referencing in the VLC step is inherently serial. To resolve this problem, the .first method is
to perform the VLC of the whole frame by a single processor, which is simple. But it has a

order the MB’s and GOB’S according to the GOB and MB hierarchy, and group those with
data dependency into segments into one processor. With this, a slave still requires to
reference the MBA, MVD and MTYPE fields of the last M[B from a preceding slave. To
eliminate this, a processor can compute the referenced MB information by itself and force the
referenced MB in the preceding processor to adopt these values. The third method is to
further divide the VLC step into a header part and a transformed coefficient (T’C) part. Since

allocated rm/nl MB’S.

,

potential critical path when the number of processors is largo. The second “sthod is to re-

574

this data dependency exists only in the MB header, the TC VLC of an MB can be calculated
independently.

On input communication requirement, very often, the data input to the encoder is an
array of pixels ordered spatially, which the whole frame can be distributed as it is, and let the
other processors extract the corresponding MB’s for coding. However, the frame data can be
ordered according to the GOB and MB structure in which the ordered list of MB’s is divided
into segments of equal length. The redundant communication in the latter case is minimal.

Moreover, a processor performing motion estimation to it’s MB’s requires all the
decoded MB’s of its own and some of those owned by the other processors, and hence,
introduces a demand for communication between them. There are two methods to simplify
this communication requirement: first, a designated processor can be used to collect all the
decoded MB’s before it broadcasts them as a whole frame back to all the processors. There is
substantial data redundancy with this approach. The second method is to agglomerate the
MB’s into rows. This method reduces the amount of redundant communications, and allows
all the processors to perform exchange operations with their neighbors concurrently.

3.2 Two Parallelized H.261 Algorithms

The SMMS algorithm was developed based on a single-master-multiple-slave configuration
where a master is designated for the centralized communication and ordering of the MB’s,
and the slaves are responsible for the computation. As depicted in Fig. 2, Master#l reads the
input frame data, reorganizes the array of pixels into any array of MB’s, then distributes them
to the slaves evenly. Master#l also broadcasts the last decoded frame to the slaves, where all
the decoded MB’s are collected at the end of coding the last frame. Upon receiving the
decoded frame and the MB’s from the current frame, the slaves compute the motion vectors
and all the subsequent sub-processes in parallel. In this case. the VLC is parallelized by the
slaves using the 2nd method described in Sec. 3.1. Finally, Master#l collects the statistics,
VLC results and the decoded MB’s from the slaves. The coded bit stream is then sent to the
standard output. In this algorithm, most of the computations are carried out in the slaves in
parallel, with all the communications being managed by the master. Although the number of
MB’s distributed to each slave is identical, due to the difference in motion content in each
MB, the computing times for the MB, or a group of MB’s are different. Normally, MB’s that
contain high motion content take longer ME time. As the motion content of the video is not
known, even distribution of MB’s seems to be the most appropriate.

To minimize communications, the MMMS algorithm uses three masters for separately
handling the distribution of MB’s, parallelization of the VLC and the collection of results and
statistics as depicted in Fig. 3. The MB’s are ordered by Master#l in the same way as the
input pixel array and evenly divided into segments of rows for distribution. During this time,
the slaves exchanges decoded MB’s of the last frame according to whether the MB’s are the
immediate neighbors of the current MB segments assigned to it. Once the two sets of data are
ready in the slaves, coding begins. When the coding of the last MB is completed, MastenY2
collects the statistics, and in parallel, Master#3 collects the VLC immediate results and
concatenates the header before sending the bit stream to the standard output (3rd method in
Sec. 3.1) . In this algorithm, the serial communication tasks are now parallelized as follows:
first, the decoded MB’s are exchanged between the slaves, thus saving communication time
to the master, which can be performed in parallel to the distribution of the current frame data.

575

Second, the collection of statistics and VLC results are now handled in parallel by two
masters.

Collectla" Of rtatlr1,cr
c3.--0

P
ot-cl

ot
ot-------c3

c7t-----o SummsIyand VLC rsults

Collsctan of d&oded MB
from the s lam

Figure 2: SMMS algorithm

3.4 Performance Prediction

Let n be the number of processors available; T (j) be the computation time of processor j ,

where j = 1, 2, . . . , n; MI be the size in bytes of a frame; M , be the average size of a coded
frame; M,, be the size of a statistic record; T, be the asymptotic banclwidth of the
communication channel in second per byte; and 7', be the oveirall startup time of the channel.
The frame time of the SMMS algorithm is given by

LP

where the 1 s t { } represents the time taken for the master to send MA bytes to ihe slaves; the

2nd { } represents the time taken for the VLC results and statistics to travel to the master; the
3 r d { } represents the computation critical path; the 4th { } represents the time taken to collect
the decoded data to the master; the 5th { } represents the time iaken to broadcast the decoded
frame; T,, represents the reading of a frame and MB rearrangement time; and To,, represents
the writing of the encoded results to an output bit stream.

The frame time of the MMMS algorithm is given by Thorn. = m a l l ; , &} + r, + rm where

where R is the number of MB in a column; T, represents one of the two critical paths due to
the 3 r d master, which consists of the time taken to collect the TC VLC, and the time taken to
compile the VLC header (T 4 3)) ; and T, represents the second critical path due to slave
computations, in which the 1 s t { } represents the computation critical path; the 2 n d { }
represents the time taken to send the statistics to the 2nd master; the 3 r d { } represents the time

576

taken for the slaves to receive the input MB’s; the 4th { } represents the time taken to send the
VLC result to the 3rd master; and the 5th { } represents the time taken for a slave to exchange
MB’s with it’s neighbors. Trmme of the two algorithms are plotted in Fig. 4 & 6, respectively.

4. Results and Discussions

4. I Data Collection Conditions

The IBM SP2@ system used for this investigation has a total of 32 processors installed at the
University of Hong Kong. Among the 32 processors, 24 can be used exclusively by an
application within a limited time window. Each processor consists of a 66.7MHz POWER2@
RISC processor with 64 MB main memory and 2 GB disk storage, providing a peak
performance of 266 MFLOPS. The measured bandwidth between any two processors is 10
MB/s, much lower than the peak bandwidth, and the measured latency using the message
passing library (MPL) for an empty message is -140 ps.

The software H.261 used is the PRVG-P64 from Portable Research Video Group of
Stanfordll. The original program is a serial program for running on a single computer, at a
moderate performance. In deriving the parallel algorithms, all the basic functional blocks of
code are left unchanged. It is the macroscopic backbone of the program that is changed for
multiprocessing.

The H.261 program was compiled using mpcc -0 file name.^], using single precision
integer format throughout. The wall-clock time generated by gettimeofday() was used to
measure the overall execution duration and individual execution time per stage, where all the
processors were synchronized and timed at the start of the execution. Blocking send and
receive were used for all the point-to-point communications where fixed startup time and
constant channel bandwidth were assumed. The broadcast time is measured from all the
processors are ready to receive until all of them have received. The HPS user space
communication protocol was used to obtain the best performance from the network.

A video of 39 frames of a table tennis player playing the ball was used for the test. The
coded output from the two parallelized algorithms were checked byte-by-byte against the
serial program output. The three coded output streams were decoded for visual inspection and
comparison.

4.2 SMMS Algorithm Results

Fig. 4 depicts the measured median speedup versus n, together with the linear and the
predicted speedup as given by Eqt. (l), where ts is assumed to be 46 ps and tw is assumed to
be 25 nsibyte. A best median speedup of 10.5 or 8.36 framesls on 23 processors was
achieved. It is observed that first, the predicted speedup is very close to the measured
speedup. Second, the speedup for small n is close to the linear speedup. But as n increases,
their difference becomes more apparent. At n=15, the measured speedup levels off. This
highlights the effect that when the n is more than the algorithm’s degree of parallelism,
adding more processors does not increase the performance. Also noted in Fig. 5, the
computation time decreases from 100% to around 50% when n is increased from 1 to 24. On
the other hand, the communication time increases from 0% to 20%; and the idle time
increases from 0% to almost 40% in the case of 22 processors. The spike in the idle time is
due to the method used to divide the MB’s into segments where one of the slaves was
assigned a larger than average number of MB’s creating a longer critical path.

577

- - a r - z z z z j r d Ir. p E 'I: g
No. o f processors

Figure 4: SMMS-median speedup

No. o f processors

Figure 5: SMMS-percentage component time

4.4 MMMS Algorithm Results

Fig. 6 depicts the measured median speedup versus n for the MMMS algorithm, together with
the linear and predicted speedup. It can be observed that first: the measured speedup and the
predicted speed generally agree with each other but not as close as the SMMS case. This is
probably due to the prediction of the time required for exchanging decoded MB's between
slaves is too optimistic. Second, the speedup is very poor for small n, due to the use of
multiple masters. Third, the median speedup is close to 13.72 or 11.02 fps on 24 processors.
Fourth, the speedup function is reasonably linear and that further speedup looks possible.
When we consider Fig. 7, the relationship between the computation, communication and idle
times is quite different from the previous algorithm. In the MMMS algorithm, the percentage
of computation began at less than 30% for 4 processors and increased to ovw 60% for 24
processors. Over this range, communication time varied from close to 0% to about 5%0, and
the idle time varied from over 70% to below 40%. At 20 processors, one of the slaves was
assigned a larger than average number of MB's, which causes the critical path length to
increase.

25

20

5 15
m
c cn" 10

5

0
' I n P C t ; ;

N o . o f processors

80

70

60

c 50
,B 40

x 30
L

20

10

0
. - " P ~ $; ;

N O . o f processors

25

20

9 15
m
I cn" 10

5

0

- " - = s z
N o . o f processors

Figure 6: MMMS- speedup Figure 7: MMMS- component time Figure 8 : Speedup comparison

4.5 Comparing the Two Algorithms

From Fig. 8, we can observe that the two algorithms behave rather differently. For the SMMS
algorithm, it performs well with small n because a high percentage of time is spent on
computation; and performs poorly with large n because of a hiigh percentage of time is now
spent on communication or idle. Specifically, for 4 processors, the speedup b.y the SMMS

578

algorithm is 3.17 times higher than the MMMS algorithm. In contrast, the MMMS algorithm
performs much better for large n with a final speedup of 13.72, which is 30% higher than the
10.5 ofthe SMMS algorithm.

5. Conclusions

We can conclude that first, the use of the domain decomposition approach to parallelizing the
H.261 coding algorithm is a viable method as long as the data partitioning and
communication issues have been carefully assessed. Second, it is advantageous to partition a
frame into MB segments rather than single pixels, i.e., coarse grain parallelization is more
suitable on the IBM SP2 and similar machines. Third, the resultant implementation is
portable as the sequential software encoder is off-the-shelf and can be readily ported to other
platforms. Fourth, the MMMS algorithm scales well with n, but not the SMMS algorithm.
Fifth, the communication cost of the MMMS algorithm is low, whereas it is high for the
SMMS algorithm. Sixth, frame rate of around 11 fps has been achieved based on a serial
software with moderate performance. From the results, real-time performance looks likely
with larger n.

References

1.

2.

3.

4.

5.
6.

7.

V. Bhaskaran & K. Konstantinides, “Image and Video Compression Standards: algorithms and
architectures”, Kluwer Academic Publishers (1995).
“ITU-T recommendation H.261: video codec for audiovisual services at px64 kbits”, International
Telecommunication Union (1990).
“ITU-T recommendation H.263: video coding for low bitrate communication”, International

Telecommunication Union (1995).
“MPEG-I : Coding of moving pictures and associated audio for digital storage media at up to about
1.5 MbiVs”,ISO/IEC 11172 (1993).
“MPEG-2: Generic coding of moving pictures and associated audio”, ISO/IEC 13818 (1995).
F. Sijstermans & J. Van der Meer, “CD-I Full-motion Video Encoding on a Parallel Computer”,
Communications oftheACM,34, 4, 81-91 (1991).
M. Akramullah, et al, “A Portable and Scalable MPEG-2 Video Encoder on Parallel and Distributed
Computing Systems”, SPIE Proc. On Visual Communications and Image Processsing, 973-984
(1996).

8. T. Akiyama et al., “MPEG-2 Video Codec using Image Compression DSP”, lEEE Trunsuctions on
Consumer Electronics, 40,3,466-472 (1994).

9. C. Bouville, et al, “DVFLEX : A Flexible MPEG Real Time Video Codec”, Proc. Of IEEE Int.
ConJ On Image Proc., Vol. 11, 829-832 (1996).

10. I . Agi & R. Jagannathan, “A Portable Fault-tolerant Parallel Software MPEG-I Encoder”,
Multimedia Tools and Applications, 2, 183-197 (1996).

1 1. A. C. Hung, “PVRG-P64 Codec 1 . I” , Portable Video Research Group (PVRG), Stanjord University
(1993).

