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PARALLELIZATION OF THE H.261 VIDEO CODING ALGORITHM ON 
THE IBM SP2@ MULTIPROCESSOR SYSTEM 

N. H. C. Yung and K. K. Leurig 
Department of Electrical & Electronic Engineering 

The University of Hong Kong, Pokfulam Road HONG KONG 
Email: nyung@eee. hku.hk 

In this paper, the parallelization of the H.261 video coding algorithm on the IBM SP2 
multiprocessor system is described. Based on domain decomposition as a framework, data 
partitioning, data dependencies and communication issues are carefully assessed. From these, 
two parallel algorithms were developed with the first one maximizes on processor utilization 
and the second one minimizes on communications. Our analysiis shows that the first algorithm 
exhibits poor scalability and high communication overhead; and the second algorithm 
exhibits good scalability and low communication overhead. A best median speed up of 13.72 
or 11 frameskec was achieved on 24 processors. 

1. Introduction 

As video sequences contain a large amount of data both spatially and temporally, the ways in 
which these data are coded determines much of the cost for storage and transmission. Among 
the varieties of coding methods developed, the setting up of international standards has given 
a defined direction to encoder implementation which in turns fueled the rapid expansion of 
applications into multimedia computing, information storage, video-phone, medical imaging 
and other audiovisual services'. These standards are similar in many facets with different 
applications in mind. For instance, the H.261 is designed for audiovisual services at the rates 
of px64 kbits/sec (where 1 5 ~ 1 3 0 )  over an ISDN linez. It employs the discrete cosine 
transform in conjunction with motion estimation, compensation and uses variable length 
Huffman codes for channel coding. Along this line, the H.;!63 evolved from the H.261 to 
achieve a low bit rate at 24 kbits/s for video-phone over ithe PSTN. On the other hand, 
MPEG-I (Moving Picture Expert Group) is designed for the storage of CIF (Common 
Intermediate Format) video and its associated audio at 1.5 M[bits/s on digital storage media, 
which operates random access, flexible frame rate and image size, and has compensation over 
one or more frames. The newer MPEG-2 standard aims to be used in all the digital 
transmission of broadcast TV quality video at coded bit rates between 4 and 9 Mbitsls3-5. 

So far, there are several attempts of parallel implementation of these coding standards. 
For instance, Sijstermanss implemented an MPEG- 1 encoder using 100 M68020 processors. 
A measured speedup of 32 for a sequence of NTSC images was achieved on 100 processors, 
an equivalent of 0.5 frameds. Akramullah et a17 achieved real time performance of MPEG-2 
coding on a 400-node Intel Paragon@ XP/S using purely spatial partitioning. a speedup of 
128 on 330 nodes. Adopting a more dedicated approach, Akiyama et a18 outlined a pipelined 
structure of digital signal processors for different stages of' the coding. Their simulation 
showed that real time encoding is possible, but no implementation was given. Bouville et a19 
developed a platform based on an array of TMS320C80 processors, and adopted the spatial 
parallelization approach, with no real results. Further, Agi & Jagannathanlo implemented an 
MPEG-I encoder on a network of workstations and CM5 system, using temporal 

(0-7803-4229-1/97/$10.00 1997 IEEE) 



572 

parallelization. A speedup of 7.5 over a 12-node cluster of Sun SPARC 2 was achieved, an 
equivalent of 3 frames/s; and 4.5 frames/s was achieved on a 16 nodes CM5. 

The goal of this research is to investigate how best the computing and communication 
resources can be utilized using spatial parallelization. The H.261 coding standard is chosen in 
this study because it has a high degree of complexity, data dependency and communication 
constraints. By considering the data grain size, data dependencies and communication issues, 
two parallel algorithms were developed on the IBM SP2 multiprocessor system. The first 
algorithm maximizes on processor utilization and the second one minimizes on 
communications. Our analysis shows that the first algorithm exhibits poor scalability and 
high communication overhead. A best median speedup of 10.5 on 23 processors, i.e. 8.36 
frame&, was achieved. For the second algorithm, it exhibits good scalability and low 
communication overhead. A best median speed up of 13.72 on 24 processors, i.e. 11.08 
frames/s, was achieved. Both their performances agree with the theoretical prediction. 

The organization of this paper is as follows: Section 2 outlines the H.261 standard and 
it’s computing requirement; Section 3 describes the two parallelized algorithms; Section 4 
presents the test conditions and detailed results; this paper is concluded in Section 5.  

2. 

The H.261 encoder is a hybrid of inter-picture prediction to remove temporal redundancy, 
and transform coding of the remaining signal to reduce spatial redundancy of the video. The 
functional architecture of the coding algorithm is depicted in Fig. 1, where the major 
components are the motion estimation (ME)/compensation (MC), discrete Cosine transform 
(DCT) and variable length entropy coding (VLC). In the H.261, macroblock (MB) of size 
16x16 is the basic unit for ME, where the last decoded frame is used to estimate the motion 
vectors of the current frame. Evaluation of the similarity between two MB’s requires 
2 x 1 6 ~ 1 6  integer operations. Searching of the motion vector is limited to an area within 15 
pixel offset from the position of the MB. In the worst case, each MB requires 3 1 x3 1 times of 
evaluation similarity in order to determine the most similar MB inside the area. For an CIF 
frame with 12 Groups of Blocks (GOB) and 33 MB’s per GOB, the computing requirement 
for motion estimation of one frame alone is approximately 194 million operations. The 
computing requirement for motion compensation is much smaller than the estimation. 

Overview of the H.261 Video Encoder 

I n p u t  F r a m e  

1 -i 

1 I n v e r s e  M o t i o n  

D c c o d e d  f r a m e  o f  

l a s t  picture M o t i o n  E s t i m a t i o n  b- 
M o t i o n  C o m p e n s a t i o n  C o m p e n s a t i o n  

I t 

T r a n s f o r m  

Q u a n t i z a t i o n  
I 

C o s i n e  T r a n s f o r m  
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O u t p u t H  2 6 1  B i t s t r c a m  

Figure I :  Functional block diagram of an H.261 Encoder 
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After motion compensation, DCT is performed on each 8x8 block to obtain the 
transformed coefficients. The computing requirement for this is 3 3 x 1 2 ~ 4 ~ 3 ~ 8 4  where 3x(8)4 
is the number of operations for computing the DCT directly. i.e. approximately 19.5 million 
operations. The transformed coefficients of the DCT are then quantized to clamp most of the 
values to zero. The quantized DCT coefficients are then arranged into a zigzag pattern for the 
run-length coding. As the quantization and zigzag arrangement are simple operations, the 
computing requirement for these two functions is small. On the other hand, the VLC requires 
a number of comparisons and table lookups which the codin,g of each 8x8 block depends on 
the number of zeros preceding a non-zero coefficient, and the: speed of assemtiling these. It is 
assumed to be similar to that of the DCT. 

Considering only the major components, the computiing requirement Ibr coding one 
frame is roughly -250 MOPS. For a 266 MFLOPS POWER2, the expected frame time would 
be around 1 second. This is a conservative estimation as it has excluded the overheads due to 
input/output, buffering and programming. 

3. 

In this research, the domain decomposition method is chosen, in which the input frame data is 
partitioned into a number of units and are mapped to the processors for comlputation, while 
the computations performed by each processor are identical. As the H.261 coding algorithm 
uses techniques based on reducing the spatial and temporal redundancy of an 
image sequence, there are naturally data dependencies between the MB’s, GOB’S and frames. 
Within an image frame, the organization of the MB’s and the distribution of the blocks to the 
processors becomes a non-trivial task. 

Parallelization of the H.261 Algorithm 

3. I Data Partitioning, Dependency and Communication Issues 

Theoretically, the unit of data partitioning can be as small as a pixel, although ,such fine grain 
partitioning introduces a huge amount of communications during MEIMC and other 
processes. As an MB is the basic unit used for ME/MC, it is natural to consideir an MB as the 
smallest unit. However, if a unit is larger than a MB, then some of the parallelism would be 
lost because these MB’s can be processed in parallel. In general, if the MI3’s are evenly 
partitioned, for a frame containing m MB’s and system having, n processors, eai;h processor is 

Regarding data dependency, it exists between different MB’s of the same frame while 
performing ME/MC, and in the VLC step when the MB address (MBA), motion vector data 
record (MVD) and MB type (MTYPE) are coded relative to its preceding neighborhood MB 
within the same GOB. The ME/MC step can be parallelized to some extend but the data 
referencing in the VLC step is inherently serial. To resolve this problem, the .first method is 
to perform the VLC of the whole frame by a single processor, which is simple. But it has a 

order the MB’s and GOB’S according to the GOB and MB hierarchy, and group those with 
data dependency into segments into one processor. With this, a slave still requires to 
reference the MBA, MVD and MTYPE fields of the last M[B from a preceding slave. To 
eliminate this, a processor can compute the referenced MB information by itself and force the 
referenced MB in the preceding processor to adopt these values. The third method is to 
further divide the VLC step into a header part and a transformed coefficient (T’C) part. Since 

allocated rm/nl MB’S. 

, 

potential critical path when the number of processors is largo. The second “sthod is to re- 
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this data dependency exists only in the MB header, the TC VLC of an MB can be calculated 
independently. 

On input communication requirement, very often, the data input to the encoder is an 
array of pixels ordered spatially, which the whole frame can be distributed as it is, and let the 
other processors extract the corresponding MB’s for coding. However, the frame data can be 
ordered according to the GOB and MB structure in which the ordered list of MB’s is divided 
into segments of equal length. The redundant communication in the latter case is minimal. 

Moreover, a processor performing motion estimation to it’s MB’s requires all the 
decoded MB’s of its own and some of those owned by the other processors, and hence, 
introduces a demand for communication between them. There are two methods to simplify 
this communication requirement: first, a designated processor can be used to collect all the 
decoded MB’s before it broadcasts them as a whole frame back to all the processors. There is 
substantial data redundancy with this approach. The second method is to agglomerate the 
MB’s into rows. This method reduces the amount of redundant communications, and allows 
all the processors to perform exchange operations with their neighbors concurrently. 

3.2 Two Parallelized H.261 Algorithms 

The SMMS algorithm was developed based on a single-master-multiple-slave configuration 
where a master is designated for the centralized communication and ordering of the MB’s, 
and the slaves are responsible for the computation. As depicted in Fig. 2, Master#l reads the 
input frame data, reorganizes the array of pixels into any array of MB’s, then distributes them 
to the slaves evenly. Master#l also broadcasts the last decoded frame to the slaves, where all 
the decoded MB’s are collected at the end of coding the last frame. Upon receiving the 
decoded frame and the MB’s from the current frame, the slaves compute the motion vectors 
and all the subsequent sub-processes in parallel. In this case. the VLC is parallelized by the 
slaves using the 2nd method described in Sec. 3.1. Finally, Master#l collects the statistics, 
VLC results and the decoded MB’s from the slaves. The coded bit stream is then sent to the 
standard output. In this algorithm, most of the computations are carried out in the slaves in 
parallel, with all the communications being managed by the master. Although the number of 
MB’s distributed to each slave is identical, due to the difference in motion content in each 
MB, the computing times for the MB, or a group of MB’s are different. Normally, MB’s that 
contain high motion content take longer ME time. As the motion content of the video is not 
known, even distribution of MB’s seems to be the most appropriate. 

To minimize communications, the MMMS algorithm uses three masters for separately 
handling the distribution of MB’s, parallelization of the VLC and the collection of results and 
statistics as depicted in Fig. 3. The MB’s are ordered by Master#l in the same way as the 
input pixel array and evenly divided into segments of rows for distribution. During this time, 
the slaves exchanges decoded MB’s of the last frame according to whether the MB’s are the 
immediate neighbors of the current MB segments assigned to it. Once the two sets of data are 
ready in the slaves, coding begins. When the coding of the last MB is completed, MastenY2 
collects the statistics, and in parallel, Master#3 collects the VLC immediate results and 
concatenates the header before sending the bit stream to the standard output (3rd method in 
Sec. 3.1) .  In this algorithm, the serial communication tasks are now parallelized as follows: 
first, the decoded MB’s are exchanged between the slaves, thus saving communication time 
to the master, which can be performed in parallel to the distribution of the current frame data. 
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Second, the collection of statistics and VLC results are now handled in parallel by two 
masters. 

Collectla" Of rtatlr1,cr 
c3.--0 

P 
ot-cl 

ot 
ot-------c3 

c7t-----o SummsIyand VLC rsults 

Collsctan of d&oded MB 
from the s lam 

Figure 2: SMMS algorithm 

3.4 Performance Prediction 

Let n be the number of processors available; T ( j )  be the computation time of processor j ,  

where j = 1, 2, . . . , n; MI be the size in bytes of a frame; M ,  be the average size of a coded 
frame; M,, be the size of a statistic record; T,  be the asymptotic banclwidth of the 
communication channel in second per byte; and 7', be the oveirall startup time of the channel. 
The frame time of the SMMS algorithm is given by 

LP 

where the 1 s t  { }  represents the time taken for the master to send MA bytes to ihe slaves; the 

2nd { }  represents the time taken for the VLC results and statistics to travel to the master; the 
3 r d  { } represents the computation critical path; the 4th { } represents the time taken to collect 
the decoded data to the master; the 5th { }  represents the time iaken to broadcast the decoded 
frame; T,, represents the reading of a frame and MB rearrangement time; and To,, represents 
the writing of the encoded results to an output bit stream. 

The frame time of the MMMS algorithm is given by Thorn. = m a l l ; ,  &}  + r, + rm where 

where R is the number of MB in a column; T, represents one of the two critical paths due to 
the 3 r d  master, which consists of the time taken to collect the TC VLC, and the time taken to 
compile the VLC header ( T 4 3 ) ) ;  and T, represents the second critical path due to slave 
computations, in which the 1 s t  { }  represents the computation critical path; the 2 n d  { }  
represents the time taken to send the statistics to the 2nd master; the 3 r d  { } represents the time 
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taken for the slaves to receive the input MB’s; the 4th { } represents the time taken to send the 
VLC result to the 3rd master; and the 5th { }  represents the time taken for a slave to exchange 
MB’s with it’s neighbors. Trmme of the two algorithms are plotted in Fig. 4 & 6, respectively. 

4. Results and Discussions 

4. I Data Collection Conditions 

The IBM SP2@ system used for this investigation has a total of 32 processors installed at the 
University of Hong Kong. Among the 32 processors, 24 can be used exclusively by an 
application within a limited time window. Each processor consists of a 66.7MHz POWER2@ 
RISC processor with 64 MB main memory and 2 GB disk storage, providing a peak 
performance of 266 MFLOPS. The measured bandwidth between any two processors is 10 
MB/s, much lower than the peak bandwidth, and the measured latency using the message 
passing library (MPL) for an empty message is -140 ps. 

The software H.261 used is the PRVG-P64 from Portable Research Video Group of 
Stanfordll. The original program is a serial program for running on a single computer, at a 
moderate performance. In deriving the parallel algorithms, all the basic functional blocks of 
code are left unchanged. It is the macroscopic backbone of the program that is changed for 
multiprocessing. 

The H.261 program was compiled using mpcc -0   file name.^], using single precision 
integer format throughout. The wall-clock time generated by gettimeofday() was used to 
measure the overall execution duration and individual execution time per stage, where all the 
processors were synchronized and timed at the start of the execution. Blocking send and 
receive were used for all the point-to-point communications where fixed startup time and 
constant channel bandwidth were assumed. The broadcast time is measured from all the 
processors are ready to receive until all of them have received. The HPS user space 
communication protocol was used to obtain the best performance from the network. 

A video of 39 frames of a table tennis player playing the ball was used for the test. The 
coded output from the two parallelized algorithms were checked byte-by-byte against the 
serial program output. The three coded output streams were decoded for visual inspection and 
comparison. 

4.2 SMMS Algorithm Results 

Fig. 4 depicts the measured median speedup versus n, together with the linear and the 
predicted speedup as given by Eqt. (l), where ts is assumed to be 46 ps and tw is assumed to 
be 25 nsibyte. A best median speedup of 10.5 or 8.36 framesls on 23 processors was 
achieved. It is observed that first, the predicted speedup is very close to the measured 
speedup. Second, the speedup for small n is close to the linear speedup. But as n increases, 
their difference becomes more apparent. At n=15, the measured speedup levels off. This 
highlights the effect that when the n is more than the algorithm’s degree of parallelism, 
adding more processors does not increase the performance. Also noted in Fig. 5, the 
computation time decreases from 100% to around 50% when n is increased from 1 to 24. On 
the other hand, the communication time increases from 0% to 20%; and the idle time 
increases from 0% to almost 40% in the case of 22 processors. The spike in the idle time is 
due to the method used to divide the MB’s into segments where one of the slaves was 
assigned a larger than average number of MB’s creating a longer critical path. 
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Figure 4: SMMS-median speedup 
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Figure 5: SMMS-percentage component time 

4.4 MMMS Algorithm Results 

Fig. 6 depicts the measured median speedup versus n for the MMMS algorithm, together with 
the linear and predicted speedup. It can be observed that first: the measured speedup and the 
predicted speed generally agree with each other but not as close as the SMMS case. This is 
probably due to the prediction of the time required for exchanging decoded MB's between 
slaves is too optimistic. Second, the speedup is very poor for small n, due to the use of 
multiple masters. Third, the median speedup is close to 13.72 or 11.02 fps on 24 processors. 
Fourth, the speedup function is reasonably linear and that further speedup looks possible. 
When we consider Fig. 7, the relationship between the computation, communication and idle 
times is quite different from the previous algorithm. In the MMMS algorithm, the percentage 
of computation began at less than 30% for 4 processors and increased to ovw 60% for 24 
processors. Over this range, communication time varied from close to 0% to about 5%0, and 
the idle time varied from over 70% to below 40%. At 20 processors, one of the slaves was 
assigned a larger than average number of MB's, which causes the critical path length to 
increase. 
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Figure 6: MMMS- speedup Figure 7: MMMS- component time Figure 8 :  Speedup comparison 

4.5 Comparing the Two Algorithms 

From Fig. 8, we can observe that the two algorithms behave rather differently. For the SMMS 
algorithm, it performs well with small n because a high percentage of time is spent on 
computation; and performs poorly with large n because of a hiigh percentage of time is now 
spent on communication or idle. Specifically, for 4 processors, the speedup b.y the SMMS 
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algorithm is 3.17 times higher than the MMMS algorithm. In contrast, the MMMS algorithm 
performs much better for large n with a final speedup of 13.72, which is 30% higher than the 
10.5 ofthe SMMS algorithm. 

5. Conclusions 

We can conclude that first, the use of the domain decomposition approach to parallelizing the 
H.261 coding algorithm is a viable method as long as the data partitioning and 
communication issues have been carefully assessed. Second, it is advantageous to partition a 
frame into MB segments rather than single pixels, i.e., coarse grain parallelization is more 
suitable on the IBM SP2 and similar machines. Third, the resultant implementation is 
portable as the sequential software encoder is off-the-shelf and can be readily ported to other 
platforms. Fourth, the MMMS algorithm scales well with n, but not the SMMS algorithm. 
Fifth, the communication cost of the MMMS algorithm is low, whereas it is high for the 
SMMS algorithm. Sixth, frame rate of around 11 fps has been achieved based on a serial 
software with moderate performance. From the results, real-time performance looks likely 
with larger n. 
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