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I 

Abstrucf - A method for evoked potential estimation 
based on a n  adaptive radial basis function neural network 
(RBFNN) model is presented in this paper. During 
training, the number of hidden nodes (number of RBFs) 
and model parameters are adjusted to fit the target signal 
which is obtained by averaging. In order to reduce 
computational complexity and the influence of noise in 
estimating single-trial evoked potential (EP), the number 
of hidden nodes is also minimized in training. After 
training, both peak latency and amplitude, being 
distinctive features of an  EP, are characterized by the 
center and height of the corresponding RBF respectively. 
In EP estimation, an  adaptive algorithm is employed to 
track the peaks from trial to trial by adapting the center 
and height of RBFs directly. The adaptive RBFNN is 
tested on a computer simulated data set and clinical EP 
recording. O u r  proposed algorithm is suitable for 
tracking EP waveform variations. 

estimation, adaptive signal processing. 
Index Terms - RBF neural network, evoked potential 

I. INTRODUCTION 
EP is a gross electrical potential generated in the brain from 
sensory stimulation, and EP is often heavily contaminated by 
noise mainly from the background activity of the brain (e.g. 
ongoing EEG). For many years, ensemble averaging (EA) 
has been the tool to obtain EP. However EA ignores the fact 
that the components of EP are time-varying [ l ]  and the 
averaged signal tends to smear any variation from trial to 
trial. Many approaches have been proposed to detect the 
underlying signal in a single-trial EP. Among them, adaptive 
filtering is commonly employed [2]  to tackle the time- 
varying characteristic of EP and noise removal. In this paper, 
we propose an adaptive model for EP estimation which 
combines the basic idea of adaptive processing with 
modeling the components of EP. The RBFNN have been 
known to be suitable for many non-linear model 
approximations provided that there are enough basis 
functions [ 3 ] .  Based on the LMS approach, the model 
estimates EP signal from a single-trial. Any change of EP 
component is directly reflected in the model parameters, thus, 
a fast response could be achieved. 

11. THE METHOD 
The RBFNN model consists of N RBFs arranged in a 

hidden layer and a linear output node [ 4 ] .  Its output at time 
instant k is expressed as 

N -[k+)* N 

r = I  i = l  
Y ( k )  = C wle = C WiPi (1) 

In the ith node, wi, pi and ai represent the height, center 
and width of the RBF. Initial setup of the model is 
accomplished with information from peak latency and 
amplitude in the target signal, d(k), which is obtained by 
averaging EPs. Such information is used to define the center 
and height of the characteristic RBFs. Auxiliary RBFs is 
added uniformly between characteristic RBFs to increase 
details of approximation. The RBFNN is then trained to 
model the target signal by minimizing the MSE, 6, between 
the target and model output. 

where A4 is the number of data samples in target signal. 
Define P as a vector of free parameters 

P = [WI a] . . . Wj pj aj. .. WN pN U N ]  (3 )  

At each iteration, a steepest-descent type of training is 
specified by 

(4) 

where h is an empirical parameter determining the rate of 
convergence. During training, the number of RBFs is 
optimized (network optimization) to avoid over-fitting and 
reduce adaptation error induced by noise which will be 
proved in the section below. When training is converged such 
that A t /  t< E ,  the network will be further optimized 
according to the following procedures [ 5 ] :  
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Fig. 1. A virtuaal peak with its center at hl +p2)/2 is formed by two 
adjacent R BFs. 

Training will be stopped when 6 is smaller than a 
predefined error threshold and the number of RBFs is 
stabilized. However if training could not reduce the error 
below the threshold, a new RBF will be added with its 
weight, center and width set to e(km,), k,,, and average of ai 
respectively where e(km,,) = max(e(k)). The above training 
process is resumed. 

After the model is properly trained, EP estimation is 
achieved by replacing the target signal with single-trial EP, 
d(k) =s(k)+n(k) where s(k) is the deterministic underlying EP 
buried in noise n(k). The model parameters are adapted 
according to equation (4), so that 

A p  =2nEk[((s(k)-y(k))Q]+2nEk[n(k)Q] 
(6) 

We can see that the parameters are adjusted to estimate 
s(k) while the adaptive process is disturbed by the noise 
component, n(k). The sum of squared parameter 
misadjustment due to noise is 

hfis = APn .ApnT = 4A2 Ek[n(k)Q].Ek[n(k)QIT (7) 
Obviously, decreasing the rate of convergence could 

reduce the misadjustment considerably in the expense of 
some tracking speed of the algorithm. Influence of noise 
component could be further reduced by considering the 
misadjustment induced in parameter W i ,  

= APs + APn 

Inside the bracket is the expected value of noise bounded 
within an envelope pi. Since the noise could be assumed to 
have zero-mean, it is desirable to have a wide RBF in order 
to reduce the misadjustment. Therefore, the number of RBFs 
in the network, N, should be minimized. Considering other 
free parameters like pi and ai, similar conclusion could be 
obtained using the above argument. 

111. EXPERIMENTAL RESULTS 
The RBFNN has been trained to model brainstem 

auditory evoked potential (BAEP) and visual evoked 
potential (VEP). Using VEP as the target, the network 
optimization process is displayed in Fig. 2. At the beginning, 
there are 13 hidden nodes assigned to the network. When 
training converges at 28"' and 45"' iteration, excess nodes are 
removed. We can see that the network reorganize itself to fit 
the target with less number of RBFs. Fig. 3 shows the trained 
RBFNN with 11 and 7 hidden nodes for BAEP and VEP 
respectively. Note that the peaks in the target signal are 
modeled by RBFs. 

nnr. . 14 
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larger convergence rate has a shorter time constant but the 
misadjustment will be more significant [6]. The effect of 
time-constant in the response to impulse change is shown in 
Fig. 5(b). Theoretically, the estimation error will vanish after 
infinite number of iterations. Apart from the delay, AF 
suffers from reduced performance when the correlation 
between underlying signal, s(k+D), and reference signal, s(k), 
drops as the displacement, D, getting larger. RBFNN has the 
advantage of powerful modeling ability that enables close 
estimation of EP changes. 
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Fig. 3. The averaged AEP and VEP clearly shows their peak 
components. The number of RBFs used are 11  and 7 for  AEP and VEP 
respectively. The parameters required in training are jl=O.O1, 
v =  0.05, E= 0.01 and error threshold= 0.005. 
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Fig. 5. The performance of RBFMV and AF in tracking of change in 
PlOO latency. Convergence of R B F ”  and AF are 0.001 and 0.05 
respectively. Background is white noise and the SNR is -5dB. 

IV. CONCLUSION 
This paper introduces an alternative approach of EP 

estimation based on an adaptive RBFNN model and a 
network optimization algorithm. The peaks which being the 
main components of an EP, are modeled by RBFs in the 
network. Some relevant theoretical properties of the RBFNN 
were reviewed in the context of algorithm design. Simulation 
results confirm the successful operation of our approach. The 
results also show that the performance of adaptive RBFNN is 
superior to the AF, this may be accounted for by the powerful 
modeling characteristic of RBFNN, permitting accurate 
estimation of single-trial EP. Using adaptive RBFNN, trial- 
to-trial variation could be observed and such information is 
potentially useful for analysis by clinician. 
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Fig. 4. The waveforms shown in the left column are 10 consecutive 
single-trail VEP signals. The results of estimation using R B F ”  
(A= 0.001) are shown in the right column while the bottom waveform 
is obtained by EA these 10 raw ensembles. 
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