
Title A matrix-pencil approach to blind separation of non-white
sourcesin white noise

Author(s) Chang, C; Ding, Z; Yau, SF; Chan, FHY

Citation
IEEE International Conference on Acoustics, Speech and Signal
Processing Proceedings, Seattle, WA, USA, 12-15 May 1998, v. 4,
p. 2485-2488

Issued Date 1998

URL http://hdl.handle.net/10722/46052

Rights Creative Commons: Attribution 3.0 Hong Kong License



A MATRIX-PENCIL APPROACH TO BLIND SEPARATIOIN OF NON-WHITE 
SOURCES IN WHITE NOISE 

Chunqi Chang', Zhi Ding', Sze Fong Yau' and Francis H Y Chan' 

'Department of Electrical and Electronic Engineering 
The University of Hong Kong, Pokfulam Road, Hong Kong 

'Department of Electxical and Electrical Engineering 
Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 

A B S T R A C T  

The problem of blind source separation in additive white 
noise is an important problem in speech, array and acoustic 
signal processing. In general this problem requires the use 
of higher order statistics of the received signals. Nonethe- 
less, many signal sources such as speech with distinct, 
non-white power spectral densities, second order statistics 
of the received signal mixture can be exploited for signal 
separation. While previous approaches often assume that 
additive noise is absent or that the noise correlation ma- 
trix is known, we propose a simple and yet effective signal 
extraction method for signal source separation under im- 
known white noise. This new and unbiased signal extractor 
is derived from the matrix pencil formed between output 
auto-correlation matrices at different delays. Simulation 
examples are presented. 

1. I N T R O D U C T I O N  

Blind source separation has become a well established re- 
search topic in the signal processing community. It is moti- 
vated by practical scenarios with involve multi-sources and 
multi-sensors. The key objective of blind source separation 
is to extract the source signals from the sensor measure- 
ments without the knowledge of the characteristic of the 
transmission channel. Examples include antenna beam- 
forming, multi-person speech separation (cocktail party 
problem), and multi-channel medical signal separation. 

Many papers concerned with this topic have been pub- 
lished, both on separation principles and specific algo- 
rithms. However, the most commonly used assumptions 
are (1) source signals are white and mutually independent 
(2) a t  most one source is Gaussian (3) multiple sensor out- 
puts are lsnearly independent. Based on these assump- 
tions, separation principle have been investigated [1][2], 
and algorithms exploiting higher order statistics have been 
proposed[3]. 

Recently second order statistics based algorithms are 
presented under the assumption that the sources for sepa- 
ration are colored signals [4][5][6]. Second order statistics 
based method does not rely on the the non-Gaussian as- 
sumption. They may generate better performance than 
algorithms based on higher order statistics. For practical 
applications involving separations of speech and music :jig- 
nals which are typically non-white, second order statistical 
methods can be used. 

However, existing second order statistical methods of- 
ten assume the absence of additive noise at sensors. To 
overcome this critical weakness, we propose a second or- 
der statistics based matrix pencil approach in this paper. 

The new approach yields unbiased signal estimates from 
signal mixtures corrupted by additive white noise. This 
paper is organized as follows. In section 2, the problem 
of blind source separation is described along with relevant 
assumptions on second order statistics of signals for sepa- 
ration. Section 3 outlines a basic signal separability based 
on second order statistics. In section 4, a new matrix pen- 
cil method for blind souirce separation is presented. Monte 
Carlo simulations of the proposed method are presented in 
section 5. 

2. PROBLEM FORMULATION 

A memoryless mixture of multiple signals is modeled by 
the following equation 

Z(n) := As'(n) + w'(n), (1) 

in which ?(n) is a vector of source signals of dimension 
N and Z(n) is the received signal vector of dimension M .  
In (l), G ( n )  is the additive white noise vector and A is a 
M x N memoryless mixing matrix. 

In order for all sourl:es to be separable, A must have 
full column rank, requiring M >_ N .  When A is not full 
rank, then signals can only be separated as classes [a ] .  In 
this paper, we only consider systems in which the sources 
are fully separable. 

Our objective is to find a signal extracting matrix 

such that 

B ~ z ( ~ )  = B ~ A z ( ~ )  4- IS'S(.) = E Z ( ~ )  + B T G ( n )  (3 )  

(4) 
where 

E = B ~ A  

is a permutation matrix which only has one nonzero ele- 
ment in each row and column. 

We assume that the source signals 

~ ( n )  = [ s l ( n )  s2(n)  . . . s,v(n) I' 
are uncorrelated of one another but are not white. Hence, 

and 

R , ( k )  fi E{s'(n)s'(n - k I T }  # 0 ,  for some k # 0. (6) 
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3. SIGNAL SEPARABILITY BASED ON 

Let r,(O) = E{lsl(n)l'). When all signals are non-zero, 
then denote 

SECOND ORDER STATISTICS 

A(k) = R , ( k )  =diag(r~(lc),rz(k), . . . ,  rnr(k)) (7) 

is full rank. Without loss of generality, we can assume that 

Given white noise with known correlation matrix A,, 
R,(O) = I .  

we have 

R,(O) = AR,(0)AT + A ,  = AAT + A,. (8)  

Thus, we can use a whitening matrix W such that 

I = w(R,(o) - A , ) w ~  = W A A ~ W * ,  (9) 

which implies that U = WA is unitary. 
We note that the assumption of known noise correlation 

matrix is typically impractical. In the special case when 
the noise correlation matrix is of the form a21 and A4 > N, 
then 0' can be estimated as the smallest eigen-value of 
Rz(0).  

Denote the whitened data vector as 2(n) = WZ(n), 
with auto-correlation R, (k )  = E{t'(n)z'(n - k ) T } .  Then 
we have 

R,(k)  = WAR,(k)ATVVT = U R , ( k ) U T .  (10) 

Hence columns of U are eigen-vectors of R, (k ) .  
If R, ( k )  has identical eigen-values, then their eigen- 

vectors are not unique. Hence we cannot always find the 
eigen-vector of R, (k )  as solutions. However, we can sep- 
arate groups of signals by exploiting eigen-vectors corre- 
sponding to different eigen-values. In a total blind situa- 
tion, let R , ( k l )  to have only L distinct eigen-values, then 
we can have L subspaces that are orthogonal and hence L 
subclasses of signals can be extracted by 

U?Z(n),  2 = 1 , 2 , .  . . , L.  (11) 

The dimension of U, is equal to the multiplicity of the 
corresponding eigen-value. 

Once we extract a new signal vector with lower dimen- 
sion 

its components can be extracted based on R , ( k z )  using 
identical steps. To ensure that this procedure can eventu- 
ally extract all the sources, it is necessary that the sources 
have different power spectral densities. In [6],  an algorithm 
which is exponentially convergent is proposed. 

The algorithm discussed above assumes that the cor- 
relation matrix of the noise is either known or can be es- 
timated when n/r > N. However, when the noise corre- 
lation matrix is either unknown or cannot be estimated, 
the methods will not apply. In view of this difficulty, we 
present in the next section an alternative algorithm which 
is insensitive to additive white noise. 

&(n)  = U,TZ(n) ,  (12) 

4. A NEW MATRIX PENCIL SEPARATOR 

We now present a method that does not rely on the in- 
formation in R,(O) which is corrupted by white noise. In- 
stead, we shall use information contained in 

R,(IC) = A A ( ~ ) A ~ ,  IC # o 

that is insensitive to additive white noises. 

eigen-value problem. If we solve for 
The algorithm is based on the following generalized 

effectively the equation can be rewritten as 

(14) A [ A ( k l )  - XA(kz)AT] v '=  0. 

One trivial solution to the eigen-vector problem is 

AT& = 0. (15)  

Note that the trivial solution will exist if M > N. Since 

CT.'(n) = GTAZ(n) + G:G(n) = r$G(n), (16) 
50 annihilates all signals in .'(n). In fact, if the noise cor- 
relation matrix is a21, the trivial solution & can be used 
to estimate 2 since 

i$Rz(O)z70 = a'. (17) 

Since A has full column rank, any other non-trivial so- 
lution requires eigen-value to satisfy 

whose eigen-vector must satisfy 

ATV; = ale,. (19) 

Therefore, if the ratio of % is unique, then v', is 
simply the 2-th signal extractor to yield 

CT.'(n) = CTAZ(n) + 2?,TG(n) = ~ , s , ( n )  + G?G(n). ( 2 0 )  

In general, if the ratio of is not unique and 

then let V, consists of all eigen-vectors for eigen-value 7 

v, = [GI Gt2  . . . v',, 1. ( 2 2 )  

A ~ V ,  = [e , ,  e , ,  . . . e , ,  ]U,, ( 2 3 )  

?,(n) = V:Z(n) = VTAs'(n) + VTG(n)  (24) 
= U; [Sli(n) sz2(n) " '  szm(n)] '  + VyT.'(n) 

We have 

in which U, is an z, x i, unitary matrix. Hence V, can 
be used to extract the set of signals {s,, i E I} 

A 

Signals within the set I can be extracted from Z7 by 
applying the same principle on its auto-correlation matri- 
ces 

for a pair of different delays, k~ and kg . Alternatively, since 
U, is unitary, its estimate can be obtained directly as the 
eigen-vectors of R,(k).  

Here we note that the trivial solutions of (15) are 
not separable from the other general eigen vectors of 
( R x ( k l ) ,  R s ( k 2 ) ) .  However, this is not a problem. The ex- 
tracted signals according to the trivial solutions are pure 
noises result in the smallest output power while signal ex- 
tractors will generate stronger outputs. Thus we can al- 
ways discard the trivial solution as the n/r - N vectors that 
result in the smallest product v'TR,(O)v'o. 

R7(k) e VTR,(k)V, = UTA(k )U,  (55) 
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5 .  SIMULATION 

Before numerical simulations are presented. It is helpful l,o 
analyze the best possible results one can obtain in signal 
separation when A is known a priori. Defining the pseudo- 
inverse of A as A’,  the signal estimate should be 

$n)  = A t Z ( n )  = g(n) + A’G(n). 

This represents the best possible result when noise is wn- 
known. Experimental results will be compared with the 
ideal situation. 

When A is unknown, blind separation performance will 
naturally be inferior due to two reasons: 

e The data length may be too short to accurately esl,i- 

e The underlying sources may not be fully uncorrelated 
with one another. This violation of our basic assump- 
tion will also degrade the performance. 

mate the correlation matrices R,(k).  

In the simulation, we consider a system with four 
sources and five outputs. Two sets of signals are tested. 
The first set of signals are four random color Gaussian sig- 
nals. Each signal is generated by filtering a white Gaussian 
noises using a 20-tap FIR filter with impulse response 

where cy = 1,0.4,0.3,0.2 respectively. The second set of 
signals are four speech signals sampled at  5500%. The 
mixing matrix used in both examples is 

0.6107 0.4959 0.2661 0.2504 

0.2380 0.2887 -0.7120 0.4914 
0.3397 -0.7494 -0.1157 0.2097 

0.3558 0.2644 -0.4216 -0.6640 
-0.5731 -0.1983 -0.4807 0.4593 

A =  [ 
The columns of A are normalized so that the total power of 
each sources in the mixtures to be equal. Simulations were 
conducted for 3 different signal lengths of 1000, 4000, and 
16000, with individual input signal to noise ratio (SNR) at  
-10, 0, 10, 20 30, and 40dB. For each situation, we run 100 
Monte Carlo simulations to get the statistical performance. 

The individual input SNR is now identical for all sources 
since we normalized columns of A. This allows a fair coin- 
parison. To measure the statistical performance of our 
method, we use the output signal to interference and noise 
ratio (SINR) as the performance index. The delay p<iir 
used in the matrix pencil method is ( k l  = I, IC2 = 3). 

The output SINR according to the individual input 
SNR are given in Figure (1 and Figure (2) for the two 
examples of signal separation, respectively. The output 
SINR is averaged over 100 Monte Carlo simulations. Let 
L be the length of data samples. In each figure, circle ‘0’ 

denotes cases for L = 1000, x-mark ‘x’ for L=4000, and 
plus ‘+’ for L = 16000. Finally to compare with the upper 
bound of output SINR, solid lines are given for ideal cases 
in which the mixing matrix A is known 

It can be seen that the matrix pencil method works well 
for real world speech signals. especially Comparing results 
from different data lengths, we find that the performance 
at L =lo00 is very close to what is achieved at  length 
L ~ 1 6 0 0 0 .  This result demonstrates that the proposed 

method converges very fast since the estimation of second 
order statistics does not require many data samples. 

For the specific examples, the output SINR saturates at 
about 20dB. This is because in high SNR case, the perfor- 
mance is dominated by the level of cross interference which 
is determined by the cross correlation between sources and 
the mixing matrix. Clearly for the same mixing matrix A ,  
different signal sources with different cross correlation also 
result in different output SINR. 

6 .  CO’NCLUSION 
In this paper we present a new second order statistical 
method for blind source separation. I t  is based on the 
general eigen decomposiltion of the matrix pencil formed 
between output auto-correlation matrices a t  different de- 
lays. The method has several attractive features compared 
with higher order statistical methods. First, it  relies only 
on second order statistics of the received signals and hence 
requires fewer data samples to converges. Second , it can 
separate Gaussian sourc’es. Compared with other known 
methods based on second order statistics, it does not re- 
quire zero additive noise or that the noise correlation ma- 
trix is known, and it is unbiased. Numerical simulations 
show that the method .works well for real world speech 
signals. 
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Figure 1. Performance for randomly generated sources 
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Figure 2. Performance for real world speech sources 
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