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Nonlinear Modeling and Spectral Analysis of Cuk Converters 

K.T. Chau, C.C. Chan, and Jianming Yao 
Department of Electrical and Electronic Engineering 

The University of Hong Kong 
Pokfulam, HONG KONG 

Abstract- Being a fourth-order circuit, the Cuk converter 
certainly needs alone systematic studies of its nonlinear dynamics. 
In this paper, the investigation of the nonlinear dynamics of 
Cuk converters is carried out by deriving their nonlinear 
models and performing their spectral analyses. Nonlinear 
dynamics, including the additional dc offset, significant 
subharmonic and higher harmonic spectral contamination as 
well as the effects of self-intermodulation and cross- 
intermodulation, due to large-signal perturbations of both the 
duty ratio and source voltage, are investigated. 

I. INTRODUCTION 

Due to the switching and nonlinear nature of power 
electronics circuits, the study of their dynamic behavior in 
both time and frequency domains has been one of the major 
research areas in power electronics [l]. The available time- 
domain approaches mainly focus on simulating the interested 
waveforms by using device-oriented simulation such as 
PSpice or circuit-oriented simulation. This time-domain 
simulation provides the transient behavior of power 
electronics circuits such as the maximum overshoot, rise time 
and settling time. On the other hand, the frequency-domain 
approaches have been widely based on deriving an 
approximated small-signal model of power electronics 
circuits. Incorporating superposition theorem with this small- 
signal model, a set of transfer functions can be formulated to 
assess the dynamic behavior of those circuits even in the 
presence of multiple excitations. However, the small-signal 
model is valid only in the neighborhood of an operating point 
that is determined by the values of circuit parameters, supply 
voltage and load. Thus, the small-signal modeling techniques 
can neither handle large-signal perturbations nor depict 
system spectral contamination with subharmonic and 
harmonic frequency components. 

The Volterra functional series (VFS) was first studied by 
Volterra in 1880’s as a generalization of the Taylor series 
expansion of a function [2]. Starting from the early 1940’s, 
the VFS has been successfully applied to the analysis of 
various nonlinear systems such as antennas, communications, 
fluid mechanics, biophysics and physiology [3]. In 1991, 
Tymerski firstly employed the VFS to investigate the control- 
to-output nonlinear frequency response of a pulse-width 
modulated (PWM) converter [4]. In 1993, Chau newly 
extended the VFS to investigate the nonlinear dynamics of 

various PWM converters in the presence of multiple 
excitations [5]. Recently, the VFS has also been successfully 
applied to PWM converters operating in the discontinuous 
conduction mode [6]. 

Since its invention in 1977 [7]-[9], the cuk converter has 
received much attention from the arena of power electronics. 
Focus of attention has been around its design and use in the 
field of switch-mode power stages. Analysis of the Cuk 
converter has been successfully performed for the studies of 
steady-state behavior and small-signal dynamics. Although 
nonlinear modeling and spectral analysis of switch-mode 
power stages have recently been performed, the investigations 
have been based on those second-order converters - buck, 
boost and buck-boost [4]-[6]. Being a fourth-order circuit, the 
Cuk converter certainly needs alone systematic studies of its 
nonlinear dynamics. 

It is the purpose of this paper to systematically investigate 
the nonlinear dynamics of Cuk converters by deriving their 
nonlinear models and performing their spectral analyses. 
Nonlinear dynamics, including the additional dc offset, 
significant subharmonic and higher harmonic spectral 
contamination as well as the effects of self- and cross- 
intermodulation, due to large-signal perturbations of both the 
duty ratio and source voltage, will be investigated. The 
theoretical results will be verified by numerically comparing 
with the results obtained by PSpice simulation. 

XI. VOLTERRA FUNCTIONAL SERIES 

The application of the VFS to problems in electrical 
engineering has been concentrated on single-input nonlinear 
systems such as antennas and communications. However, 
power electronics circuits are essentially nonlinear systems 
with dual inputs, such as the supply voltage and duty ratio for 
dc-dc converters, as well as the supply voltage and delay 
angle for ac-dc converters. Thus, the conventional VFS needs 
to be extended in such a way that it can be applied to those 
power electronics circuits. In the followings, the VFS for 
single-input nonlinear systems is introduced first and then 
extended to dual-input nonlinear systems. The extension to 
other multiple-input nonlinear systems can similarly be 
performed with ever increasing complexity. 

For single-input nonlinear systems, the output y ( t )  can 
be expressed as a VFS of the input u(t)  : 

0-7803-3932-0 

605 



(1) 

n=O 

where y,(t) and ~,,(T~,...,T,,) are called the nth-order output 
and Volterra ke mel, respectively. The multiple Laplace 
transform of this Volterra kernel becomes: 
f fn (SI,. . . , s, 1 

h0 n=O 
E h n ( z l  ..., zn)exp(-sIzI-~~~-~,z,)dzl~~~d~, n > 0 

where H,(s,,.-.,s,) is called the nth-order Volterra transfer 
function. Since tl-is transfer function may not be unique in 
the sense that transfer functions with different permutations 
of the arguments can produce the same nth-order output, it is 
usually symmetrized as follows: 

- 

(3) 

(4) 

where p(.) denotes all possible permutations of the 
arguments. Since all Volterra transfer functions can readily 
be symmetrized, in the following, they will be assumed to be 
symmetric and the overbar will be omitted. Hence, the 
Volterra model of single-input nonlinear systems is shown in 
Fig. 1. 

For nonlinear systems with dual inputs u,(t) and u h ( t ) ,  
the output y ( t )  can similarly be expressed as (I) ,  but with 
different nth-order output. Since the first few terms of the 
VFS are usually sufficient to represent the output, only the 
first three orders are derived. The higher orders can similarly 
be derived with ever increasing tedium. Firstly, the 0th-, 1 st-, 
2nd- and 3rd-order outputs are expressed as: 
Yo@) = h, ( 5 )  

Y 3 ( t ) = y y ( t ) +  J,,”””(t)+y,aab(t)+y3ahh(t) 
y(Tl ,‘2 >z3) 

= ItVWE C If, .cI, rmu(t - T,)v(t - z2)w(t - z3)ciz,dz2dz3 
{aaa,hbb,aab,abb) 

(8) 
where a and b indicate the contribution by u,(t) and u,,(t) , 
respectively. Notice that yP(t) , y: ( t ) ,  y y ( t )  , y,””(t), 
y,””(t) and yy(t) due to the individual contribution by 
either u,(t) or u,,(t) are called the self-intermodulation 

outputs. On the other hand, ~ ; ~ ( t ) ,  yTb(t)  and y3abb(t) due 
to the interaction by both u,(t) and U,, ( t )  are called the 
cross-intermodulation outputs. By taking the multiple 
Laplace transform of those Volterra kernels, the 
corresponding Volterra transfer functions are given by: 

Ho =h, (9) 

H Y ( S ~ , S ~ )  = [mhY(T,,~z)exp(-s,Tl -s272)d7,d72 (11) 

~ : ( s )  = p h;(z)exp(-sz)dz (10) 

(12) 
where U E {a,b} , uv E {aa,bb,ab} and uvw E 
{ a m ,  bbb, aab, abb} . Hence, the Volterra model of dual- 
input nonlinear systems can be constructed as Fig. 2. 

U- 

Fig. 1 .  Single-input Volterra model. 

Yo m 

I v, I 

Fig. 2. Dual-input Volterra model. 
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Since both inputs u,(t) and U, (t) may be composed of a 
number of frequency components, called the tones, whose 
amplitudes usually decrease with increasing frequencies, it is 
usually sufficient to consider the most significant two tones 
for the derivation. Thus, the general expression of these 
inputs are expressed as: 

%(t> = /A,(  cos(o,,t + A,) +[A21 COS(W,Zt + 4) 
ub(t) = (Bl( cos(o,,t + LB,)  +IB21 cos(~~, , t  +AB,) 

(13) 

(14) 
By substituting (13), (14) into (6)  and then using (lo), the 
1st-order output can be determined, Similarly, the 2nd-order 
output can be obtained by using (13), (14), (7)  and ( l l ) ,  
while the 3rd-order output is by using (13), (14), (8) and 
(12). The resulting 1st-, 2nd- and 3rd-order outputs are 
tabulated in Table I, where 4 and B, are complex amplitudes 
of the ith tone of u,(t) and u,(t) ,  respectively, A," and Br* 

are their conjugates, and AT) and B,'" are their optional 
conjugates corresponding to the minus sign of fs,, and Is,, , 
respectively. Notice that when a negative frequency is 
encountered, the complex conjugation of its amplitude 
becomes arealistic one since H,(-s,,...,-s,) = Hi(s,  ;..,s,). 

111. NONLINEAR MODELING 

As shown in Fig. 3, the Cuk converter is of fourth-order. 
Since its natural frequency is generally well below the 
switching frequency, its operating behavior in the continuous 
conduction mode (CCM) can be formulated as: 

where x = [iLi i,, vc, v,,lT is called the state vector, v ,  is 
the supply voltage, 6 is the duty ratio, and C,, C,, D,, D, 
describing the topological stages are given by: 

X=[6Cl +(l-6)C,]x+[6D1 +(1-6)D2]v, (15) 

r o  0 0 0 1  

10 1 / c 2  0 - l / ( C , R ) ]  

r 0  0 - l / L ,  O 1  

1 0 1/c, 0 -l/(C*R)j 
By perturbing the variables in (15), and then separating 

the steady-state and perturbed quantities which are indicated 
with the overbar and tilde, respectively, both the steady-state 
and dynamic equations can be obtained as: 
X=[6C,+(1-6)C,]51+[6Dl+(1-6)D,]v7, = O  (17) 

(18) 

- 

= Ely+ E,g + ESTs + E,%g + E5VTg 

where E, = SC, + (1 - s)C, , E, = (C, - C,)X + (D, - D,)Vs, 

E, = 6D, +(l- S)D,, E, = C, - C , ,  and E, = D, -D, . 
- - 

Fig. 3. Cuk converter. 

TABLE I 
THE 1 ST-. 2ND- AND 3RD-ORDER OUTPUTS 

~ 

Frequency Amplitude 
s,; (i = 1,2) 

s,; f s,; (i = 42) 

.sui t- suj 

Shj ?; Sbj 

s,; (i = 1,2) 

shi t sbi ( i  = 1,2) 

( i , j  = 42; i < j )  

(i, j = 1,2; i < j )  
s,~ f shj (i, j = 42) 

3s,; (i = 1,2) 

3Sb i  (i = 1,2) 
sa; * 2s, 
(i, j = 1,2; i # j )  
2s,; - s,; ( 2  = 1,2) 
s,; - Sni 4 s,- 
( i ,  j = 1,2; i # j )  

(i, j = 42; i f j )  
S,; t 2Shi 

2s,; - s,; (i = 1,2) 

Sbi + Sbj - Sbj 

( i , j  = 42; i # j )  
2SOi If- Sbj (i = 1,2) 

sa; f sai f Shk 

s,; -sa; +Shj  ( i , j  = 1,2) 

Saj +2s, (i = 1,2) 

Sai k Shj k Sbk 

( i , j ,  k = 1,2; j < k) 

( i , j ,  k = 1,2; i < j )  

' a i  + ' b j  - sbj (i, j = 1,2) 

A; HP (8,; 1 

Ai A!"H," (s,i , fS, i  ) 
Bi H p  ('b; 

B, BY) ~ , b b  (sbi ,ksbi) 

Ai A y )  H," (sui ,+s, ) 

Bi BF'H,hh (s,; ,fshi ) 

OSA, BI''H,"b (sa; ,+shj) 

0.25B: Hy (s,; ,sbi ,sbi) 
0.75 A; Ay'z H r  (sei ,fsaj ,*sa, ) 

0.75 A,2 A,: H;"" (sai , sa; ,-saj ) 

0.25AZ3 H,"" (sa, 7 s,, > so, ) 

1 . 5 A , A i * A j H ~ ( ~ , i , - ~ , i , S , i )  

0.75B; BFj2 H p  (sbi ,tsbi ,ksbj) 

0.75B;Bj*N,bbb (s,; ,shi ,-s,;) 

1.5BiBjB~H,bbb(shj,shj,-sbj) 

0 . 2 5 A ; B : * ) N y  (s,; , SOi '+-Shj) 

0SAj Aj"Br'H,"b (s,j ,kSoj > * s b k )  

0.5A; A,: B j  H,"' ( s , ~  ,-saj ,shj) 

0.25Ai BTj' H,"bb (so; , fsbj  ,+shj) 

0.5A;BI"B:' Hjabb (sa; ,+shj ,ts,,) 

0 .5A~BiB;H; lbh (~ , i ,~h i , -~b j )  
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It should be noted that the solution of (1 7) represents the 
Oth-order Voltem transfer function which is identical to the 
relationship obtained by classical steady-state analysis. 
Increasingly, the last two terms in (18), which are the 
products of two perturbed variables, can mathematically 
represent the inherent nonlinearities of this converter. 

In order to determine the 1st-, 2nd- and 3rd-order 
Volterra transfer functions, the inputs, namely the supply 
voltage and duty ratio, are generally represented by three- 
exponential expressions: 

i=l 
3 - 

6 = u,,(t) = Cesp(sb,t)  (20) 

(21) 

I = ,  

while the output is expressed as: 

where K = [0 0 0 11. By substituting (19)-(21) into (6)- 
(8) and using (10)-(12), it can be found that the coefficients 
of those exponent ials are the corresponding Volterra transfer 
functions. Thus, l)y substituting (19)-(21) into (18) and then 
equating those coefficients, the 1st-, 2nd- and 3rd-order 
transfer functions can be obtained as: 

r, = y( t )  = K? 

H;(S) = K(sI-E,)-'E, (22) 

HP(s) = K(sI-E,)-'E, (23) 

Hy(s, ,s ,)  = 0 (24) 

H ~ ( s , , s Z )  = K[(s, +s,)I-E,]-'E,(s,I-E,)-lE, (25) 

H,""(sl>s2>s3) = (27) 

(28) 

H;b(SI,sZ,S3) = 0 (29) 

H,"'(S , ,S~)  = K[(s, +S , )~ - -E , ] - I [E , (~~I -E , ) - 'E~  +E,] (26) 

H,bb6 (s, , s2, s3)  = K[(S, + sZ + s,) I - E,]-' 
~S,(S, + s,)I - E1]- 'E4(~,I  - EJ'E, 

H t b b ( ~ I , ~ z , ~ 3 )  =EL[(s, +s2 +s,)I-E,]-' 
1C4[(s, +$,)I  - E,]-l[E,(s,I - E,)-'E, + E,] 

(30) 
Following the' same procedure, the nth-order transfer 

functions can be derived using n-exponential inputs. As 
indicated in (1 S), there is no interaction between the tones of 

so that HT = H;"" = H,""" = 0 .  Moreover, since the 
above transfer finctions may not be symmetric, they are 
generally required to be symmetrized using (4). 

IV. SPECTRAL ANALYSIS 

Based on the derived Volterra model of the Cuk 
converter, the investigation onto its nonlinear behavior is 
carried out. As shown in Fig. 3, the circuit parameters are 
selected as L = L, = 200 p H ,  C, = C, = 20 pF and 
R = 2 C2 to ensure the converter operating in the CCM. 

A .  Subharmonics, Harmonics and Dc Ofset 

To investigate the nonlinear behavior of this converter, 
the supply voltage and duty ratio are selected as: 
v, = 20 + 4 ~ 0 ~ [ 2 ~ ( 6 0 0 t ) ]  + 2 cos[2n(700t) + 90°] V 
6 = 0.5 + 0.1~0~[2n(200t) + 180"] + 0.05cos[2n(300t) + 270'1 

Thus, ? ,=20V,  S=0.5,  (A,I=4V, LA, = O " ,  / 4 1 = 2 V ,  
(3 1) 

Ot, = 90", a,, = 2n(600)rad / s , o,, = 2n(700)rad / s , 

a,,, =2n(200)rad/s, o,,, =27c(300)rad/s. By using (17), 
the Oth-order transfer function, and hence the steady-state dc 
output can be calculated. Then, by employing (22)-(30) and 
Table I, the 1st-, 2nd- and 3rd-order transfer functions, and 
hence the corresponding outputs can be calculated. 

To illustrate the contribution and significance of each 
transfer function, the output voltage spectra resulting from 
using the combined 0th- and 1st-order transfer functions 
(Case A), the combined Oth-, 1st- and 2nd-order transfer 
functions (Case B), and the combined 0th-, 1st-, 2nd- and 
3rd-order transfer functions (Case C) are shown together in 
Fig. 4. 

It can be seen that the spectrum for Case A, marked with 
crosses (x), consists of the fundamental frequency 
components only, namely 200Hz, 300Hz, 600Hz and 700Hz. 
It is due to the fact that the 1st-order output is identical to that 
obtained by using the small-signal modeling and 
superposition theorem. Thus, it can only roughly estimate the 
fundamental frequency components and is ill-suited for all 
other spectral components, namely those significant 
subharmonic components, OHz and lOOHz, as well as 
harmonic components, such as 400Hz, 500Hz, 600Hz, 8OOHz 
and 900Hz, which are caused by self- and cross- 
intermodulat ion. 

On the other hand, the spectrum for Case B, marked with 
pluses (+), is quite similar to that for Case C, marked with 
circles (0), except with some discrepancies which are due to 
the 3rd-order self- and cross-intermodulation components 
such as (200-200+200)=200Hz and (200-200+600)=600Hz. 
It indicates that the contribution of the 3-rd order output is 
not very significant, and focuses on the intermodulation 
components. 

It is interesting to note that the dc component in the 
spectrum for Case C is significantly larger than that obtained 
from the Oth-order transfer function which is identical to the 
classical steady-state relationship 7, = V,S / (1 - 6) . This 
additional dc offset is mainly due to the 2nd-order self- 
intermodulation components such as (200-200)=OHz and 
(300-300)=OHz. Notice that these self-intennodulation 
components can be positive or negative, depending on the 
amplitudes and phase angles of those perturbations. 

lBll=O.l, LB,=180", 1B21=0.05, LB,=27O0, 

- - 
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B. Inaccuracy of Small-Signal Modeling 
25 

1 

'5. 

b - 4 -  

2 3 -  

E 
P 

E c 

v) 

2 -  

1 -  

In order to illustrate the inaccuracy of using small-signal 
modeling to assess the output voltage at the fundamental 
frequencies, the percentage amplitudes of the perturbations 
with respect to their steady-state values are varied so that the 
supply voltage and duty ratio are given by: 
v, = 20(1+ 2k cos[2n(600t)] + k cos[2n(700t) + 90"]> V 
6 = 0.5(1+2k~0~[2n(200t)+ lSO"]+ k~0~[27c(300t)+270"]} 

where k = 0...10% is defined as the perturbation factor. The 
errors of both the dc and fundamental frequency components 
obtained by using Case A with respect to those using Case C 
are shown in Fig. 5. It can be found that these spectral errors 
increase significantly with the perturbation factor. It also 
provides an indication on how large the amplitudes of 
perturbations can be allowed to employ the small-signal 
modeling. Focusing on this converter, the use of small-signal 
modeling is unacceptable even when the perturbation factor 
is 1%. Of course, the spectral errors for other frequency 
components are always 100%. 

(32)  

X 
m 

X 

x 
X 

x x 
m 

X 0 
b m 

Zb 
m @ 

m m 8 x 

C. VerlJication of Modeling Accuracy 

To verify the proposed approach, the modeling results are 
compared with the simulated results obtained by PSpice 
simulation. The experimental verification is not carried out 
because the modeling accuracy can hardly be proved in the 
presence of inevitable experimental errors. The PSpice 
simulation involves a tedious transient analysis from start-up to 
steady state, and a Fourier analysis of the resulting transient 
waveform over a defined period. 

By using the same circuit parameters and the inputs given 
by (31) as well as selecting a switching frequency of 50 kHz, 
the PSpice-simulated waveform of its output voltage vcz is 

5 

0 
0 

Frequency (Hz) 

Fig. 4. Variations in spectral outputs. x: Oth- and Ist-order. +: Oth-, 1st- and 
2nd-order. 0: Oth-, Ist-, 2nd- and 3rd-order. 

8 
$ 

6 71 

Perturbation (%) 

shown in Fig. 6. The corresponding waveforms of the inductor 
currents i,,, i,, and the capacitor voltage vc, are shown in 
Figs. 7 and S, respectively. Since i,, , i,, and vc, are always 
positive, the converter has been operating solely in CCM, 
never in the discontinuous conduction mode (DCM) nor in the 

Fig. 5 .  Variations in spectral errors. 
': OHz. 0: 200 Hz. x: 300 Hz.%: 600 Hz. f: 70OHz 

U I  
C l  

discontinuous voltage mode (DVM). 2 1  

I I 

I 
f 
I 

I 
I 

I 

I 

The corresponding output voltage spectrum can be obtained I I 

by applying Fourier analysis to the simulated waveform I I 

ranging from 5ms to 15ms. As shown in Fig. 9, the resulting 
spectrum, marked with crosses (x), is compared with the 
previous modeling result, marked with circles (0). As 
expected, the agreement between two spectra is very good. It 
should be noted that the PSpice-simulated spectrum is obtained 
at the expense of an hour, while the Volterra modeling 
spectrum can be obtained in less than a second. Moreover, 
numerical simulation can never provide an analytical model as 
given by the proposed approach. 

I 
I 
I 

as 5ms 1 oms 15ms 

Time 

T- - - - - - - - - - - -T - - - - - - - - - - - -  

0 U(0.b) 

Fig. 6. Output voltage waveform resulting from PSpice simulation 
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V. CONCLUSION 

r------------ I-- - -  ------- - -I 
os 5ms 1 Oms 15ms 

Time 
0 I(L.2) 

By deriving the nonlinear models of Cuk converters and 
then performing their spectral analyses, the investigation onto 
their nonlinear dynamics has been carried out. The nonlinear 
dynamics include the additional dc offset, significant 
subharmonic and higher harmonic spectral contamination as 
well as the effects of self-intermodulation and cross- 
intermodulation due to large-signal perturbations of both the 
duty ratio and source voltage. Although the investigation has 
only dealt with the cuk converter operating in the CCM, the 
modeling and analysis for the operation in the DCM and 
DVM can similarly be carried out. 

Fig. 7. Inductor current waveforms resulting from PSpice simulation 
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