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Abstract 

In this paper, the topology design of B-ISDN networks is 
addressed. We model the topological planning as a non- 
linear mixed-integer programming problem. The genetic 
algorithm, an effective optimization method, is applied to 
this problem. Since the randomness of the genetic 
algorithm cannot guarantee the biconnectivity 
requirement in the topologies generated by the genetic 
algorithm, we propose an algorithm to make all topologies 
at least biconnected while increasing the overall cost of 
the topologies the least. The result for a 20-node test case 
is presented in the paper and it is shown that the algorithm 
we propose has a very good convergence property. 

1. Introduction 
B-ISDN (Broadband Integrated-Services Digital Net- 

work) is expected to be the main carrier of next generation 
communication networks and the .Asynchronous Transfer 
Mode (ATM) will serve as the basic transmission technol- 
ogy for B-ISDN. The B-ISDN technology and the rapidly 
increasing information technologies will lead to rapid 
increasing in traffic load and frequent shift in traffic pat- 
tern. The changing traffic pattern and the new technolo- 
gies used in ATM networks make the topological design 
of ATM networks a new problem. Moreover, most 
researches that dealt with the topological design were 
either for data packet networks or for circuit switching net- 
works, and most technical papers about topological design 
were published during the late 1960s and early 1970s [l]. 
To the knowledge of the authors, there is no technical 
paper about the topology planning for the ATM networks. 
Therefore, we extend our previous work on network plan- 
ning of packet networks [2] to ATM networks. 

Because of the rapid expansion i n  both circuit- 
switched and data packet networks, topological planning 
has long been an active research topic. However, there is 
still no closed-form algorithms for optimizing a network 
topology for circuit-switched or data applications. The 
designer must employ a combination of heuristic algo- 
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rithms and analyses in an interactive manner until the sat- 
isfactory solution is obtained. In [ 11, network planning 
methods which rely on human interventions are summa- 
rized. This method emphasizes the expert experience and 
tries to find a satisfactory solution which uses a specific 
type of topology like star, ring, etc. Heuristic algorithms 
which are not based on a specific topology were also pro- 
posed. Perturbation techniques are the main approaches. 
The most important perturbation techniques are the branch 
exchange method, cut-saturation method, and concave 
branch elimination method [lo]. Of all the three types of 
heuristic algorithms, cut-saturation algorithms gives the 
better results and is computationally more efficient than 
the other two. In practice, these algorithms are usually 
combined with other heuristic algorithms or some varia- 
tions are used to improve result and computational effi- 
ciency. The main drawback of these methods is the 
likelihood to be trapped in a local optimum at an early 
stage. And there are indeed many local optima for the 
topology design problem [ 111. Algorithms based on inte- 
ger and nonlinear programming techniques were also pro- 
posed [3][4]. The problem with this kind of technique is 
that it is difficult to deal with large networks and simplifi- 
cations or assumptions have to be made to make them 
solvable. Thus, they lack flexibility and are even not real- 
istic in practice. 

Because of the drawbacks in the existing algorithms, 
we propose to use a different optimization technique, 
genetic algorithm, which can take the advantage of the 
layered architecture of ATM networks and may find the 
global optimum, to solve the problem of ATM network 
planning. In subsequent sections of this paper, the details 
of this approach is discussed. Section 2 presents the model 
for the ATM network planning. Section 3 describes the 
algorithm for solving the problem. In section 4, results are 
presented for a 20-node ATM network. Conclusions and 
suggestions for future work are given in Section 5. 

2. Mathematical Model for ATM Network 
Planning 
ATM is a layered architecture. Three layers have been 

defined to implement the features of ATM. The top layer 
is the ATM Adaptation Layer (AAL). The second layer is 
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the ATM layer. The bottom layer is the physical layer. The 
ATM connection is set up in the following way: when 
information needs to be communicated, the sender negoti- 
ates a "requested path" with the network for a connection 
to the destination. When setting up this connection, the 
sender specifies the type, burstiness, other attributes of the 
call, and the requirements of the end-to-end quality of ser- 
vice. The network checks its own resources to see whether 
such a quality of specification can be guaranteed. If yes, a 
virtual channel connection will be set up, otherwise, the 
request will be rejected. To accurately model those charac- 
teristics of ATM networks, we propose to use a layered 
framework for network planning and management. In the 
following paragraphs, we describe the framework in 
detail. 

The planning and management task is divided into 
four levels. The first level is the physical network design, 
which is performed to accommodate traffic over a rela- 
tively long period, e.g. ,  one year or a few years. The traffic 
requirements at this level are merely an estimate. Thus, 
complete characterization of the traffic dynamics compli- 
cates the problem and is unnecessary. The task at this level 
is to design the network topology and assign physical link 
capacities based on the long-term traffic requirements. 
The objective of topology design is to minimize the total 
cost. The second level is the design of the logical network, 
i.e., the reconfiguration of the network, given the physical 
network and a more detailed traffic description. The task 
at this level is to determine the virtual paths and assign 
them associated bandwidths. The third level is the call 
control level where admission control takes place. At this 
level, a more detailed description of the incoming call will 
be given and the admission control functions decide 
whether to accept the call based on the resources available 
at the moment. The fourth level is the cell level. The main 
task here is to police the traffic so that users will not send 
more traffic than agreed upon by the network and the 
users. 

The layered model simplifies the task of the topology 
planning, since the QOS requirements are moved down to 
the lower levels. According to the layered model, the topo- 
logical design problem can be stated as follows: 

Given: 
node locations 
traffic requirements 

nodal costs 
link cost matrix (fixed and variable costs) 

Objective: 

total cost. 
Select the links and their capacities to minimize the 

Subject to: 
* traffic flow constraints 
0 reliability constraints 

traffic requirements 
A mathematical formulation for the topological 

design problem is given in following: 

Variable definition: 
sd: source destination pair 
D: set of destination hosts 

N :  set of all nodes 
S: set of source hosts 

0 pair sd does not choose link ij 
LJ 1 pair sd chooses link ij { x . .  = 

y;'i" : bandwidth assigned to link ij for pair sd; 

t sd  : the average traffic requirements for pair sd, 

c~~ : variable cost for link ij (per unit bandwidth); 

c!, : fixed cost for link ij; 

cy : nodal cost for node i (per unit capacity); 

Mathematical formulation: 

i .j sd 

S.T. 

Id - 
i 

s E S , ~ E  D (3) 

.i i 

i , j E  N , S E  S , ~ E  D ( 5 )  sd , 
Y i,j - 

.\ d \ d  
x i j  = 0 if y i i  = 0 i , j E  N ;  S E  S ;  d e  D (6) 

The objective function (1) is to minimize the total 
cost, which consists of link cost and nodal cost. The link 
cost consists of two parts: the fixed cost and the variable 
cost. The fixed cost of a link does not depend on the 
capacity of the link, and only depends upon the decision of 
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whether to set up a link there. This could be interpreted as 
the infrastructure cost of building a link between two 
nodes. Since the variable x';; can only take either 1 or 0 
values, the summation of x'i; will either be 1 or 0, even 
if multiple routes choose the same link. Thus the fixed cost 
will not be counted multiple times. The variable cost of a 
link is proportional to the capacity of the link. So, the link 
cost is modeled as a piecewise linear function. It should be 
pointed out that the algorithm we propose has the ability to 
handle any functions, even functions which do not have 
close-form formulations. Equations (2) and (3) specify 
that all traffic requirements must be satisfied. Since we are 
in the planning stage, the available link capacity may not 
be the exact amount of the traffic requirement. Therefore, 
the link capacity could be greater than the traffic require- 
ment. Equation (4) specifies that the traffic flow is conser- 
vative, i.e., for any intermediate node, the traffic that goes 
in the node should equal to the traffic that comes out of the 
node. Equation (5 )  states that the link bandwidths cannot 
be negative. Equation (6) associates the decision variable 
x':: with the bandwidth variable y':;. 

The above formulation is a non-linear mixed-integer 
programming problem, which is very difficult to solve. In 
following section, we propose to use the genetic algorithm 
to solve this problem. 

3. Algorithm 
The characteristic of the topological design problem 

formulated above is that the number of constraint equa- 
tions quickly becomes unmanageable for even a small 
problem, if a conventional solving technique is used. If a 
heuristic approach, such as the perturbation algorithms, is 
used to solve the problem, only the local optima can be 
found. Thus, a different, stochastic optimization tech- 
nique, simulated annealing algorithm, is proposed for 
topology planning of packet-switched networks in [8] and 
is shown to be successful. The advantage of a stochastic 
search algorithm is the likelihood of finding the global 
optimum and the applicability to various problems. There- 
fore, in this research, we propose to apply a stochastic 
algorithm, genetic algorithms, to study the problem, 
because genetic algorithms have a better chance than sim- 
ulated annealing of finding the globally optimal solution 
[6]. The disadvantage of genetic algorithms is that they 
may be computationally more intensive than simulated 
annealing. 

The genetic algorithm consists of three main proce- 
dures: the determination of the initial solution pool, the 
selection of parents, and the production of offspring. The 
generation of initial solution pool is to create a population 
of chromosomes, which represent feasible solutions to the 
original problem. A good initial solution pool should be 
randomly selected. After the initial solution pool is 

selected, some solutions are selected based on the evalua- 
tion of the each individual solution (fitness) and the out- 
come of random choices as the parents of next offsprings. 
The next step is the production of offspring. The produc- 
tion of new offspring typically undergoes crossover and 
mutation. Crossover combines and mixes different indi- 
viduals being selected to form new ones. Mutation is per- 
formed on each individual which changes each gene of the 
individual with a small probability. After these proce- 
dures, we get a new population. The new population will 
display patterns of behavior that are more like those of the 
successful individuals of the previous generation, and less 
like those of the unsuccessful ones. With each new genera- 
tion, the individuals with relatively better values will be 
more likely to pass on to next generations, while the rela- 
tively unsuccessful individuals will be less likely to pass 
on [7]. The solutions are improved by going through a 
large number of generations. In 1994, Rudolph Guenter 
proved that the simple genetic algorithm converges to the 
global optimum [5]. 

The difficulty in developing a genetic algorithm to 
solve a particular optimization problem lies in the neces- 
sity of developing appropriate representation and encoding 
scheme for the solution space. The performance of a 
genetic algorithm heavily depends on solution representa- 
tion, encoding scheme, and selection of genetic operators. 

For the ATh4 network planning problem, we propose 
to obtain an initial solution pool by the following proce- 
dure: 1) specify a value k which is the degree of the net- 
work that we are going to generate. Start from node 1 to 
node R (the total number of nodes), for every node x, 
determine the number of links 1 which are incident upon 
this node. Assume 1 is less than k ,  determine the k-l neigh- 
boring nodes y,, ... Y k - l  which have the least link costs 
(variable cost) with node x and do not have a connection 
with x. Make connections between x and y, ,  ... Y k - l  . 
When we finish checking all the nodes, a k-degree net- 
work topology is obtained. Thus m initial network topolo- 
gies, which make up the initial solution pool, can be 
obtained by giving m different values to k. 2) check the 
connectivity of these network topologies. If any of the 
topologies is not a connected graph, we add the least-cost 
link which connects the disjoint components of the topol- 
ogy to make it connected. 

After the initial topologies are generated, the next step 
is to assign capacities to links. This is essentially a routing 
problem. In our study, the shortest path routing in terms of 
the link cost is used. We proceed as follows: for all source- 
destination pairs, one at a time, we find the shortest path 
between the source and the destination, and increase the 
capacities of all the links along the path with the traffic 
requirement of this source-destination pair. After the 
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I 
( O I I ~ O I O O I O I )  crossover (IO{, 1 0 0 1 0 1 )  
( 1 0 0 , 1 0 1  1 0 1 0 )  -+ (01 1,001 1010)  

Fig. 1. illustration of Crossover Operator 

capacity assignment is finished, an initial solution pool is 
established. 

Next we evaluate the solutions generated and select 
candidates for producing offspring. The following fitness 
function is proposed for the evaluation: 

(7) 

where ci is the cost of i-th solution in  the solution pool. 
The parents are selected according to the fitness of each 
individual, i .e.,  the probability of each individual being 
chosen is the fitness value. To make the algorithm con- 
verge, we force the selection to include the best solution so 
far. 

The offspring is produced by crossover and mutation. 
For crossover and mutation operations, a representation of 
the topology and an encoding scheme are needed. We rep- 
resent a topology with a 0-1 matrix topo. The matrix ele- 
ment topo(i,j) equals 1 if there is a link between node i and 
node j ,  and equals 0 if there is no link between them. 
Because the matrix is symmetric, we only need the upper- 
triangle elements to represent the topology (diagonal ele- 
ments excluded). Therefore, the topology can be repre- 
sented by a binary triangle matrix. Since the crossover and 
mutation operators need a binary string representation, we 
combine the upper-triangle elements to form a .binary 
string with n(n-1)/2 elements, which will undergo the 
crossover and the mutation. The crossover operator we 
adopted interchanges the elements of the two topology 
strings up to a point which is randomly determined. This 
process is shown in Fig. 1. After the crossover operations, 
the mutation operator is applied to all newly generated 

topology strings. The mutation operator randomly selects 
a small portion of the elements in the selected candidates 
and changes the value of the elements to the reverse value, 
for example, from 1 to 0 or from 0 to 1. In other words, 
mutation operator takes off or adds on some links ran- 
domly from some offspring topologies. The percentage of 
links which go under mutation operation should be less 
than 3%. In fact, crossover and mutation are very similar 
to perturbation methods in the sense that they all search 
for the best solution by adding and removing links. The 
genetic algorithm searches the better solution by giving 
better chance to good solutions to be selected and tries to 
combine the good parts of two solutions to form a even 
better solutions through crossover operations. The muta- 
tion operations try to lead the search out the local optima 
or give a new start point for searching. The advantage of 
the genetic algorithm over the perturbation methods is that 
it works on a pool of solutions instead of one, and the add- 
ing or removing of links is not limited to those operations 
that will improve the objective value, so the algorithm has 
a better chance of escaping local minima [6]. 

After the crossover and the mutation operations, we 
assign capacities to the links of all topologies using the 
same shortest path routing algorithm as the one used for 
generating the initial solution pool. A new generation of 
solutions is produced when the capacity assignment is fin- 
ished. 

One important point should be pointed out is that a 
disconnected topology may be produced by the crossover 
and the mutation. Adding back links is crucial to the algo- 
rithm for maintaining feasibility of offsprings and reduc- 
ing their costs. The proposed approach is to add back the 
minimum cost links which connects the disjoint compo- 
nents. The procedure is as follows: assume that a discon- 
nected topology is generated by the crossover and the 
mutation operations. First, we select a source-destination 
pair which has a source in one subnetwork and a destina- 
tion in the other subnetwork. Then we use Dijkstra’s algo- 
rithm [9] to generate two minimum-cost spanning trees 
rooted from the source and the destination of this source- 
destination pair for both disconnected subnetworks. Then 
we compare the costs of all links that connect the leaf 
nodes of these two disjoint components, and add the link 
of the least cost to the topology. This process is repeated 
for all other source-destination pairs which have a source 
in one subnetwork and a destination in the other subnet- 
work without considering the newly added links (other- 
wise, the network is already connected and there is no 
need to add a link to the topology). After this operation, 
the topology will become connected again. 

The above algorithm does not consider the reliability 
constraint. For network in which the reliability is impor- 
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tant, biconnectivity (2-connectivity) or n-connectivity 
constraints are required. In practice, biconnectivity is nor- 
mally good enough for reliability concern. Moreover, 
more connectivity implies more redundant resources. 
Thus, only biconnectivity constraint has been considered 
in our algorithm. Before we explain the algorithm of con- 
verting non-biconnected graph to a biconnected graph, we 
introduce a new concept, a lemma and a theorem. 

Definition. A biconnected component is called 
peripheral if it has only one articulation point. 

Lemma. Let G be a graph, G1 and G2 be two periph- 
eral biconnected components of the graph G, and G3 be 
the smallest subgraph of G which contains G I  and G2. If a 
link is added between any nodes of these two components 
except for the articulation points of G3, then resulting sub- 
graph G3 is biconnected. For all such links, the link which 
has the minimum cost is called the bridge link. 

Proof. Before the link is added, the only node whose 
removal will split the graph is the articulation point. After 
this link is added, this is no longer true, 

Theorem. Let n be the number of peripheral bicon- 
nected components of a non-biconnected graph. Then the 
minimum number of links needed to make it biconnected 
is n-I .  The minimum cost to make it biconnected is the 
cost of the n-1 bridge links. 

Proof. By the lemma above, we need at least one link 
to make a graph with two peripheral biconnected compo- 
nents biconnected and the bridge link is the least cost link 
of all such links. Adding such a link also reduces the num- 
ber of peripheral biconnected components by 1. Thus, for 
a graph with n peripheral biconnected components, by 
induction, we need at least n-1 links to make the graph 
biconnected and the minimum cost is the cost of the n-I 
bridge links. 

Based on the discussion above, we propose an algo- 
rithm for ATM network planning with biconnectivity con- 
straint. The block diagram of the algorithm is shown in 
Fig. 2 .  In the algorithm, the biconnectivity constraint is 
checked after a network topology is generated. If the 
topology is not biconnected, a bridge link is added to the 
topology to make it biconnected. The link capacities are 
assigned according to the shortest path routing algorithm 
which increases the capacities of the links along the routes 
by the amount of traffic requirements. For the links which 
are not among the shortest paths, there are two ways to 
assign the capacities. The first way is to assign the mini- 
mum link capacity given by users. The second way is to 
assign the minimum alternative path capacity. The mini- 
mum alternative path capacity is defined as follows: 
assume that concatenated links i, ..., j are not among any of 

Initial Topologies U 
-4Capacity Assignment1 

I I AddLinb 

3 Biconnected? 

Yes F-=?--J Add Links 

Fig. 2. The control flow of topology 
design with biconnectivity constraint 

the shortest paths and nodes i and j are the terminating 
nodes of these links. The minimum alternative path capac- 
ity is the minimum path capacity of all alternative routes 
from i to j (since the topology is biconnected, the alterna- 
tive route always exists). The default way is the first way. 

In the following section, the results of applying this 
algorithm to a 20-node test case are presented. 

4. Results 
The algorithm has been applied to different network 

planning cases. The result of a 20-node network design 
problem is presented here. The traffic among the nodes is 
assumed to be uniformly distributed among all nodes. The 
link costs are obtained from [IO]. The node cost i s  
assumed to be proportional to the capacity of the node. 
The number of solutions in the solution pool is set to be 
20. To test the performance of the algorithm under differ- 
ent settings, we alter the value of the crossover probability 
and the mutation probability. The costs of the best solu- 
tions at each iteration for different settings are shown in 
Fig. 3. From the figure we can see that the probability of 
mutation has a large effect on the performance. A larger 
probability of mutation significantly alters the topology 
and results in a slower rate of convergence to the opti- 
mum. The probability of crossover also affects the rate of 
convergence. In this case, both the highest and the lowest 
crossover probabilities result in a slower rate of conver- 
gence. For all circumstances, as the costs of the best topol- 
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0 1000 2000 3000 
Number of iterations 

Fig. 3. Results of network with 20 
nodes 

ogles at each iteration approach to the minimum solution, 
the convergence speeds slow down. It IS also shown that a 
15% reduction in  the cost has reached after 3000 of itera- 
tions when crossover probability and the mutation proba- 
bility are set to be 0.3 and 0.01 respectively. Other choices 
of the crossover and the mutation probabilities perform 
slightly worse. Table 1 summarizes the results for the 20- 
node case. 

This algorithm can also be applied to the case which 
requires the planning to include the existing networks with 
minor changes. To force all the solutions to contain the 
existing networks, we first make all the initial solutions 
(topologies) to contain the existing networks (subgraphs). 
Then, we change the mutation operator such that the muta- 
tion operations do not alter these subgraphs. Since all the 
solutions in the solution pool contain the subgraphs, the 
crossover operations will keep the subgraphs in the result- 
ing topologies. Thus the main changes are the process of 
generating initial solutions and the mutation operator. 

Cost 
reduced 

15.1% 

13.1% 

Table 1: Network Design Results 

added for Crossover Mutation 
bi- prob. prob. 

connect. 

0.6% 0.3 0.01 

0.8% 0.4 0.03 

Iteration j cost 

13;9% I 0.8% I 0.1 I 0.01 I 
5. Conclusions and Future Work 

We propose a layer framework for ATM network 
design. The layer approach makes the design task more 
manageable. Although topological design is still a large 
scale, non-linear, mixed-integer programming problem, 
we are able to solve the problem using a genetic algorithm. 

The algorithm is tested with a few test runs. From the test 
results, it is shown that the genetic algorithm we develop 
is effective. 

The possible future work for ATM network planning 
includes the expansion of the algorithm to more compli- 
cated cases, for example, the case that the node locations 
are not given. In general, it is very difficult to solve this 
problem; however, for a special case that the possible can- 
didates for the node locations are known, the genetic algo- 
rithm may still be applied, though some changes have to 
be made. The new requirement for this case is that the can- 
didate nodes for one location are exclusive, i.e. only one of 
them should be selected into the solution. Thus, we can 
change the crossover and mutation operator such that for 
all node locations, only one of their candidates is selected 
into the resulting topologies. 
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