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Abstract 
This paper presents a new strategy for dynamic walking 
where a gyroscope mounted on top of the biped is 
precessed to achieve balancing both in the Coronal and 
Sagittal planes. A gait is devised and simulation results 
are provided to show the feasibility of proposed 
balancing method. 
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1. Introduction 

Gyroscope is one of the most common sensors used 
for navigation, e.g., in aircraft and ships. It has also been 
used as an attitude sensor on walking robots[ 11. Another 
kind of application of the gyroscope is for motion 
stabilization, e.g., in monorail cars and ships[4]. 

Much research on locomotion of bipeds (two-legged 
walking robots) has been conducted in the past years. 
Both static and dynamic walking methods have been 
developed. The balance of bipeds in the Coronal 
(frontal) plane, often neglected in simulations of 2D 
walking, is of great importance. The majority of the 
proposed solutions to the balancing problem in the 
Coronal plane can be categorized into two groups. The 
first group is to use physical means to restrict the 
movement in the Coronal plane [2, 31 while the second is 
to use an inverted pendulum to shift the centre of mass 
for static walking or the zero moment point for dynamic 
walking of the biped to a point within the area of the 
supporting foot[5, 61. 

This paper presents a new strategy for dynamic 
walking where a gyroscope mounted on top of the biped 
is precessed to achieve balancing both in the Coronal and 
Sagittal planes. In this paper, only the kinematics and the 
stability of the gait of the biped will be considered. We 
will assume that the angles of the links of the biped can 
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follow any prescribed reference trajectories precisely, and 
hence the dynamics of motion of the biped will not be 
considered. 

2. Biped Configuration 

Figure 1 illustrates the configuration of the biped 
under consideration in a 3D view (not to scale). The 
biped can be divided into two parts - the gyroscope and 
the legs. For clarity, the two d.c. motors driving the 
gyroscope, one for the rotation of the flywheel and the 
other for the precession of the flywheel axis, are not 
shown. 

The directions of xyz axes are defined as x-axis 
pointing to the right, y-axis to the front and z-axis to the 
top of the biped. The Coronal (frontal) plane is the xz- 
plane viewed from the front, the Sagittal (median) plane 
is the yz-plane viewed from the right and the Transverse 
(horizontal) plane is the xy-plane viewed from the top. 

For a clear description of the current state of the 
biped, a fixed numbering scheme is applied - the links 
and the corresponding angles with the vertical are 
numbered from the left foot to the right foot as shown in 
Figure 2. 

3. Principle of Gyroscopic Couple 

In Figure 1, the wheel, of moment of inertia J, rotates 
about its axis PU at w rads and the axis is rotated (or 
precessed) in the horizontal plane UPV about the axis P W 
at R rads. The angular momentum of the wheel, Jw , 
about the axis of spin may be represented, in the usual 
convention, by the vector Pa, the sense o f  the vector 
corresponding to the forward movement of a corkscrew 
turned in the direction of rotation of the wheel. 

If the wheel is rotated about PW through an angle 
d e ,  the angular momentum of the wheel is then 



reprbsented by the vector Pb and the change in angular 
mo6entum by the vector ab, with a magnitude given by 

change in angular momentum = Jw d8 
~ 

~ 

If tdis change takes place in time dt, 

I dQ 
~ rate of change of angular momentum = Jw - 

dt 

is called the gyroscopic couple and is denoted, 
C = J w n  

the corkscrew rule to the vector ab, the 
required to cause precession is directed along the 

counter-clockwise looking hi the direction VP. 
to this couple, i.e. the couple exerted by the 
its bearings, is opposite in direction to the 

applied couple. 
fh te  that the vector representing the gyroscopic 

is perpendicular to the momentum vector of the 
with a sense opposing the precession 0. As an 

take the vector of the gyroscopic couple when 
the ?recession angle 8 = -45" and R> 0. Let the vector 

e gyroscopic couple have magnitude C and angle 
from the x-axis. Figure 3 shows the top 

view of this situation. 
gyr&copic couple will be denoted as CLa . 

The vector representing the 

4. $tatement of the Problem 

et mi be the mass of the i-th link and (xj, yj, zi) be 
the osition of the centre of mass of the i-th link. With a 
gyr !i scopic couple CLa acting on the biped, the zero 
mollpent point (ZMP) on the plane z = 0 is given by: 

~ 

wh're 2,, j;, and z, are, respectively, the second 
derpatives of Xi, yj and Zi, and g is the gravitational 
conbtant. 

pur objective is to find a gait for the biped, together 
with some associated motion for the gyroscopic couple so 
tha! the zero moment point (ZMP) is always within the 
foot of the supporting leg of the biped during the single 

7 

I 

ort phase. The following constraints must be 

a) The y-coordinate of the foot of the swinging leg 
should be larger at the end of the half walking cycle; 

b) the z-coordinate of the foot of the swinging leg should 
not be less than zero during the cycle; 

c) the angle of precession is continuous and monotonic 
increasing, and 

d) the angular velocity of the wheel should have 
acceptable bounds. 

5. Balancing by Gyroscopic Motion 

Figure 4 shows the positions of the legs in a typical 
walking cycle, labelled from (1) to (10) in time order. 
The biped, at the time (l), has its left leg in front and 
right leg at the back with two legs standing. Through the 
time (2) to (4), it brings its right leg to the front. During 
the time (5 )  and (6), the biped stands with two legs, the 
right one in front and the left one at the back. During the 
time (7) to (9), the right leg becomes the supporting leg 
and the left leg is brought to front. Finally, the legs of 
the biped return to its initial states at the time (10). The 
biped carries out this sequence repeatedly. 

In the time intervals (5) to (6), and (10) to (I), the 
biped stands with two legs, which are called the double 
support phase; otherwise, the biped stands with one leg, 
which is called the single support phase. Considered in 
the Coronal plane, when the biped stands on one leg, a 
moment should be supplied such that the zero moment 
point shifts to the supporting'leg. During the single 
support phase, the lifting leg moving to front will 
produce moments in the Sagittal plane that has to be 
stabilized by a component of the gyroscopic couple. 

The basic idea of our design is to generate the 
required couples from the gyroscope in order to: 

a) create a sufficient moment in the Coronal plane to 
shift the ZMP under the sole of the supporting leg, so 
that the other leg can be lifted up, and 

b) counteract the moment produced by the legs moving 
forward and backward in the Sagittal plane. 

Table 1 shows how the motion of the gyroscope should 
be synchronized with the movement of the legs as given 
in Figure 4 in order to balance the biped in both the 
Coronal and Sagittal planes. 

Initially, at time (l), the precession angle is at 
8 = -90°, which means that the vector of the angular 
momentum of the rotating wheel is pointing to the back 
of the biped, and the precession of the gyroscope is in a 
counter-clockwise direction. The precession angle is 
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increased continuously through 6’ = 0” at time (3) to 
B = 90” at time (5 )  to complete half a walking cycle. 
When the momentum vector reaches the angle B = 90” 
(pointing to the front of the biped), the precession of the 
gyroscope is reversed and it moves back in the clockwise 
direction. Finally, it returns back to B = -90” at time 
(IO) to complete a cycle of walking. 

Note that the entries in Table 1 are labelled (1) - (IO) 
in accordance with the leg positions given in Figure 4. 
The arrows beside the time labels indicate the direction of 
the gyroscopic couple in the Transverse plane. For 
example the direction of the couple at time (2)  is as 
illustrated in Figure 3. It can be shown that the moment 
produced by the biped at time (2) is generally in a 
direction opposite to the gyroscopic couple. If this 
couple is controlled appropriately, an exact cancellation 
of the moment of the legs and the gyroscope couple can 
occur. Therefore, the biped can walk in a dynamically 
stable manner. 

6. Verification by Simulation 

The above discussion provides a qualitative basis for 
solving the balancing problem by means of a gyroscope. 
We still need to produce a gait that will satisfy all the 
constraints stated in section 4. 

We have designed a number of gaits and checked 
each gait with the above constraints to determine whether 
it is feasible or not. After a large number of trials, we 
found that the constraints are quite restrictive. Figures 5- 
9 show one possible gait obtained by a heuristic 
argument. In Figures 5-9, 0, ( i  = I ,  ..., 5) the trajectories 
of the angles of the links in a half walking cycle are given 
(with a half period of 1.05 seconds). This half walking 
cycle corresponds to the sequence marked as (1) to (5 )  in 
the Figure 4. Table 2 gives the parameters (masses and 
lengths of the links) of the biped. Based on the 
information of the angles and the parameters, the centre 
of mass (xj, yj, zj) for the links and the position the foot 
of the swinging leg are obtained by kinematic equations 
and the results are plotted in Figures 10-12. The two 
components ( Csin a and Ccos a ) of the required 
gyroscopic couple can be deduced by equating the ZMP 
(see section 4) to the coordinates of the supporting foot. 
Then, the angle of precession and its rate (Figures 13-14) 
and the angular velocity of the wheel (Figure 15) are 
determined. 

From Figures 10-15, it can be seen that all the 
constraints are satisfied. Therefore, Figures 5-9 represent 
a feasible gait where a gyroscopic couple can be used to 
balance the biped in dynamic walking. 

7. Further Work 

Although we have shown by construction a gait for 
stable dynamic walking, there is scope for improvement. 
In our simulation, the supporting sole is taken to be a 
point. As a result, the position of the zero moment point 
is restricted to coincide with the point sole of the 
supporting leg. This implies that both the magnitude and 
direction of the gyroscopic couple is uniquely 
determined. This leads to some unsatisfactory features in 
the solution given in Figures 5-15. For example, 

(a) both w and R have jump discontinuities (see Figures 
14 and 15), and 

(b) the trajectory of the swinging leg is unnatural and is 
too close to the ground (see Figure 12). 

An obvious modification for improving the solution is 
to replace the point sole by a rectangular sole. The 
position of the zero moment point can then be relaxed to 
lie within the area of the sole. How the degree of 
freedom in placing the position of the zero moment point 
can be used to improve the posture of walking or to 
simplify the operation of the gyroscope is a topic for 
further investigation. 

8. Conclusion 

We have presented a new strategy for biped dynamic 
walking using a gyroscopic couple for balancing. Its 
feasibility has been verified by simulation. An advantage 
of the proposed method is that unlike the conventional 
method of trunk motion, our method simplifies the model 
of the biped from a complex kinematic chain to a simple 
one. This is because the use of a gyroscope for balancing 
eliminates the need to have branching links at the hip of 
the biped as would be required in a balancing scheme 
using an inverted pendulum. 
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Figure 2 - Model of the Biped 

Precession 
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Moment of inertia of the rotating wheel of mass 0.5kg 
and radius 0.05m, J =  0.000625 kgm' 
The lateral inclination., 4 = 0, 
The contact point of the supporting leg is: 
xc = O,y, = 0, andz, = 0. 
Duration of Single-Support Phase = 1.05 sec. 

Table 2 -The Parameters of the Biped 
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Figure 3 - Top View of the Gyroscope 
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Figure 4 - Positions of Legs during a Walking Cycle 
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Figure 10 - The x-coordinate of the Foot of the 

Swinging Leg 

0.15, 

”: U) -0.05 _ _ _ _  _ - - _ I  _ _ _ _ _ - _ _ _  A - - -  : /  
0 0.5 1 

-0.1 - - - - - - - - - l - - - - - - - - - J - - -  

-0.15 

Time in second 
Figure 11 - The y-coordinate of the Foot 

Swinging Leg 
of the 

I I I 

Time in second 
Figure 12 - The z-coordinate of the Foot of the 

Swinging Leg 
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Figure 13 - The Angle of Precession of the 

Gyroscope, e 

I 
01 I I I 

Time in second 
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Figure 15 - The Angular Velocity of the Wheel of 
the Gyroscope, w 
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