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ABSTRACT 

In this paper, a novel algorithm employing 
polynomial interpolation techniques is proposed for the 
analysis and resynthesis of musical tones, based on time 
domain information. This algorithm models a single 
period of oscillation as a series of features, with curves 
joining such features together. The trajectories of these 
features and the shape of the curves across the whole 
input signal can be parameterised, such that the signal can 
be analysed and resynthesised as a close approximation to 
the original. The current research introduced an 
alternative approach to analyse/resynthesise sampled 
musical signals in the frequency domain, one which 
characterises a signal by its physical structure rather than 
its frequency components. The results from this analysis 
can be used to further refine existing physical models of 
musical instruments. 

1 .  INTRODUCTION 

Traditionally, the analysis and resynthesis of musical 
signals have been carried out based on the function 
performed by the basiliar membrane of the cochlea, that 
of separating the incoming signal into frequency bands. 
Fourier analysis techniques[ 1,2,3] fit perfectly into this 
paradigm since they model periodic waveforms as a series 
of sine and cosine functions of varying amplitudes, 
frequencies and phases, with residue components modeled 
as noise. 

In this paper, a novel algorithm is proposed to 
analyse and resynthesise acoustical signals solely 
employing time domain information, from musical 
instruments which accepts as input a continuous flow of 
energy. The signals from such instruments are said to be 
"sustainable", since their amplitudes and tonal 
characteristics can be controlled by the player after the 
initial onset of energy input. This class of instruments can 
be functionally divided into two distinctive parts:- one 
which is directly manipulated by the player, and which 
involves nonlinear interactions with the player, and 

another which amplifies these oscillations into the 
surrounding space, which can be treated as linear. Here, 
we concentrate our efforts on the former part (the 
excitation), because different mechqnisms of excitation 
produce characteristic acoustical outputs. For the class of 
signals under consideration, each cycle s f  oscillation is 
composed of distinct states, each a result of different 
physical processes. In the time domain such processes can 
be easily identified and analysed, which is not possible in 
the frequency domain, due to the process of functional 
approximation. 

2. OVERVIEW OF ALGORITHM 

The principle from which this algorithm is 
developed is the Weierstrass Approximation Theorem[4], 
which proves that for a function of one v 
this case), there exist a polynomial which can interpolate 
an arbitrary number of points of this function. The present 
algorithm is composed of two blocks:- Analysis and 
Resynthesis (Fig. 1). Analysis is carried out on two levels. 
Firstly, significant features are selected from each period 
of the input signal so as to identify its general structure. 
Secondly, significant features from all periods are 
matched to find those that are present in a large number of 
periods throughout the input signal, and they are said to 
be common features of this signal. The c 
are used as starting points for the interpol 
which approximates the shape of each per 
error percentage of each sample. At this stage, we have a 
reconstructed version of the input where the abstraction is 
made on the waveshape of the periods, with no 
modifications to the evolution of the comman features. 
The changes to the common features are then analysed 
with straight line interpolation, so that the trend of Such, 
changes can be readily identified. Finally, the simplified 
trajectories of the common features are combined with the 
abstracted waveshape from the interpolation algorithm. to 
form a resynthesised version of the input, where the 
overall evolution of the entire input signal is abstracted. 

As stated in section I ,  this research is interested in 
the excitation signal of an instrument. Therefore, the input 
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signals to the algorithm were recorded from piezo-electric 
sensors located at the bridge of a cello at 22.05kHz The 

eractions between the 
a1 is transmitted to the 

ures the nonlinea 
string, before this 

body of the cello. 

3. DETAILED DESCRIPTION OF ALGORITHM 

The input signal is first divided into individual 
periods by visual inspection. Subsequently, each cycle of 
oscillation is searched for local maxima, local minima and 
zero crossings because such features are indicative of the 
physical process within a cycle (Fig. I ) .  A samples is 
labeled as maximum if its amplitude is greater than its 
nearest neighbour, a minimum if less than its neighbour. 

crossing is defined as the point before a sign change 
in the value of the amplitude occurs[5]. The initial sets are 

Feature Tuning (Fig. 1) which identifies and 
insignificant features according to the following 

e measure d is specified in terms 
samples, such that given nsample 

0 < J < n-  I , ]  < k < n -  I .- 

if (xi 1 - ( x i  1 < d (superscript s stands for feature) 

then both x i  and x) are considered too close together; 
2) A group of features that are deemed to be close are then 
exantined for the difference between their amplitudes, 
given a percentage deviation dev:- 

f(x;)-me+(x: jJ(4 j] 
meun[”f(x; j> f ( 4  j] 

if xlOO<dev (2) 

d xi are considered as insignificant. 
optimised feature sets are used as input to the 

Common Feature Detection module (Fig. I), so that 
features can be found which is significant throughout the 
input signal. Features are matched by their type and 
distance deviation (in number of samples) from each 
other, starting from the present period to the last period. If 
more than one possible match is available, the feature 

istance deviation is chosen. If the number 
ures is larger than or equal to a percentage 

of total number of cycles, then this list of features are 
labeled as common[5]. After all possible common features 
are found, the remaining features are deleted from the 
feature sets. 

The common feature sets are used as starting points 
for the interpolatio f each period’s waveform, using 
Hemite polynomia a specified percentage error for 
each sample. Hermite is a member of osculating 
polynomials, which interpolates not only the values of a 

function at given points, but also a specified number of 
derivatives. Hermite polynomials interpolates to the first 
derivative, and are guaranteed to generate curves with 
continuous first derivatives, given the sample values and 

r slopes. Without such continuity, artificial high 
frequencies will be generated in the interpolated signals. 
Also, in a prior study, Hermite polynomial is found to 
perform well in the number of samples needed to 
adequately approximate a waveform, and its mean square 
error performance as the interpolation error is relaxed[5] 

The interpolation of the input signal is carried out on 
a cycle by cycle basis. The curves between common 
features are first approximated using amplitude and slope 
information at the end points. Every point within this 
segment has an error percentage calculated:- 

P ( X k ) - f f ( X k )  x 100% for all k = 0,1, ..... n, (3) 
f ( X k )  1 

Any subsequent interpolated points are taken as the point 
with worst percentage error that is larger than that 
specified. Interpolation ends when all samples are within 
the error percentage specified The interpolated periods 
are appended to form the reconstructed signal, which 
differs from the original in the number of samples used 
and the shape of each period. We can assess the quality of 
the reconstructed signal by listening tests and the mean 
square error between this and the original signal. 

The lists of common features are further processed 
by Envelope Parameterisation (Fig. l) ,  whose function is 
to perform straight line fitting of the trajectories of the 
common features, so as to give an intuitive indication to 
the evolution of the features across the entire input signal, 
and to access the subjective effect of parameterising the 
envelopes of the waveform. At present, such trajectories 
contain the amplitudes of the common features. Within 
each trajectory, regions without null entries are found, and 
the first and last points of this region are joined with 
straight lines. Every entry within this region has an error 
percentage calculated using Eq 3 and further interpolation 
points are found using the same procedures and criteria in 
Hermite Interpolation. 

From the parameterised trajectories of the common 
features and the curve shapes from the Hermite 
Interpolation module, the signal is resynthesised by 
scaling the parameters of the interpolants such that the 
resynthesised curve will have the same shape as the 
original, according to the following definition:- 
f ( x k ) f o r k  = 0,1, ... n-  1 f ( x o )  = 0, is the original curve, 

weseek T(xk) fork  =0,1, ... n-1  T(x,)=Osuchthat 

f ( x k )  = aT(xk)fork = . . n-  1 (4) 
wherea is the ratio of the slope as found by joining a 
straight line between two adjacent common features, to 
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the slope found before the same features were processed 
by Envelope Parameterisation. It can be seen that if we 
multiply the coefficients of the Hermite polynomials with 
this ratio, a new curve conforming to the above definition 
will be formed. 

4. RESULTS AND CONCLUSIONS 

In order to test the performance of the 
analysishesynthesis algorithm, twelve tones were used as 
input, ranging in frequency from 70Hz to 441Hz (see 
Fig.3, Fig. 4 for all frequency values). Both subjective 
listening tests and objective MSE tests were used. 

The listening tests were carried out with a few 
participants of no formal musical background. Both the 
reconstructed signals and the resynthesis signals (Fig. I )  
were evaluated for subjective closeness to the original. 
The general impression was that both types of signals bore 
a close resemblance to the original tone, even at high 
percentage of error. However some high frequency 
contents were found to be missing due to the smoothing 
effect of the interpolating polynomials. 

As for the closeness between the reconstructed and 
reynthesised signals, it is agreed that even for large 
interpolation errors in the Analysis module, both signals 
are difficult to tell apart. However, the durations of the 
test signals varies from 0.3 to 0.8 seconds, and such 
subjective results therefore does not mean that the 
temporal evolution of the signals are unimportant in their 
identification. Fig. 2 shows a original tone against its 
resynthesised version. 

Fig.3 shows the percentage of the total number of 
samples used in interpolation against frequency, for 5%, 
15% and 25% of allowed interpolation error. The 15% 
line and 25% line have very similar shapes, due to the 
small reduction in interpolated points between these two 
values of interpolation error, roughly 5%. They have 
slopes roughly in the region of two parts in twelve, while 
the 5% error line has a slope of about eight parts in 
twelve. More significantly, the percentage of points used 
is very close for the 70Hz tone for all three error 
percentages, but diverges as frequency increases. For 
example, for the 70Hz tone the number of interpolated 
points used to achieve 25% (1094) error is reduced by 
50% to the number needed to achieve 5% (2228) error, 
while for the 275Hz tone, a 75% reduction is achieved as 
the interpolation error is relaxed from 5% (2349) to 25% 
(657). This suggests that the data reduction that can be 
achieved is greater for high frequency tones. However, for 
5% error, the percentage of total samples used for the 
441Hz tone is roughly three and a half times that of the 
70Hz tone. 

Fig. 4 shows the MSE per interpolated point of the 

reconstructed tones slope from Fig. 4. If we examine the 
MSE of a group of tones where the frequencies are 
doubled, we can see for the 70Hz group, 79Hz group and 
92Hz group, the MSE increases with frequency in a 
closely linear trend for the different errors shown. The 
general trend is that at 5% error, the slope is essentially 
negligible for all three groups. The slopes for 15% error is 
about one part in three, while at 25% it is roughly four 
times greater. This suggests that the MSE performance is 
poorer at higher frequencies and as interpolation error is 
relaxed. For example, the MSE increased by about thirty 
times for the 70Hz signal, while at worst (368Hz signal), 
it increased by forty times as the interpolation error is 
changed from 5% to 25%. Also, the MSE values at 25% 
error for the 368 tone is four times that of the 70Hz tone. 

Taking both Fig. 3 and Fig. 4 into account, we can 
conclude that for lower frequency tones, a greater value of 
interpolation error can be tolerated and employed since 
the absolute values and rate of increase o as 
the interpolation error is relaxed. Ho er 
frequencies, there is a considerable tradeoff between the 
amount of data reduction and the MSE. Considering the 
fact that significant data reduction is achieved between 
5% and 15% interpolation error for high frequency tones, 
while relatively small amount of reduction can be gleaned 
from 15% to 25% error, and of the great increase in MSE 
between these two values of interpolation error, it is 
concluded that for higher frequency signals, an 
interpolation error of about 15% should achieve optimal 
performance on both counts. 
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Fig. 1 Graphical Representation of AndysisiResynthsis Algorithm 


