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Abstract 

JPEG is an international standard for still image 
compression [ l ]  . The P E G  baseline algorithm allows 
users to supply the custom quantization table and 
Huffman table to control the compression ratio and the 
quality of the encoded image. Methods for determining 
the quantization matrix are usually based on i) rate- 
distortion theory [2,8] and ii) spatial masking effects of 
the human visual system [9]. In [2], Wu and Gersho 
proposed a recursive algorithm for generating picture- 
adaptive quantization tables based on rate-distortion 
approach but the complexity of the encoding algorithm is 
rather high, In this paper, we propose improvements to 
the Wu-Gersho’s algorithm and a new bit allocation 
algorithm. Simulation results show that our new 
algorithm is superior to the Wu-Gersho’s algorithm in 
terms of speed and peak signal to noise ratio (PSNR). 
Moreover, by incorporating the Human Visual System 
(HVS), our proposed coder can encode images with better 
visual quality. 

1. Introduction 

JPEG is an international standard for still image 
compression [ 11. The baseline P E G  algorithm allows 
users to supply custom quantization table and Huffman 
table to control the compression ratio and the quality of 
the encoded image. The quantization table given in the 
JPEG recommendation [l] is often used. Methods for 
determining the quantization matrix are usually based on 
i) rate-distortion theory [2,8] and ii) spatial masking 
effects of the human visual system (HVS) [9]. In [2], Wu 
and Gersho proposed a recursive algorithm for generating 
picture-adaptive quantization tables based on rate- 
distortion approach. The complexity of the encoding 
algorithm is rather high because it has to calculate the 
change of distortion and bits for every possible changes of 
stepsizes in the most effective subband at each iteration. It 
had also been pointed out in [2] that better result can be 
obtained by updating the efficiency h at each iteration. 
However, the arithmetic complexity is extremely high. It 
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is the purposes of this paper to reduce the arithmetic 
complexity of theoe bit-allocation algorithms and to 
incorporate the HVS to improve the visual quality of the 
encoded images. 

2. The %F7u-Gersho’s Algorithm 

The baseline .PEG coder is a transform coder 
consisting of: (8 x 8) DCT transformation, quantization, 
and runlength Huffman coding. The input image is 
grouped into (8 x 8) blocks and transformed by the DCT. 
The transformed coefficients are uniformly quantized by 
step sizes specified in the quantization matrix. The DC 
coefficients are diifferentially coded and the AC 
coefficients are ordered into the “zig-zag” sequence. 
Each nonzero AC coefficient is represented by its 
category and its valuie within that category. The category 
and the run of zero values preceding it is jointly entropy 
coded using the given Huffman table. 

In the Wu and Gersho’s algorithm, the quantizer 
step sizes {Q,: k = 0.,...,63} is adjusted to minimize the 
overall distortion: 

n=l k = O  

subjected to the bit rate constrain: 

where Dn,k(Qk) is the distortion in the k-th DCT 
coefficient of the n-th block if it is quantized with step 
size Qk , R, (e,, . . . , Q63) is the number of bits generated 
in coding the n-th block with the quantization table 
{Q, ,..., Q 6 3 } ,  and Q = {Q, ,..., Q6,} is the vector of 
quantization stepsizes. Starting from an initial 
quantization table of large step sizes, the algorithm 
decreases the step size in one entry of the quantization 



table at a time until a target bit rate is reached. In each 
iteration, the problem to be solved is: 

( 3 )  

where AD(Q)I,,,,, and AR(Q)l,,,, are respectively the 
change in distortion and the change in overall bit rate 
when the k-th entry of the quantization table, Q, , is 
replaced by qk . The maximization process can be split 
into two parts. The first part computes the efficiency: 

for all values of k and the second part solves: 

h = maxh, ( 5 )  

The algorithm is summarized as follows: 

1. Initialize the quantization table by: 
16 for k = 0, 1 Q,,, for  k = 1, ..., 63 

QP) = 

2. Initialize tables of h,  and gk by searching qk in 

{ 1 ,..., Q,, - 1) to solve (4) for k=l, ..., 63. 
At iteration ! , we perform the following: 
3. Search k in { 1 ,..., 63} for p to solve (5). 

4. Update the stepsizes by setting Qr' = op. 
5. Update A,] and g p  by searching q in {l, ..., Q!' - 11 

6. Repeat Steps 3 to 5 until R(Q'") 5 B . 
to solve (4). 

The maximum step size, Q,, , is set to 128. 

It can be seen that whenever one entry in the 
quantization table is altered, the bits due to runlength 
coding will also be affected. In principle, all the 63 h ,  's 
have to be computed again using the new quantization 
step sizes to select the most efficient subband for 
allocating bits. However, this is extremely time 
consuming. Even if we update only the most efficient h ,  

as in the Wu and Gersho's algorithm, the computational 
complexity is still very high. This is because we have to 
calculate U(Q'" 11 Q,,+,,), and M(Q'" )I Q,+,,, for 

q, = {I, ...,Q:) -1) at each iteration (step 5). 

3. The Proposed Algorithm 

Suppose that we have quantized the picture with the 
new stepsize Q(') and the resulting bit rate and distortion 
are respectively, R(Q(") and D(Q(") . We want to 
compute: 

The numerator is simple to compute using: 

Calculation of AR(Q('))lQLtl+qk is somewhat complicated. 

Consider the k transform coefficient, T,(n) ,  in block n. 

Suppose initially that the quantized value, F k ( n ) ,  is 
nonzero. When Q, is changed from Qif) to q k  , T,(n) 
will either be quantized to a zero or nonzero value 
depending on the value of q k .  Let the resulting 

quantization vector be $'). In the first case, the bits 
required to encode T,(n) ,  Ra,,, ( n )  , can be written as: 

where R;:;"'(n) is the length of the Huffman code to 

represent the zero-run and category for f , ( n )  with 

stepsize vector Q('), R&"(n) is the number of bits 

needed to represent f k ( n )  within that category with 

stepsize vector Q(') .  Using the given Huffman table and 
the quantized transform coefficients, the change in bits 
required in block n can be computed as follows: 

If the coefficient is quantized to zero, the change in bits 
can also be computed similarly. To simplify the 
operations, we can maintain a data structure that records 
those nonzero transform coefficients in each block after 
each iteration. Finally, we have: 

Instead of initializing the stepsizes to their maximum 
values, we can initialize them to the smallest values. 
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When the stepsizes are increased, certain subbands will be 
quantized to zero and will not participate in the bit 
allocation. Also we can limit the search range for q,, in 

updating & to: 

(Qr) - W ,  ...,Qr) - 1) (9) 

Experiments show that a look ahead window W of 6 to 10 
is sufficient. To reduce the arithmetic complexity further, 
we propose a method to approximate the calculation of 
h, . The method we used is to estimate ARQco ( n )  . 
Consider the first term in Eqn (7). It is observed that the 
length of the Huffman code in [ 11 is 16 except when the 
coefficients are of small amplitude (low category value). 
Therefore we can assume that the length of the code is 16 
when the coefficients are of large amplitude. On the other 
hand, for coefficients with small amplitude, we estimate 
the length of the code with a mean value. Therefore, the 
change in bits, AR,,,, e i e ) + y ,  ( n )  , can solely be estimated 

by the coefficients in that subbands. If the Huffman table 
for the number of zero values and category is decoupled 
or separable, then the estimation will be more accurate. 
An example is the following Huffman table: 

k 

Table 1 

As the codes for the zero-run and the category are 
separable, Eqn (7) can be rewritten as: 

where R& ( n )  and RG:, ( n )  stand respectively for the 
code length to represent the zero-run and category for 
block n. The last two terms are functions of the quantizer 
levels, q k ,  only. It can be seen from Table 1 that the 
length of the run-length code is always 6 when the 
number of the zeros is less than 16. Since the chance of 
having a long run of zeros is usually low except for end- 

of-block7 we can assume that the length of the code is 6. 
Therefore7 MQ(?) Qy +4r (a )  can be estimated by the 

coefficients T,-,(n),  T,(n) and T,+,(n). To further 
reduce the amount of computation, we can update the 
efficiency h, for part of the subbands only. As the 
change in h, will be smaller when k is farther apart from 
subband p (in zigzag scanning order), it makes sense to 
update those subbands that are adjacent to p. In this 
work, we update hp-, ,A,, and hp+, . The DC subband 
also participates in ithe bit allocation and the maximum 
step size is 255. 

If we update A R Q ( t ,  el""Yk ( n )  in each iteration, 

R(Q'") can be computed exactly and the algorithm can 
stop at a given compression ratio or quality (PSNR). If we 
choose to estimate ,UQ(!, Q f )  ( n )  , then the calculated 

bits, k(Q(f)) , will deviate from the true value and we can 
only stop at a given PSNR. Fortunately, we can 
requantize the picture to calculate the true bits R ( Q ( ' ) )  

when k(Q('') reaches the given bit budget B. Since 
R(Q'") is larger than B, we can start the estimation again 
until R(Q'") become sufficiently close to B. This 
enables us to correct the error in the estimation. In fact, 
only a few iterations are needed. 

' y k  

4. Human Visual System 

Various HVS models have been proposed in the 
literature [3-71. Mannos and Sakrison [3] were the first to 
model the HVS as a nonlinear point transformation 
followed by the MTF. Nil1 [5] modified the HVS and 
applied it to the DCT domain. Ngan et a1 [6] used Nill's 
HVS model with a different MTF: 

H ( f  ) = (0.3 1 -t 0.69f) exp( -0.29f) 

where f is the radial frequency in cycleddegree (CPD) of 
the visual angle subtended. Chitprasert and Rao [4] used 
a similar MTF: 

H(f) = 0.2461(0.1+ 0.25f)exp(-0.25f) 

and obtained the HVS model through the convolution- 
multiplication property of the DCT. Perkins and 
Lookabaugh [7] proposed a quadratic fit to the measured 
data of contrast sensitivity by Campbell and Robson and 
modeled the angular sensitivity as a quadratic polynomial: 

S,(x) = - 4 . 4 7 ~ ~  + 8.86~ - 4.39 

SA(CL) = -0.0222a - O.0OlaZ 
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S, (x) and SA (x) are respectively the normalized 
sensitivity in dB and the angular sensitivity in dB, x is the 
natural logarithm of the number of cycles per degree 
appearing at the retina,J; a is the deviation in degrees of 
the gratings orientation from the nearest horizontal or 
vertical axis. Here, we use the formula in [4] to computef 

Jn: + n i  
2N for the (n,,n,) subband: f = f s  

where f ,  is the sampling density and is taken as 64 here, 
N=8 is the transform size. a is simply given by: 

a = min{e,90-8}, e =tan-’ 

The relative weightings are then given by: 
log,, w(nl, n2 ) = s, (x(nl, n2 )> + SA (a (n, , n2 )) . In this 
work, we make use of the HVS models in [4] and [7] to 
obtain the weighting function for each subband. The 

distortion that we used is: D,(Q) = ~ ~ w ~ D ~ , ~ ( Q ~ )  . 
N 63 

n = l  k = O  

5. Simulation Results 

Experiments are performed on the 512 x 512 
greyscale images Lenna and Baboon. The algorithms that 
we have tested are: 

1. WG: Modified Wu-Gersho’s algorithm with W = 6 , 
2. FCH: Proposed algorithm with W = 6 , 
3. FCH-HVSl: Proposed algorithm ( W = 6 ) with HVS 

model in [7], 
4. FCH-HVSZ: Proposed algorithm ( W = 6 ) with HVS 

model in [4], 
5. JPEG-D: JPEG baseline algorithm with quantization 

tables in [ 11. 

Figure 1 and 2 show the PSNR of encoding the 
lenna and baboon images at various bit rate by the JPEG 
default matrix (JPEG-D), our proposed algorithm without 
HVS weighting (FCH), and the Wu and Gersho’s 
algorithm (WG). It can be seen that the performance of 
the our algorithm is slightly better than the Wu and 
Gersho’s algorithm. The improvement over the JPEG 
default quantization table ranges from 0 to 3 dB. The 
perceptual quality of the algorithms are similar. Figure 3 
shows the Baboon image compressed to 0.35 bpp using 
algorithms FCH, FCH-HVS 1, FCH-HVS2 and JPEG-D. 
It can be seen that algorithm FCH-HVS1 has best visual 
quality followed by algorithms FCH-HVS2, FCH and 
PEG-D. The computation time of the algorithms depend 

on the compression required. At 0.4 bpp, the computation 
time of algorithm FCH requires 5 minutes on a Pentium 
100 Computer which is about two times faster than the 
modified Wu-Gersho’s algorithm (WG). It is expected 
that the execution time can further be reduced after 
careful optimization. For algorithm 2 to 4, the 
quantization table are estimated using table 1 while the 
actual encoding is performed using P E G  default 
Huffman table. The performance is slightly affected but 
the overall performance is still very good. If the custom 
Huffman table is required, we can f i s t  estimate the 
quantization table using the default Huffman table or the 
one in table 1 and collect the statistics of the run and 
category to generate the desired Huffman table. 
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Fig. 1. Performance Comparison between JPEG-D, Fig.2. Performance Comparison between JPEG-D, 

FCH and WG algorithm for baboon. 
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Fig.3. Baboon image compressed to 0.35 bpp using algorithm (a) JPEG-D (b) FCH (c) FCH-HVS1 (d) FCH-HVS2 
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