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Abstract— In this paper, the non-data-aided (NDA) maximum
likelihood (ML) symbol timing estimator in MIMO correlated
channel is derived. It is found that the extended square nonlinear-
ity estimator in [9] is just a special case of the proposed algorithm.
Furthermore, the conditional Cramer-Rao bound (CCRB) and
the modified Cramer-Rao bound (MCRB) are also established.
Simulation results under different operating conditions (e.g.,
number of antennas and correlation between antennas) are given
to assess the performances of the NDA ML estimator and it is
found that the mean square errors (MSE)s of the NDA ML
estimator i) are close to the CCRBs, but not the MCRBs; ii) are
approximately independent of the number of transmit antennas;
iii) are inversely proportional to the number of receive antennas
and iv) correlation between antennas has little effect on the MSE
performance.

I. INTRODUCTION

Communication over Multiple-input multiple-output
(MIMO) channel has attracted much attention recently due
to the huge capacity gain over single antenna system. While
many different techniques and algorithms have been proposed
to explore the potential capacity, synchronization in MIMO
channel received relatively less attention.

Symbol timing synchronization in MIMO uncorrelated flat
fading channel was first studied by Naguib et al. [4], where
orthogonal training sequences are employed. This algorithm
was extended by the authors in [8] to increase its estimation
accuracy. Recently, the true maximum likelihood symbol tim-
ing estimator based on training sequences was derived in [12].
While all the above mentioned symbol timing synchronization
algorithms are data-aided, there is not much discussion on
non-data-aided (NDA) estimators. The only one reported in
the literature is [9], where the well-known square nonlinearity
estimator [10] in single antenna system was extended to
MIMO channel.

In this paper, the NDA ML symbol timing estimator in
MIMO channel is derived. Particularly, we consider correlated
fading between antennas. It is found that the extended square
nonlinearity estimator in [9] is just a special case of the
proposed algorithm. Furthermore, the conditional Cramer-Rao
bound (CCRB) and modified Cramer-Rao bound (MCRB) are
also derived for comparison. Simulation results under different
operating conditions (e.g., number of antennas and correlation
between antennas) are given to assess the performances of
the NDA ML estimator and it is found that i) the MSEs
of the NDA ML estimator are close to the corresponding
CCRBs, but not MCRBs; ii) the MSEs are approximately

independent of the number of transmit antennas; iii) the MSEs
are inversely proportional to the number of receive antennas
and iv) correlation between antennas has little effect on the
MSE performance.

II. SIGNAL MODEL

Consider a MIMO communication system with N transmit
and M receive antennas. At each receiving antenna, a super-
position of faded signals from all the transmit antennas plus
noise is received. The complex envelope of the received signal
at the jth receive antenna can be written as

rj(t) =

√
Es

NT

N∑
i=1

hij

∑
n

di(n)g(t − nT − εoT ) + ηj(t),

j = 1, 2, ...,M
(1)

where Es/N is the symbol energy; hij’s are the complex
channel coefficients between the ith transmit antenna and the
jth receive antenna; di(n) is the zero-mean complex valued
symbol transmitted from the ith transmit antenna; g(t) is the
transmit filter with unit energy; T is the symbol duration;
εo ∈ [0, 1) is the uniformly distributed unknown timing offset
and ηj(t) is the complex-valued circularly distributed Gaussian
white noise at the jth receive antenna, with power density
No. Throughout this paper, it is assumed that the channel is
frequency flat and quasi-static.

After passing through the anti-aliasing filter, the received
signal is then sampled at rate fs = 1/Ts, where Ts � T/Q.
Note that the oversampling factor Q is determined by the
frequency span of g(t); if g(t) is bandlimited to f = ±1/T
(an example of which is the root raised cosine pulse), Q = 2
is sufficient. The received vector rj , which consists of LoQ
consecutive received samples (Lo is the observation length),
can be expressed as (without loss of generality, we consider
the received sequence start at t = 0)

rj = ξAεo
ZHT

j,: + ηj , (2)

where1 ξ �
√

Es/NT ,

rj � [rj(0) rj(Ts) ... rj((LoQ − 1)Ts)]T , (3)

Aε � [a−Lg
(ε) a−Lg+1(ε) ... aLo+Lg−1(ε)] , (4)

1Notation xT denotes the transpose of x, and xH denotes the transpose
conjugate of x.
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ai(ε) � [g(−iT − εT ) g(Ts − iT − εT )
... g((LoQ − 1)Ts − iT − εT )]T , (5)

Z � [d1 d2 · · · dN ], (6)

di � [di(−Lg) di(−Lg + 1) · · · di(Lo + Lg − 1)]T ,(7)

ηj � [ηj(0) ηj(1) ... ηj(LoQ − 1)]T , (8)

H �




h11 h21 · · · hN1

h12 h22 · · · hN2

...
...

h1M h2M · · · hNM


 , (9)

with Hj,: denotes the jth row of matrix H, η(i) � η(iT/Q),
and Lg denotes the number of symbols affected by the inter-
symbol interference (ISI) introduced by one side of g(t).

Stacking the received vectors from all the M received
antennas gives2

r = ξ(IM ⊗ Aεo
)vec(ZHT ) + η (10)

where r � [rT
1 rT

2 ... rT
M ]T , η � [ηT

1 ηT
2 ... ηT

M ]T and IM is
the M × M identity matrix.

In order to include the correlation between channel coeffi-
cients, we write

H =
√

ΦRHi.i.d.

√
ΦT

T
(11)

where ΦT and ΦR are the power correlation matrices [7]
of transmit antennas and receive antennas arrays (which is
assumed known), respectively; Hi.i.d. ∈ C

M×N containing
independently and identically distributed (i.i.d.) zero-mean,
unit-variance, circularly symmetric complex Gaussian entries
and the square roots are the matrix square root (i.e., Cholesky
factorization) such that

√
Φ
√

Φ
H

= Φ. Note that (11) models
the correlation among transmit and receive antennas array
independently. This model is based on the assumption that only
immediate surroundings of the antenna array impose the cor-
relation between antennas array elements and have no impact
on the correlation at the other end of the communication link.
The validity of this model is verified by recent measurements
[5]-[7]. Putting (11) into (10), we have

r = ξ(IM ⊗ Aεo
)vec(Z

√
ΦT HT

i.i.d.

√
ΦR

T
) + η. (12)

III. NON-DATA-AIDED ML ESTIMATOR

In this case, no training sequence is used and Z contains
real data. Now, the matrices Z and Hi.i.d. in (12) are unknown.
Using the identity vec(AYB) = (BT ⊗ A)vec(Y), (12) can
be rewritten in the following form

r = ξ(IM ⊗ Aεo
)(

√
ΦR ⊗ ILo+2Lg

)vec(Z
√

ΦT HT
i.i.d.) + η

= ξ(
√

ΦR ⊗ Aεo
)vec(Z

√
ΦT HT

i.i.d.) + η, (13)

where the last line come from the fact that (A⊗B)(C⊗D) =
(AC) ⊗ (BD). Note that although ΦT is assumed to be
known, it cannot be separated from Z and Hi.i.d. because

2Notation ⊗ denotes Kronecker products and vec(H) denotes a MN × 1
vector formed by stacking the columns of H under each other.

the correlation in transmit antennas can be translated into
correlation of unknown data or vice versa.

Since the noise is white and Gaussian, the joint ML estimate
of εo and vec(Z

√
ΦT HT

i.i.d.) is given by maximizing

p(r|ε,x) =
1

(πNo)LoQ
exp

[
− (r − Ǎεx)H(r − Ǎεx)

No

]
,

(14)
or equivalently minimizing

J(r|ε,x) = (r − Ǎεx)H(r − Ǎεx), (15)

where Ǎε � ξ(
√

ΦR ⊗ Aε), ε and x are the trial values for
εo and vec(Z

√
ΦT HT

i.i.d.), respectively.
With the linear model of (13), the ML estimate for

vec(Z
√

ΦT HT
i.i.d.) (as a function of ε) is given by [14]

x̂ = (ǍH
ε Ǎε)−1ǍH

ε r. (16)

Putting (16) into (15), after some straightforward calculations
and dropping the irrelevant terms, the ML symbol timing esti-
mator reduces to the maximization of the following likelihood
function:

Λ(ε) = rHǍε(ǍH
ε Ǎε)−1ǍH

ε r. (17)

It can be easily shown that

Ǎε(ǍH
ε Ǎε)−1ǍH

ε = IM ⊗ Aε(AH
ε Aε)−1AH

ε , (18)

which gives

Λ(ε) =
M∑

j=1

rH
j Aε(AH

ε Aε)−1AH
ε rj . (19)

The NDA ML symbol timing estimation can be stated as

ε̂ = arg max
ε

Λ(ε). (20)

We make the following remarks:

1) The correlations in the transmit and receive antenna
arrays do not appear in the estimator. That is, the
NDA ML symbol timing estimator is independent of
the antennas correlation.

2) The likelihood function at each receive antenna can
be calculated independently and then added together to
obtain the overall likelihood function. Furthermore, for
each of the receive antenna, the likelihood function is
the same as the likelihood function for single antenna
systems [11], [16].

3) In single antenna systems, a low-complexity technique
was proposed in [11] to maximize the likelihood func-
tion for symbol timing estimation. It was further shown
that the resultant estimator reduces to the well-known
square nonlinearity estimator [10] under certain condi-
tions. In the present MIMO case, the low-complexity
maximization technique [11] can also be applied to
the proposed estimator (20). With the same arguments
and conditions in [11], it can be easily shown that the
proposed estimator (20) reduces to the extended square
nonlinearity estimator in [9].
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4) Notice that although the low-complexity maximization
technique in [11] can be applied to the proposed estima-
tor (20) and this results in an estimator with pretty good
performance, however, the low-complexity maximiza-
tion technique involves an approximation, which causes
incomplete cancelation of self-noise at high SNRs.
Therefore, we do not pursue this direction in this paper.
Instead, a two-step maximization approach is employed.
The first step (coarse search) computes Λ(ε) over a grid
of timing delay εk � k/K for k = 0, 1, ...,K − 1,
and then the εk that maximizes Λ(ε) is selected. The
second step (fine search) finds the global maximum by
using either gradient method [17], dichotomous search
[15], or interpolation [15]. In this paper, we employ
the parabolic interpolation in the second step due to
its implementation simplicity. More specifically, assume
that Λ(εk̂) is identified as the maximum among all Λ(εk)
in the first step. Define I1 � Λ(εk̂−1), I2 � Λ(εk̂) and
I3 � Λ(εk̂+1), then [15]

ε̂ = εk̂ +
I1 − I3

2K(I1 + I3 − 2I2)
. (21)

IV. PERFORMANCE BOUNDS

In this section, we presented two performance bounds,
namely conditional Cramer-Rao bound (CCRB) and modi-
fied Cramer-Rao bound (MCRB). CCRB is the Cramer-Rao
bound conditioned that the nuisance parameters are treated
as deterministic and are jointly estimated together with the
unknown parameter of interest (symbol timing). Therefore, the
CCRB serves as a performance lower bound for the NDA ML
estimator derived. On the other hand, the MCRB is a lower
bound for any unbiased symbol timing estimator, irrespective
of the underlaying assumption about the nuisance parameters
and it serves as the ultimate estimation accuracy that may
be achieved. Due to space limitation, only the results are
presented. The detailed derivation can be found in [13]. It
can be shown that the CCRB for symbol timing estimation in
MIMO correlated fading channel (for a specific εo) is given
by3 [13]

CCRB(εo) =
1

2M tr(D̃H
εo

P⊥
AD̃εo

Ψ/N)

(Es

No

)−1

. (22)

where

D̃ε � 1√
Q

dAε

dε
, (23)

P⊥
A � ILoQ − Aεo

(AH
εo

Aεo
)−1AH

εo
, (24)

and Ψ is a Hermitian and Toeplitz matrix with elements
[Ψ]ij � tr

(
Γz(j − i)ΦT

)
and Γz(j − i) � E[(Z∗)T

j,:(Z)i,:] is
the average cross-correlation matrix of the symbols transmitted
with time index difference j − i.

3Strictly speaking, the bound given is the asymptotic CCRB. However, it
is shown in [16] that the true CCRB tends to the asymptotic CCRB when
M, N → ∞

For the MCRB, it can be shown that it is given by [13]

MCRB(εo) =
1

2M tr(D̃H
εo

D̃εo
Ψ/N)

(Es

No

)−1

. (25)

Since εo is assumed to be uniformly distributed within
[0, 1), the average of CCRB and MCRB can be computed
by numerical integration of (22) and (25), respectively. In the
following, we consider two special cases.

Special Case 1: The data is spatially and temporally white
(e.g., Vertical-Bell Labs Layered Space-Time (V-BLAST) sys-
tem4 [1]). In this case, Γz(j − i) = INδij , implying that
[Ψ]ij = δij tr(ΦT ) = Nδij . Therefore, the corresponding
CCRB and MCRB are

CCRB(εo) =
1

2M tr(D̃H
εo

P⊥
AD̃εo

)

(Es

No

)−1

(26)

and
MCRB(εo) =

1
2M tr(D̃H

εo
D̃εo

)

(Es

No

)−1

, (27)

respectively. Note that in this case, the CCRB and MCRB
do not depend on the number of transmit antennas and the
correlations among antennas.

Special Case 2: Space-Time Block Code (STBC) system.
In general, a block of space-time block coded symbols can be
represented by a s × N matrix [3]

G =
rs∑

k=1

�(bk)Xk + j
¯

rs∑
k=1

�(bk)Yk , (28)

where r is the rate of the STBC, s is the length of the STBC,
bk’s are the i.i.d., complex valued symbols to be encoded, �(.)
and �(.) denote the real and imaginary parts, j

¯
�

√−1 and
Xk,Yk are the fixed, real-valued elementary code matrices.
Without loss of generality, we assume |bk| = 1. It is proved
in [13] that for the STBC system,

Γz(j−i) =




0N for |j − i| ≥ s

1
2s

s−�∑
n=1

(
rs∑

k=1

[Xk]Tn+�,:[Xk]n,:

+
rs∑

k=1

[Yk]Tn+�,:[Yk]n,:)

for |j − i| = �,

� < s
.

(29)
For example, let us consider the half-rate orthogonal space-

time block code with four transmit antennas [2], in which case
N = 4, s = 8, r = 1/2 and the matrix G given by

G =




b1 b2 b3 b4

−b2 b1 −b4 b3

−b3 b4 b1 −b2

−b4 −b3 b2 b1

b∗1 b∗2 b∗3 b∗4
−b∗2 b∗1 −b∗4 b∗3
−b∗3 b∗4 b∗1 −b∗2
−b∗4 −b∗3 b∗2 b∗1




. (30)

4In its initial development, V-BLAST system does not employ any temporal
error control code. Although temporal error control code may be applied in
V-BLAST system, but at the same time, it is likely that interleaving would
be used. So we assume the data is temporally white.
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Decomposing G in terms of Xk and Yk and using (29), it is
found that

Γz(j − i) =




I4 for i = j,

1
4

[
0 2 0 1−2 0 1 0
0 −1 0 2
−1 0 −2 0

]
for |j − i| = 1,

1
4

[
0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

]
for |j − i| = 3,

04 otherwise.

(31)

Then, Ψ can be computed according to [Ψ]ij = tr
(
Γz(j −

i)ΦT

)
and the CCRB and MCRB are given by (22) and (25),

respectively.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, the MSE performance of the proposed sym-
bol timing estimator is assessed by Monte Carlo simulations
and then compared with the CCRB and MCRB presented in
Section IV. In all the simulations, Lo = 32, Lg = 4, Q = 2,
K = 16, εo is uniformly distributed in the range [0, 1) and g(t)
being a root raised cosine filter with roll-off factor α = 0.3.
Each simulation point is obtained by averaging 104 simulation
runs.

First, let assume ΦT = IN , ΦR = IM and there is no
space-time coding for the moment. The effect of correlation
among antennas and space-time coding will be examined
later. The effect of the number of transmit antennas N is
shown Fig. 1 with M = 4. It can be seen that when the
number of transmit antenna increases, the improvement in
MSE is limited. Closer examination reveals that the CCRBs
for different number of transmit antennas basically coincide.
Therefore, the performance of the NDA ML estimator is
approximately independent of N . Next, the effect of number of
receive antennas M is shown in Fig. 2 with N = 4. It is clear
that increasing M leads to considerable MSE improvements.
Since from (22), the CCRB is inversely proportional to M and
from Fig. 2, the performances of the proposed estimator are
very close to their corresponding CCRBs, it can be concluded
that the MSE of ML estimator is approximately inversely
proportional to M .

Fig. 3 show the MSE performances of the proposed es-
timator for a 4 × 4 system under the effect of correlated
fading among antennas and space-time coding. The measured
correlation matrices from Nokia [7] are used in simulations:

ΦT =




1 0.4154 0.2057 0.1997
0.4154 1 0.3336 0.3453
0.2057 0.3336 1 0.5226
0.1997 0.3453 0.5226 1


 (32)

ΦR =




1 0.3644 0.0685 0.3566
0.3644 1 0.3245 0.1848
0.0685 0.3245 1 0.3093
0.3566 0.1848 0.3093 1


 . (33)

Three cases are considered in Fig. 3. The first one is no
space-time coding and no fading correlation, which is shown
using ‘+’ markers. The second one is no space-time coding
but with fading correlation, which is shown by ‘o’ markers.

The final one is that the data is encoded with the half rate
space-time block code (30) and with correlated fading, which
is shown by ‘.’ markers. It can be seen that the presence of
correlated fading and space-time coding do not affect the MSE
performances of the proposed estimator. Furthermore, it can
be seen that the MSEs of the proposed estimator are very
close to the CCRBs. This means that proposed estimator is an
efficient estimator conditioned that the nuisance parameters
are being jointly estimated together with the unknown timing
delay. Unfortunately, the CCRBs are quite far away from the
MCRBs. Notice that, according to [16], CCRB is a valid bound
only for estimators that rely on quadratic nonlinearity, there is
a possibility that some other NDA estimators employing higher
order (>2) nonlinearities would have performances closer to
the MCRB. This is subject to further investigations.

VI. CONCLUSIONS

The non-data-aided ML symbol timing estimator in MIMO
correlated channel has been derived and the corresponding
CCRB and MCRB were also established. It was found that the
extended square nonlinearity estimator in [9] is just a special
case of the proposed algorithm. Simulation results were given
to assess the performances of the proposed estimator and it
was found that i) the MSEs of the proposed estimator are close
to the CCRB but not MCRB; ii) the MSEs are approximately
independent of the number of transmit antennas; iii) the MSEs
are inversely proportional to the number of receive antennas
and iv) correlation between antennas has little effect on the
MSEs.
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Fig. 1. MSEs of the proposed estimator with different number of transmit
antennas (assuming ΦT = IN and ΦR = IM ).
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Fig. 2. MSEs of the proposed estimator with different number of receive
antennas (assuming ΦT = IN and ΦR = IM ).
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Fig. 3. MSEs of the proposed estimator under correlated fading between
antennas and space-time coding for a 4 × 4 system.
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