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THEORY AND DESIGN OF UNIFORM CONCENTRIC SPHERICAL ARRAYS WITH 

FREQUENCY INVARIANT CHARACTERISTICS  

S. C. Chan and H. H. Chen 

Department of Electrical and Electronic Engineering 

The University of Hong Kong, Pokfulam Road, Hong Kong 

Abstract—This paper proposes a new digital beamformer 

for uniform concentric spherical array (UCSA) having nearly 

frequency invariant (FI) characteristics. The basic principle is to 

transform the received signals to the phase mode and remove 

the frequency dependency of the individual phase mode through 

the use of a digital beamforming network.  It is shown that the 

far field pattern of the array is determined by a set of weights 

and it is approximately invariant over a wide range of 

frequencies. FI UCSAs are electronic steerable in both the 

azimuth angle and elevation angle, unlike their concentric 

circular array counterpart.  A design example is given to 

demonstrate the design and performance of the proposed FI 

UCSA.   

I. INTRODUCTION

Beamforming using sensor arrays is an effective method 

for suppressing interferences whose angles of arrival are 

different from the desired looking direction. They find 

important applications in sonar, radar, acoustics, and radio 

communications  [1]- [3]. Traditional adaptive broadband 

beamformer usually employs tapped-delay lines or linear 

transversal filters with adaptive coefficients to generate 

appropriate beam patterns for suppressing undesirable 

interference. This usually requires considerable number of 

adaptive coefficients resulting in a rather long convergence time 

and high implementation complexity. These problems can be 

remedied by using subband decomposition technique, partial 

adaptation or using frequency invariant beamformers (FIB)  [4]-

 [6],  [8]. In FIBs, a beam-forming network is used to generate 

beam pattern with approximately frequency invariant (FI) 

characteristics over the frequency band of interest. They can 

attenuate broadband directional interference using an adaptive 

beamformer with very few number of adaptive filter 

coefficients [4]. One of the widely studied FIB is the uniform 

linear array (ULA) FIB [4]-[7].  Due to the geometry of ULA, 

its angular resolution at boresight is better than that at its end-

fire. In addition, it allows many efficient direction-of-arrival 

(DOA) detection algorithms to be developed. For example, the 

MUSIC algorithm [9] provides a high resolution method for 

detecting the angle of arrival (AoA) of the signal sources based 

on the subspace approach.   The MUSIC algorithm is also 

applicable to DOA estimation of wideband coherent sources by 

performing the algorithm in beamspace using ULA-FIB [8].  

Besides AoA estimation of wideband sources, adaptive 

interference suppression using beamspace adaptive 

beamforming [4] is also very attractive because of the small 

number of adaptive coefficients required and the possibility of 

employing partial adaptation, yielding faster convergence and 

fewer number of high speed variable multipliers. 

Recently, electronic steerable uniform-circular arrays 

(UCAs) [10] with frequency invariant characteristics were 

studied in [11]. Unfortunately, the passband of a UCA is rather 

narrow because it is closely related to the radius of the array. To 

obtain a frequency invariant characteristic over a larger 

bandwidth, uniform concentric circular arrays (UCCA) are 

proposed in [12] and [13]. The basic idea of the FI UCCA is to 

transform each snapshot sampled by the array to the phase 

modes via an Inverse Discrete Fourier Transform (IDFT).  The 

transformed data is then filtered to compensate for the 

frequency dependence of the phase modes. Finally, these 

frequency invariant phase-modes are linear combined using a 

set of weights or coefficients to obtain the desired frequency 

invariant beam patterns.  These weights, which govern the far 

field pattern of the UCCA, can be designed by conventional 1D 

digital filter design techniques. Alternatively, these coefficients 

can be varied by an adaptive algorithm to form an adaptive 

beamformer with approximately frequency invariant 

characteristics. The compensation filters in the fixed 

beamforming network are designed using second order cone 

programming (SOCP) [14][15]. Due to the geometry of the 

UCCA, the beampattern is not arbitrarily steerable with respect 

to the elevation angle. To overcome these disadvantages, we 

study in this paper the design of a uniform concentric spherical 

array (UCSA) with frequency invariant (FI) characteristics.  The 

UCSA-FIB has all the advantages of the UCCA mentioned 

above while possessing electronically steerable characteristic 

and uniform beampattern in both the azimuth and elevation 

angles. These characteristics make it more suitable than the 

UCCA in two dimensional DOA estimation and spatial-time 

beamforming.

The paper is organized as follows: In section II, the 

structure of the UCSA is introduced. The design of the FI 

UCSA is presented in section III. A design example is given in 

section IV and conclusions are drawn in section V. 

II. UNIFORM CONCENTRIC SPHERICAL ARRAY (UCSA) 

The UCSA proposed in this paper is constructed from a 

series of vertical UCCAs, which are uniformly distributed along 

the azimuth angle as shown in Figure 1. Each UCCA is 

composed of P rings and each ring has Kp omnidirectional 

sensors located at }sin,cos{ )()(
pp kpkp rr  (represented as 

Cartesian Coordinate with the center as the origin) where rp is 

the radius of the pth ring, Pp ,,1 , )()( /2)(
pp

Kkpk
 and 

1,,0 )()(

pp
Kk  as shown in Figure 2. In UCCAs, the inter-

sensor spacing in each ring is fixed at 2/  where  is the 

smallest wavelength of the array to be operated and is denoted 

by s .  The radius of the pth ring of the UCCA is given by 

))/sin(4/( )(

p
Kr sp . (1)

For convenience, this radius is represented as its 

normalized version ))/sin(4/(1/ˆ )(

p
Krr spp . Let 

denote the ratio of the sampling frequency fs to the maximum 

frequency fmax ( max/ ff s ), the phase difference between the 

th

pk )(  sensor and the center of the UCCA is 

)cos(sinˆ2 )()(

pp
kpk

r , and the corresponding phase 

shift is 
)cos(sinˆ )(

pk
prj

e , where , and are the azimuth 

angle and the elevation angle respectively, as shown in Figure 

3. Hence, the steering vector [1] of the pth ring of a UCCA is:  

][
)cos(sinˆ

)cos(sinˆ)(
1

)(

0 p
K

p

p

rj
rj

p ees .
(2)

The azimuth angle  is on the horizontal plane where the 

sensors are situated. It measures from a reference imaginary 
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axis on this horizontal plane, while the elevation angle  is 

measured from a reference imaginary axis perpendicular to the 

horizontal plane. To obtain a UCSA, each ring of the UCCA is 

rotated by )(
pk

angle, )()( /2)( ppk
Kk

p

, 1,,0 )()(

pp
Kk .

The geometry of the UCSA obtained by this way is shown in 

Figure 3. Based on the UCCA described above, the steering 

vector of the 
th

p
k )(  ring can be written as: 

][
)cos())

2
(sin(ˆ

)cos())
2

(sin(ˆ )()(
0)(

)(

p
kpk

p

pk
p

p

rjrj

k
ees .

(3)

It can be written in a more concise form: 

][
)cos()cos(ˆ

)cos()cos(ˆ )()(
0)(

)(

p
kpk

p

pk
p

p

rjrj

k
ees . (4)

III. FREQUENCY INVARIANT (FI) UCSAS

Figure 4 shows the structure of the broadband FIB for the 

pth sphere of a UCSA. After appropriate down-converting, 

lowpass filtering and sampling, the sampled signals from the 

antennas are given by the matrix ][npX  with 

][]][[ )()()()(
,,

nxnX
pppp kkkkp , which is called a snapshot at 

sampling instance n. This snapshot is 2D-IDFT transformed to 

the phase-mode and the transformed snapshot is denoted by an 
)()(

pp MM  matrix ][npV , and 
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Here, nm,][A  denotes the (m,n) entry of matrix A.  We assume 

that )(

pM  and )(

pM  are odd numbers and define 

2/)1( )()( ii

pp
ML , ,i .  Each branch of the 2D-IDFT 

output is then filtered by )()()(
,

pp
mm

H  (to compensate for the 

frequency dependency as we shall see later in this section), 

multiplied with )()(
, pp
mm

g  before combining to give the 

beamformer output ][nyp :
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where * denotes discrete-time convolution.  To obtain the 

spatial-temporal transfer function of the beamformer, let us 

assume that there is only one source signal s(n) with spectrum 

)(S .  Taking the Discrete Time Fourier Transform (DTFT) of 

equation (5), one gets 
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Taking DTFT on both size of equation (6) and using (7), we 

have
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Hence, the spatial-temporal response of the pth ring is 
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To obtain a frequency invariant response, the term inside the 

brace should be independent of the frequency variable .  To 

proceed further, we use the following trigonometric identity 
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)cos()cos(
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1

pppp

pp

kkkk

kl
(10)

and the expansion  [16], 
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n

n

nj eJje )(cos ,
(11)

where )(nJ  is the Bessel function of the first kind, to simplify 

(9) .  After some manipulation, we get 
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Further, the term inside the bracket is evaluated to be 

otherwise
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Substituting (13) and (14) into (12) gives 
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From  [16], the Bessel function has the following property 
||
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||2

ˆ
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n

p
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(16)

Therefore, for sufficiently large value of n , the value of the 

Bessel function will be negligibly small.  In other words, if the 

number of sensors is large enough, ),,(pG  can be 

approximated by 
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with nmm pp 2)()( , n is an integer. It can be seen that for a 

given radius pr , the bandwidth of the array, without 

compensation, is determined by the term 

)2/ˆ()2/ˆ(
2/)(2/)(

)()()()( pmmpmm
rJrJ

pppp

.  Rings and hence 

spheres with small radii usually have better high frequency 

response and vice versa.  Therefore, to obtain a FI-UCSA with 

large bandwidth, small responses of the Bessel function at 

certain frequencies have to be compensated by )()()( , pp mm
H .

This is undesirable in general because it leads to considerable 

noise amplification.  Fortunately, by employing more spheres in 

a UCSA, a wider bandwidth can be obtained.  

In a UCSA FIB, the outer spheres have more phase modes 

than the inner ones. Let the weighting matrices of the rings be 

identical, i.e. Pggg 21 , where Pg  is the )()(

PP MM

spatial weight matrix with )()()()( ,,
][

pppp mmmmp gg . These 

equalities can be implemented by setting the supplement 

compensation filters in the inner rings to zeros. The overall 

response of the beamformer can be written as: 
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If the filters )()()( , pp mm
H  are designed such that 
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where L  and U  are respectively the lower and upper 

frequencies of interest, then the beamformer in (19) will be 

approximately frequency invariant within ],[ UL  and 
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Furthermore, its far field pattern is now governed by the 

spatial weighting }{ )()(
,mm

g  alone.  Since the left hand side of 

(19) is a linear function of the filter coefficients in 

)(
)(

,
)(

pmpm

H ’s, the design problem in (19) can be treated as a 

filter design problem with all the filter outputs adding up to a 

desire response of value 1.  If the minimax error criterion is 

used, the filter coefficients for )()()( , pp mm
H  can be determined 

by second order programming (SOCP) [15].  It can also be seen 

from (20) that the far field spatial response is similar to that of a 

2D digital FIR filter with impulse response }{ )()(
,mm

g .

Therefore, ),(G  can be designed by conventional 2D filter 

design algorithms such as window method or SOCP if convex 

quadratic constraints are to be imposed. In addition, angular 

shifted versions of (20) can be derived by modulating 

}{ )()(
,mm

g  with sinusoids at appropriate frequencies. This 

property can also be used to generate a set of broadband 

beamformers uniformly spaced in the angular domain.  Further, 

a broadband beamspace array with equally spaced angles can be 

readily and efficiently implemented using the basis functions of 

the DFT.  Real-time adaptation of the beam pattern to suppress 

undesired interference is also simpler than traditional broadband 

adaptive array using tapped delay lines.  We now consider a 

design example.  

IV. DESIGN EXAMPLE

In this example, a two-sphere UCSA is considered. It is 

obtained by rotating UCCAs with two rings. The inner ring and 

the outer ring have 10)(

1K  and 18)(

2K  omnidirectional 

sensors, respectively. The inner ring and outer ring are then 

rotated with 10)(

1K , 18)(

2K , respectively. The required 

bandwidth of the UCSA-FIB is ]7.0,3.0[ .  The numbers 

of phase modes are set as 9)(

1

)(

1 MM  and )(

2

)(

2 MM

17 , We choose the central 9 spatial filter coefficients (phase 

mode) out of the 17 to shape the spatial response of the UCSA 

FIB.  The desired beam is targeted at )0,0(),( oo  and the 

beamwidth is o10 . Separable spatial weights }{ )()( ,mm
g  are 

employed here for low complexity. They are obtained from two 

one-dimensional spatial weights that were designed by the 

Parks-McClellan algorithm according to the given specification 

with the same passband and stopband ripples. The perspective 

views of the frequency responses against azimuth and elevation 

angles are shown in figures 5 and 6, respectively. The FI 

performance is very satisfactory. To illustrate the FI 

performance more clearly, the frequency responses of the 

UCSA-FIB for ]7.0,3.0[  are overlapped together in 

Figure 7. The frequency response is seen to be approximately 

FI, with deep nulls formed at the desired position over the 

bandwidth of interest. Figure 8 shows the contour of the 2D 

spatial response of the UCSA-FIB at the frequency 5.0 .

The spatial responses at other frequencies of interest are almost 

the same due to the FI characteristic of the beamformer and are 

not plotted here.  Like their FI-UCCA counterparts [12] [13], 

the above FIB can be modulated to form a bank of FIBs for 

broadband DOA estimation.   Moreover, the weights }{ )()( ,mm
g

can be made adaptive to form adaptive UCSA-FIB with very 

few variable multipliers and fast convergence speed.  Due to 

page limitation, the details will be reported in future 

publications.

V. CONCLUSIONS

The theory and design of uniform concentric spherical 

array (UCSA) having nearly frequency invariant (FI) characteri-

stics are presented. By compensating the frequency dependency 

of individual phase modes using a digital beamforming network,   

the far field pattern of the array is found to be determined by a 

set of weights and it is approximately invariant over a wide 

range of frequencies. Compared with FI uniform concentric 

circular array (UCCA), FI UCSA is able to electronically steer 

in both the azimuth and elevation angles. The FI and 2D 

electronically steerable characteristics of the UCSA-FIB are 

illustrated by a design example.   
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Figure 3. Geometry of the UCSA. 
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Figure 5. Frequency responses against azimuth angles. 

Figure 6. Frequency responses against elevation angles. 
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Figure 7. Spatial response of the UCSA-FIB in azimuth angle. 

Figure 8. Spatial responses of the UCSA-FIB. 
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