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Abstract-This paper presents a new Kalman filter-based noise, while avoiding excessive bias for non-stationary signals. One
subspace tracking algorithm and its application to directions of can determine the number of measurements using the intersection of
arrival (DOA) estimation. An autoregressive (AR) process is confidence intervals (ICI) bandwidth selection [4]. Alternately, the
used to describe the dynamics of the subspace and a new proposed Kalman filter aims to determine the appropriate number of
adaptive Kalman filter with variable measurements (KFVM) the measurements adaptively according to the approximated
algorithm is developed to estimate the time-varying subspace derivatives of the system state in order to reduce the complexity in
recursively from the state-space model and the given the bandwidth selection algorithm. Basically, when the signal
observations. For stationary subspace, the proposed algorithm subspace varies rapidly, few measurements will be used to update
will switch to the conventional PAST to lower the the state estimate. On the other hand, when the subspace is slow-

computational complexity. Simulation results show that the varying or even static, increasingly more past measurements should

adaptive subspace tracking method has a better performance be employed. However, a heavy computational complexity will be
incurred for large numbers of measurements in the KFVM.

than conventionaenalgorithms in DOA cstimation for a wid Therefore, the KFVM can be switched to the PAST (RLS)
varicty of experimental condition. algorithm to lessen the arithmetic complexity. This gives a new

adaptive subspace tracking algorithm, which composes of KFVM
and RLS. We will use the directions of arrival (DOA) estimation to

I. INTRODUCTION illustrate the tracking performance of the proposed algorithm, as
Subspace tracking, which refers to the recursive computation of compared with conventional algorithms.

a selected subset of eigenvectors of a Hermitian matrix, plays an This paper is organized as follows. Section II briefly reviews
important role in a wide variety of signal processing applications. the basic problem of subspace tracking and the PAST algorithm.
Traditional subspace-based algorithms usually compute either the The new KFVM algorithm and adaptive measurement number
eigenvalue decomposition (ED) or singular value decomposition selection are presented in Section III. Section IV introduces the
(SVD) of the data autocorrelation matrix in order to estimate the proposed adaptive subspace tracking method using the KFVM and
signal or noise space [1]. Instead of updating the whole eigen- RLS algorithms. Simulation results and comparison are presented in
structure, subspace tracking only works with the signal or noise Section V. Conclusions are drawn in Section VI.
subspace so as to lower the computational complexity and reduce
the storage requirements. These advantages make subspace tracking 1. SUBSPACE TRACKING AND PAST ALGORITHM
very attractive and a number of fast subspace tracking algorithms
were developed. A very efficient significant subspace tracking Consider r narrow-band incoherent signal impinging a
algorithms is the project approximation subspace tracking (PAST) uniform linear antenna array with N elements, it allows the N-
approach [2]. dimensional signal vector z(t). Let z(t) E CN be the observed data

The PAST algorithm considers the signal subspace as the - -
solution of an unconstrained minimization problem, which can be vector sampled at time instant t 1,2, T .Then, z(t) can be
simplified to an exponentially weighted least-squares (LS) problem represented as the following model:
by an appropriate project approximation. The PAST algorithm is r
implemented using the recursive least-squares (RLS) algorithm. z(t) Zca(o))s, (t)+ n(t)=As(t)+ n(t), (1)
Since conventional RLS doesn't know the system dynamics model,
and it only assumes the subspace is slowly time-varying and the where a(o)i)=[l,e`i,---,ei(Nl)@] is the steering or frequency
estimate is based solely on the observations. As a result, when the vector, and A = [a(col ), a(o2), , a(m,)]
subspace changes quickly, RLS will give a poor performance.

In this paper, we propose a new Kalman filter-based subspace s(t) = [SI (t), S2 (t), ..., Sr (t)]T is the random source vector and n(t)
tracking algorithm for estimating the signal subspace recursively. is an independent and identically distributed (i.i.d.) additive white
Kalman filter is a generalization of the RLS algorithm and it Gaussian noise (AWGN) vector with correlation matrix &7IN The
incorporates prior information of the state dynamics into the
estimation process. In the context of subspace tracking, the signal a
subspace is assumed to be the system state, which can be described Czz = E[z(t)ZH (t)] = ACSSA + 021 (2)
by some models such as an autoregressive (AR) process. In addition, t)SH (t)]
a newKalman filter with variable number ofmeasurements (KFVM) where C E[s( iS the autocorrelation matrix of s(t)
is proposed to address the bias-variance tradeoff problem in Since Cs iS Hermitian, it admits an eigenvalue decomposition (ED)
tracking the time-varying parameters. Instead of using only one as follows:
measurement in conventional Kalman filter to update the estimate C - UUH, 3
of the signal subspace, the proposed KJFVM employs variable Z
number of measurements. A measurement window of appropriate where E diag(21,2.., ,2N) is composed of the eigenvalue 2R
length can help to reduce the variance of estimation due to additive of C z, and U = U__u2,* ., t] is made up of the eigenvector ui
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of Cz. If r < N, the eigenvalues can be ordered non-increasingly where e(t) is the prediction error of the observation vector.

as 24 . -A, , A =o2 The dominant eigenvalues A, x(t/k) ( k= t - 1,t ) represents the estimator of x(t) given the
for i= 1,2, ,r are called the signal eigenvalues, and the measurements up to time instant k {y(j),ji< k}, and P(t/k) is
corresponding ui 's for i= 1,2, , r are the corresponding signal thecorrespondingcovariancematrixof x(t/k).
eigenvectors. On the other hand, A, and u. for To derive the new KFVM, we apply the equivalence

formulation of the Kalman filter algorithm as a particular LS
r + 1, r + 2, ,N are called the noise eigenvalues and noise regression problem of Durovic and Kovacevic [5]. More precisely,

eigenvectors, respectively. The signal subspace is defined as the (6) and (7) are combined together to yield the following equivalent
column span of the signal eigenvectors: Us = [u I bu2 u, and linear model:
the noise subspace is UQ =[u,r+1, , N]. The goal of subspace F I 7( ) FF(t -l/t-il) E() (14)
tracking is to track the signal or noise subspace instead of the whole 1H(t)' L y(t)
eigen-structure to reduce the computational complexity.

F

It was shown in [2] that subspace tracking can be considered as where E(t)F -1) ^(t lit-i)] (t ) and
an unconstrained optimization problem with the cost function: -£(t)

J(W) = E[ zWWHz] tr(Czz) 2tr(WHC W) , FPtit 1) 0 7
(4) E[E(t)E (t)]=I0S(t)ST(t) S(t) can be

± tr(WHCzzWWHW), L 0 R(t)]
where W e CN,r is a matrix variable with rank r The computed from the Cholesky decomposition of E[E(t)ET (t)] By
minimization of J(W) leads us not only to a unique global multiplying both sides of (14) by S-1(t), we get the following
minimum, but also to an orthonormal basis of signal subspace. By linear regression:
using the projection approximation, the above problem can be Y(t) =X(t)/8(t) +±4(t), (15)
simplified to an unconstrained minimization problem, for which I F
many well-developed algorithms can be applied. Detailed theorem where X(t) (t) , Y(t) S1(t) FX(t-1 ) (t),
and proof are omitted to save space, and they can be found in [1] - wLtH(t)1 L y(t) 8(t) x

[3] .. . and 4(t)=-S-1(t)E(t) . Note that E(t) is whitened by S-1(t) andThe aim of subspace tracking is to recursively estimate the thaT (t) i I
signal subspace at time t from the subspace estimate W(t -1) at the residual 4(t) satisfies E[4(t)4T (t)] I It can be seen that (15)

t -1 and the current data vector z(t) . Let h(t) = WH (t - 1)z(t) is a standard LS regression problem with solution:
the cost function (4) becomes a typical LS function: /3(t) =xt it) (XT(t)X(t))'XT(t)Y(t)' (16)

J(W) =E[|lz(t) - W(t)h(t)112 (5) and the covariance matrix of estimating /8(t) is

Obviously, a set of adaptive filtering algorithms, such as LMS E[(/8(t) -_/(t))(/8(t) -_,(t))]
and RLS, can be used to solve the LS cost function (5) for the = P(t It) (XT (t)X(t))- (17)
subspace vectors. PAST and PASTd algorithms proposed in [2] arejubstadervedtfrom PASTandPASTdalgorithm.sInthispaper,pwedlint e ar Hence, the Kalman filter can also be thought of as the solution to aJUSt derived from RLS algorithm. In this paper, we Will introdluce a

I I

novel Kalman filter frame instead of RLS to achieve a better LS problem with /3(t) =(t It) and P(t It)=cov(/8(t)) Equations
tracking performance and a better flexibility for different scenarios. (15)-(17) form an equivalent Kalman filter recursion based on LS

estimation.
III. KALMAN FILTER WITH VARIABLE MEASUREMENTS To derive the proposed Kalman filter with variable
Consider the linear state-space model as follows: measurement algorithm, let's rewrite (15) as

x(t)= F(t)x(t- 1)+w(t), (6) IS -1(t)lF~(t -) s-I{(t)LL fx(t)+4(t). (18)
y(t) = H(t)x(t) + £(t) , (7) l L y(t) IJl LIH(t)i

where x(t) and y(t) are respectively the state vector and the The lower part of the equation is equivalent to a conventional LS
observation vector at time instant t F(t) and H(t) are estimation of x(t) from the available measurement. The upper part
respectively the state transition matrix and the observation matrix. is a regularization term that imposes a smoothness constraint from
The state noise vector w(t) and the observation noise vector £(t) the state dynamic into the LS problem. If F is an identity matrix,
are zero mean Gaussian noise with covariance matrices Q(t) and (18) is equivalent to the LMS algorithm with a certain kind of

An optimal state estimator in the least mean diagonal loading. Another observation is that only one
measurement is used to update the state vector. Hence, the bias

squares criterion for the state-space model can be computed by the error will be low especially when the system is fast time-varying.
standard Kalman filter recursions: On the other hand, if the system is time-invariant or slowly time-

+(t+lt) = F(t)x(tit), (8) varying, including more past measurements can help to reduce the
P(t ± lit) F(t)P(tit)F(t)T + Q(t), (9) estimation variance. These observations motivate us to develop a

new Kalman filter algorithm with variable number of
e(t) =y(t) -H(t)x~(tit -1), (10) measurements (KFVM) to achieve the best bias-variance tradeoff
K(t) =P(ti/t -1)11(t)T for time-varying environment.

*[11(t)P(tit - 1llH(t)T ± R(t)]-, (11) Suppose the measurements used for tracking the state estimate

x(t/t)=x(t/t-l)+K(t)e(t) (12) are: [y(t-L±l),..,y(t-l),y(t)] , where L is the number ofit)=4tt 1)+ Kt)(t, 12 measurements used to update the state estimate. Including all these
P(tit)= I-K(t)H(t)]P(tit-1) , (13) measurements in (15) gives:
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Y(t) = S 1 (t)[{Fx(t - 1)}T,y(t - L + 1),..., y(t- 1), Y(t)l and notation convenience, the state dynamics will be presented in terms
[ i T( t

of WT, insteadofW:
X(t)= S'(t)[11,T(t-L+1),..,HT(t-1), HT(t)I Note that WT (t) =F(t)WT (t -1) +A(t) , (23)
S'1(t) is now obtained from where F(t) is the state transition matrix. The innovation matrix is
P(t ) 0 )tR()J The linear LS given by A(t), and it is modeled as a (r xN ) AWGN process.
L° diag{R(t - L+ 1), -,R(t - ),R(t) Again using the projection approximation, as in (5), z(t) is

problem (15) in block-update form can be solved using (16). represented as W(t)h(t) , corrupted by a residual error vector.
However, the QR decomposition (QRD) should be used to reduce
the arithmetic complexity of the algorithm and improve the H e have:
numerical stability in finite precision arithmetic. z (t) =f (t)W (t) ± (t), (24)

If the number of measurements L is a constant for all time where h(t) =WH(t- )z(t) and T(t) is a (lxN) AWGN vector
instants, we refer the resultant Kalman filter algorithm as the - a
Kalman filter with multi-measurements (KFMM). When L = 1, representing the residual error. From (24), the state transition matrix
KFMM will reduce to the conventional Kalman filter. The problem is seen to be H(t) = hT (t) = ZT (t)W* (t -1) , where * means the
then is: how to choose an adaptive time varying L for the KFVM complex conjugate operator. Note that the idea of observation
to achieve the best bias-variance tradeoff. As mentioned above, L matrix estimate 1(t) ZT (t)W~ (t -1) originates from the
is determined according to the variations of the subspace.

Inspired by the variable forgetting factor (VFF) method for conventional PAST algorithm. However, in our Kalman filter-based
RLS algorithms, we will develop a new control scheme to select L algorithm, a better estimate for the observation matrix is given by
adaptively. The proposed control scheme is based on the H(t) = ZT (t)W* (tt -1)
approximated derivatives of the system state, which was first Equation (23) and (24) constitute the linear state-space model
proposed in the GP-APA algorithm for LMS-type algorithms [6]. for our Kalman filter-based subspace tracking algorithm.
The proposed scheme is given as follows: Comparing (23) and (24) with the state-space equations in (6) and

c(t) = x(t-1) -(t-1), (19) (7), we can see that: WT (t) is the state matrix, ZT (t) is the
x(t =ix(t -1) + (1- r)x(t -1), (20) observation vector, A(t) is the state noise matrix and T(t) is the

where x(t) is the state estimate and c(t) is its approximated time observation noise vector.
derivative. q is the forgetting factor (0 < q < 1) for calculating the Using our KFVM algorithm, a variable block of past

soh tp eh tt11 11
I
w

measurements, z(t-L(t)+l),. .,z(t) , can be used to update thesmoothed tap weight x(t) . The 11 norm of c~(t) ,ci(t) 1 will
, l ~~subspace matrix W(t) at time instant t The number of

decrease and converge gradually from its initial value to a very suremets is timevndtanb adjuTe using th
small value when the algorithm is about to converge to the signal contreme in the preious ct nH e when too man
subspace of a static environment. Therefore, it serves as a measure shemen the previn the However,tin enroces,anh
of the variation in the signal subspace, or states. To determine the measurements are used in the KFVM updating process, the
number of measurements L(t), we compute the absolute value of complexity will increase considerably. Since a large L(t) means

that the signal subspace changes very slowly or even remains
the approximate derivative of 11(t)ll as stationary, therefore, a large number of measurements are used to

obtain a small estimation variance. As the RLS algorithm (PAST)
GC (t) =c(t)1| - 1(t - 14| (21) can perform well in tracking a steady subspace while having a much

lower complexity than KFVM, it is advantageous to be switched to
and then G, (t), a smoothed version of c (t) , by averaging it over a RLS-based algorithm to avoid the excessive complexity of using a
a time window of length T, The initial value of G, (t), denoted large number of measurements in KFVM. In the proposed control

by .0is obtained by averaging the first T. data. By normalizing scheme, a threshold L can be set for L(t) , so that when L(t) . Lby GCO , iS obtained by averaging the first Ts data. By normalizing
the RLS will be employed for the state estimation at time t , instead

GC (t) with GO , we get GN (t) , which is a more stable measure of ofthe KFVM with a large value of L(t)
the subspace variation. Denote the lower and upper bounds of
L(t) as LL and LU, L(t) is updated at each iteration as:

V. SIMULATION RESULTS
L(t) = LL + [1- GN (t)](Lu - LL) (22) A classical application of subspace tracking is in the Estimation
Hence, the new KFVM algorithm can be obtained by using of Signal Parameters via Rotational Invariance Techniques

L(t) number of measurements to estimate the system state. (ESPRIT) [7] for the estimation of the directions of arrival (DOA)
Alternately, L(t) can also be determined using the intersection of of plane waves impinging on a uniform linear antenna array. Here,
confidence intervals (ICI) rule [4], at higher arithmetic complexity. we will evaluate the performance of the proposed KFVM plus RLS

algorithm using this DOA tracking application.
The observation signal vector z(t) , t = 1,2,. ,600s , is

IV. KALMAN FILTER-BASED SUBSPACE TRACKING -
composed of r =3 narrow-band sources impinging on a linear

As mentioned earlier, the conventional PAST method, which is uiomatiaarywt esr.Tebcgon
bae on th RL aloitm is abl to trc th,ttoarrsol observation noise iS assumed to be an AWGN with a SNR of 20dB.
time-varying subspaces very well. However, when the signal
suspcvaie actey th trcigpromnewleeirt. The parameters for the adapJtive selection of the number of

To address the problem, a dynamical function based on an AR measurements are: Ts=100, LL 1, LU32, and L 0.9LU. In
model for W will be introduced in the state-space model. For the state-space model in (23) and (24), the state transition matrix
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Fig. 2 shows that in the first segment, the performance of 0.2
KFMM improves with decreasing L due to the increased bias error. 0.1
KFVM plus RLS can achieve a result comparable to KFMM with z
L = l, which gives the best result. However, the conventional < 0

0PAST algorithm will diverge when DOAs change rapidly. After a
time instant 300 when the DOAs change slowly, PAST, KFMM -0.1
with L =32, and KFVM plus RLS all have a fast convergence 02
speed and achieve a small MSD. If L is too small, e.g. L = 1, the
corresponding KFMM yields a considerably higher DOA 0 100 200 3oo4(s 5)t 600
estimation error due to increased estimation variance. Fig. 3 gives a i . c ome(l
realization of the number of measurements selection in KFVM. We g
can see that when t < 300, L tends to have a small value for fast- -10
varying DOA tracking. On the contrary, when DOAs come to the a --------TPAS
stationary segment, a large value of L is chosen to allow more 0 b ----KFMM(L=1)
measurements to be included to estimate the subspace. The RLS c KFMM (L=32)

d KFVM+RLS
algorithm will be employed when L(t) . L to reduce the arithmetic
complexity because sufficient observations are now available to b30
determine the signal subspace accurately. /

From the above simulation results, we can conclude that the E -40
PAST and Kalman filter with a large number of measurements are
suitable for tracking time-invariant or slow-varying subspace. When
the subspace varies rapidly, Kalman filter with fewer measurements X50
can yield a good tracking result. The proposed KFVM plus RLS
adaptive algorithm adaptively combines their advantages and is able 0 00 0
to achieve a better result for a wide variety of signal subspace 0 100 200 300 400 500 600
variations. Tme (s)

Fig. 2. MSD ofDOA estimation using different algorithms.
VI. CONCULSION a Lu

A novel Kalman filter-based algorithm with variable L3
measurements is introduced in this paper. The proposed KFVM is E
applied to the subspace tracking problem and it yields a new tacking 3 20
algorithm with improved tracking performance for a wide variety of
signal subspace variations. The number of measurements in the
KFVM is determined adaptively according to the approximated O 10 T Ul lilill 1R1111 I I 11 1 F 1
state estimate derivatives. When the number of measurements is 2 Ll isllll1m
large, the RLS can be employed in the KFVM to reduce the z 00 100ff 20_l 40 500_ 600_,_
arithmetic complexity. The advantages of the proposed algorithm iim (s)o30 40 o 0

are deonstraedusnga DA estiationappliction.Fig. 3. Number of measurements used in KFVM for subspace estimate.
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