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Abstract-This paper presents a new Kalman filter-based Recently, the parametric spectrum of pressure signals,
power spectral density estimation (PSD) algorithm for including arterial, intracranial, cardiac pressure, etc. has
nonstationary pressure signals. The pressure signal is assumed been studied by Aboy et al. [4, 5]. They constructed a novel
to be an autoregressive (AR) process, and a stochastically statistical model to describe the frequency variability of
perturbed difference equation constraint model is used to pressure signals. In this synthetic pressure signal model, the
describe the dynamics of the AR coefficients. The proposed effects of respiration were incorporated on arterial blood or
Kalman filter frame uses variable number of measurements to intracranial pressure. Subsequently, a Kalman filter-based
estimate the time-varying AR coefficients and yield the PSD PSD estimate algorithm, which is similar to [I]-[3], was
estimation with better time-frequency resolution. Simulation developed by Aboy et aL for the synthetic pressure signals
results show that the proposed algorithm achicvcs a bettertim-freqults ncywthatrtsoutionosthanlconnti algorithms ftr [5]. Their spectral density estimate had an unsatisfactorytime-frequency resolution than conventional algorithms for rslto nfeunydmi,bcuetecnetoanonstationary pressure signals.resolution in frequency domain, because the conventionalnonstationary pressure signals. Kalman filter only employed one measurement to update the

AR coefficients so that the AR coefficient estimates had a
I. INTRODUCTION large variance. To solve this problem, a simple average

Power spectral density (PSD) is a popular frequency operation over short time windows to the PSD estimation
analysis technique widely applied in biomedical signal was employed in [5]. However, this average operation in the

* rT^r 1 * 1 r ~~~~~~~freauencv domain blurred the time resolution of PSD.processing. There are two kinds of power spectrum q y
estimation: nonparametric and parametric spectrum In this paper, we propose a new Kalman filter-based
estimations. Nonparametric spectrum approaches, such as PSD estimation with variable number of measurements.

Fourier transform and Lomb periodogram, do not assume a Following the system model in [1]-[3], the synthetic
particular model for the signal, but estimate the spectrum pressure signal is regarded as a smoothness priors AR
entirely by the data. On the contrary, parametric methods process, and the AR coefficients are described with a
suppose that the signal is generated by a specific parametric stochastically perturbed k-th order difference equation
model (e.g., an AR model). Generally, nonparametric constraint model. The system dynamics are given by a linear
methods have a lower computational complexity than state-space model, and the AR coefficients are just the
parametric ones, while parametric methods have a higher system state which is estimated using Kalman filter. The
frequency resolution. proposed Kalman filter-based algorithm employs a number

All the above spectral analysis methods only work well of measurements to improve the time-frequency resolution
for stationary signals because they only provide the through a better tradeoff between bias and variance of state

frequency information. However, most interesting signals, estimate. Basically, a measurement window of appropriate
such as the pressure signals in our paper, contain numerous length can help to reduce the variance of estimation due to
nonstationary or transient characteristics: drift, trends, abrupt additive noise, while avoiding excessive bias for
chanes,and beginnings and ends of events. To understand nonstationary signals. The intersection of confidence

the time-frequency property of these nonstationary signals, intervals (ICI) rule [6, 7] is employed to determine the
several nonparametric time-frequency analysis techniques optimal number of measurements adaptively in time-
are developed, such as shorttime-Frerqen ansform(STFT)e frequency domain. The better performance of the proposed
waredeveloped,trasuc asho timdowedFou bperierotransfrm .( , PSD estimation for pressure signals is demonstrated withwavelet transform and windowed Lomb periodogram. In simulation results, a compared with conventional algorithms.[I-3,a parametric spectrum estimation algorithm was ghsppri raie sfolw:Scin1 rel
developed by Kitagawa and Gersch, and it can give a much This paper is organized as follows: Section II briefly
higher time-frequency resolution than nonparametric describes the statistical model for pressure signals. The new
methods. Their algorithm described the nonstationary signal Kalman filter with variable number of measurements
with a smoothness priors AR process, in which the AR algorithm is presented in Section III. Section IV is devoted
coefficients were obtained by a stochastically perturbed to the adaptive parametric PSD estimation. Simulation
difference equation constraint model. The Kalman filtering results and comparisons are given in Section V. Finally,
method was used to track the time-varying AR coefficients conclusions are drawn in Section VI.
and then yield the PSD estimation.
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II. PRESSURE SIGNAL MODEL section, we will propose a new Kalman filter with variable
In [4], Aboy et al. developed a synthetic physiologic number of measurements to improve the state tracking

simulator for arterial blood pressure (ABP) and intracranial performance.
s(CP) signals. In this harmonic model, the effects of The conventional linear state-space model is given by:

pulse pressure variation are regarded as a conventional xt ()( )+wt 7
amplitude modulation (AM) of a multi-frequency pulse y(t) = H(t)x(t) + -(t), (8)
pressure carrier with respiration as the modulating signal. where x(t) and y(t) are respectively the state vector and
Synthetic pressure signals are generated using the following the observation vector at time instant t . F(t) and H(t) are
model:model* respectively the state transition matrix and the observation

y(t)= u + [1 + ar, (t)]. C,ej2zr fnt + kr(t). (1) matrix. The state noise vector w(t) and the observation
n=1 noise vector £(t) are zero mean Gaussian noise with

In this model, u. is the DC component of the pressure covariance matrices Q(t) and R(t) respectively. Let
signal, rn (t) is the normalized respiratory signal x(tI k) (k =t -1, t) present the estimator of x(t) given the
( Irn(t) <. ), and a is the modulation index. The carrier measurements up to time instant k, and P(t / k) be the
signal is a quasi-periodic signal with an arbitrary pulse
morphology that can be approximated as a multi-harmonic spondin errocrianc arix o t T
periodic signal with a fundamental cardiac frequency fs. xd(ta+Klmt)f=iF(t)xe(tuIt), (9)
The respiratory signal rn (t) can also be modeled as a multi- P(t + 1

I t) F(t)P(t It), (9)
harmonic signal with a fundamental respiratory frequency P(t)+ lit) F(t)P(t/t)F(t) +Q(t), (10)
Jr To tell the frequency variability of f, and Jr, they can e(t) y(t) - H(t)x(tIt-i), (ii)
be both considered as the sum of a constant carrier K(t) =P(tIt - Il)H(t)T (12)
frequency f and a stochastic frequency variation A(t): [H(t)P(t / t - 1)H(t)T +R(t)] ',

fr (t) = fr + Ar (t), (2) xtt=x(/-)+K)e),(13)
P1 P(tIt) [I - K(t)H(t)]P(tIt -1) (14)

with 2r (t) =- akAr (t - k) + w(t), (3) Our Kalman filter with variable measurements
k=1

algorithm originates from the work of Durovi6 and
fe (t) =Jf + A, (t), (4) Kovacevi6 [8], where they proposed a new Kalman filtering

P2 Q recursion using the equivalence between the Kalman filter
with A (t) -z bkAr (t - k) + w(t) + h, (k)Ar (t - k). (5) and a particular least-squares (LS) regression problem.

k=1 k=O Combining (7) and (8) together, we get the following
Here, the cardiac stochastic frequency variation A, (t) and equivalent linear model:
the respiratory variation 2r (t) are modeled as two 1 Fx(t -l/t- £(

correlated AR processes. The pressure signal is passed LI t-x(t) I) +E(t), (15)
through a fading multipath channel to incorporate the H(') L y(t)
nonstationary pulse pressure variability of real ICP and ABP F[x(t - 1) - x(t - lI t - 1)] + w(t - 1)
data. Finally, the general model equation is given by: where E(t) (t) 1 and

K-1 T K L

y(t) = h(k, t) uo + [1+ aZ, yejI2 T (EAr+A+ (t))l(t-k)] P(t I t -F)0
k=O 1=1 (6) E[E(t)E0(t)]= 0 R(t)j S(t)S (t) . S(t) can be

Z Cne(e f +° () ) + lar(t - k). computed from the Cholesky decomposition of
n=1 E[E(t)ET (t)] . By multiplying both sides of (15) by S'- (t),

In [4], this pressure signal model was employed to generate we get
a nonstationary synthetic pressure signal for spectral YwegXet(t):+40 ) (16)
analysis and achieved satisfactory results. Our simulations Y(1
will also use this model to give the experimental data for our whe -I(t I ls(Y Fx(t - l)
Kalman filter-based spectrum estimation. More details about where Xt - S 1H(t)- Y) y(t) '
the pressure signal model can be found in [4, 5]. LI

=
i,8Q() = x(t) , and 4(t) -S'1(t)E(t) Note that E(t) is

III. KALMAN FILTER WITH VARIABLE MEASUREMENTS whitened by S' (t) and the residual 4(t)
References [1] - [3] and [5] proposed two similar satisfies E[4(t)4T (t)] I . Equation (16) is a standard linear

parametric PSD estimation methods for nonstationary regression problem withLS solution:
signals. Their Kalman filter-based algorithms only use one fi(t) X(t it) (XT (t)X(t))- XT(t)Y(t), (17)
current measurement to update the state estimate. In this
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and the covariance matrix of estimating ,6(t) is convenience, k is assumed to be 1 in this paper. That is to
I I

T
say, the AR coefficients a(i,t) can be seen as a one-order

E[(f8(t) - ,8(t))(8(t) - 4(t)) (18) AR process. When k = 1, the difference equation constraint
= P(t/t) = (XT(t)X(t))-l . in (23) becomes:

That is to say, the Kalman filter can be thought of as the a(i, t) = a(i, t -1) + 3(i, t) . (24)
solution to a weighted LS problem with 8(t) =(t/ t) and Define the state vector x(t) by x(t) =[a(l, t),. , a(M,t)]T,

(24) can be rewritten in the form of the state equation in theP(t/t) =cov(/pt)). Equations (16)-(18) form an equivalent state-space model:
Kalman filtering algorithm based on LS criterion. x(t) =F(t)x(t -1) + 6(t) (25)

To derive the proposed Kalman filter with variable state tntinmt F(t) i a x i t
measurmentquatios, le's rewite (6) aswhere the state transition matrix F(t) is a MxM identitymeasurement equations, let's rewrite (16) as

F FF(t-l)l F r In 11nmatrix, 6(t)= [3(l,t), ,(M,t)]T is the state noise vector.
S (t) S' (t) x(t) + 4(t) (19) Similarly, the space equation is obtained from (22):
1y(t) jHLlt i_ y(t) = H(t)x(t -1) + q7(t) , (26)

The lower part of the equation is a conventional LS where 1(t) [y(t -1),***, y(t - M)] is the observation
estimation of x(t) from the current measurement y(t) . The matri We c see that t stt ise varianceiismatrix. We can see that the state noise variance iS
upper part is a regularization term that imposes a Q(t) diag(r2 ,..., r2) and the observation noise variance is
smoothness constraint from the state dynamic into the LS
problem. If F is an identity matrix, (19) is equivalent to the R(t) = 2 . So, given the linear state-space model composed
LMS algorithm with diagonal loading. of (25) and (26), the state vector x(t) or the AR coefficients

Because only one measurement is used to update the a(i,t) can be estimated using the Kalman filter recursion.
state vector in (19), the bias error is low especially when the ,
system is fast time-varying. On the other hand, if the system Using the estimated a(i, t) , the instantaneous PSD is
is time-invariant or slow time-varying, more measurements calculated by:
used for tracking state vector can reduce the estimation M
variance. Given the block of measurements as P(t,f) 52(t) 1- Za(i,t)e 2rijf (27)
[y(t - L),-., y(t),- ,y(t + L)], where the total number of
measurements is h =2L + Including all these where j - , and &2(t) is the measurement noise
measurements in (16) or (19) gives: variance estimate.

t= Ft- 1)}IT y,t-L),., y(t),., yQt+LT, (20) As mentioned earlier, if we use the proposed Kalman
filter to estimate the AR coefficients with a block of

X(t) S (t)[I,HT (t - L), H,T (t),..., HT (t +L)t, (21) measurements, the corresponding PSD will be affected by
and. S.(t) is now obtained from the number of measurements h. If h is given a small value,

the PSD estimation gives a good time resolution. In other
FP(t It -1) 0 1 th words, for fast varying time series, a small block size is

L ° diag{R(t - L),..., R(t),..., R(t + L)}j In e preferred. On the contrary, when a large block size is
chosen, the time resolution of PSD will be reduced, but thenew algorithm. Kalman filter with variable frequency resolution will be improved. So, if themeasurements problem can be solved using (17), with YQt) instantaneous frequency of the time series changes slowly, a

in (20) and X(t) in (21). larger block size h is preferred.
Like the adaptive Lomb periodogram [8], ICI rule can

IV. ADAPTIVEPARAMETRIC SPECTRUMESTIMATION be employed to choose the number of measurements
The synthetic nonstationary pressure signal y(t) in (1) adaptively in time-frequency plane. First, we need to

can be characterized with an M-order AR model: calculate a series ofPSDs with a series of h 's. The ICI rule
M examines a sequence of confidence intervals of the PSDs to

y(t)= a(i, t)y(t - i) + 7(t), (22) determine the optimal h' and the corresponding adaptive
i=1 PSD. The details of ICI rule and adaptive spectrum

where a(i, t) is the time-varying AR coefficient and 77(t) is estimation are omitted to save space, and more information
assumed to be a zero mean Gaussian white noise sequence can be found in [6, 7].
with variance 2 . A stochastically perturbed k-th order
difference equation constraint model is used to describe the V. SIMULATION RESULTS
change ofthe AR coefficients in[1] - [3]:UsnthprsueigamolitodcdnScinI,

Vk(i t) 3(1 t) , - 1< M (23) we first generate a nonstationary pressure signal with the
where 3(i, t) is assumed to be a zero mean Gaussian white instantaneous frequency components in Fig. 1. The sample

noise~~~~~~~~~seunewt2ainer ,11..,M.Fo rate is 12.5Hz, and the time duration is 20s.
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The number of measurements h's used to compute a 6
series of PSDs are: 1, 9, 17, and 25. The parametric PSDs
with h =1 and h =25 are shown in Fig. 2 and Fig. 3, 2f0
respectively. Comparing Fig. 2 and 3, we can see that the 4
PSD using the conventional Kalman filter ( h = 1 ), has a 3 f
better time resolution, but the frequency resolution is 2
unsatisfactory because of the large variance of AR L 2f
coefficient estimates. Fig. 3 with h =25 exhibits a much 1
better frequency resolution, which means a large number of 5 10 15 20
measurements are used reduce the estimation variance. Time (s)
However, in the time segment when the frequency contents Fig. 1. Theoretical time-frequency content.
change rapidly (lOs <t < IIs), a large h may lead to a
blurred time resolution, as seen in Fig. 3.

Fig. 4 shows the smoothed PSD after an average 5

operation over 10 samples. This smoothing method was 4
proposed in [5], and we can see that the time resolution _ _3_i_ _ _ _
becomes poor, although the frequency resolution is
improved. To achieve a better time and frequency 21
resolutions at the same time, we need ICI rule to select the 1
adaptive number of measurements. Fig. 5 illustrates that the L
proposed adaptive PSD with ICI rule is able to achieve good 0 5 10 15 20
time as well as frequency resolutions. Time (s)

Fig. 2. PSD using Kalman filter with h=1.

VI. CONCLUSION 6

A new Kalman filter with variable measurements N5
algorithm is applied in this paper to estimate the power 4
spectral density of pressure signals. Including more
measurements in Kalman filter, this proposed algorithm can
achieve a better tracking performance than the conventional
Kalman filter. ICI rule can be used to choose the optimal 1
number of measurements adaptively, and yield the spectrum 0
estimation with better time-frequency resolution than the 0 5 10 15 20
conventional algorithms. Time (s)

Fig. 3. PSD using Kalman filter with h=25.
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