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ABSTRACT

This paper studies a wavelet based partial update fast
LMS/Newton algorithm. Different from the conventional fast
LMS/Newton algorithm, the proposed algorithm first uses a
shorter-order, partial Haar transform-based NLMS adaptive filter
to estimate the peak position of the long, sparse channel impulse
response, and then employs the fast LMS/Newton algorithm
integrated with partial update technique to fulfill the rest
convergence task. The experimental results demonstrate the
proposed algorithm outperforms its conventional counterpart in
convergence performance and possesses a significantly lower
computational complexity.

1. INTRODUCTION

Many adaptive filtering algorithms have been proposed [1] in
literature and among them the least mean squares (LMS)
algorithm and the recursive least squares (RLS) algorithm are
two typical families. One very efficient class ofLMS algorithms
is the fast LMS/Newton algorithm [2]. In this algorithm, the
input signal to the adaptive filter is modeled as a low, M-order
auto-regressive (AR) process so that the Kalman gain vector in
the Newton algorithm can be efficiently approximated. It has a
low arithmetic complexity of 0(2LC + 6M) (where LC represents
the order of the adaptive filter), and a higher numerical stability
than other LS-based variants because of its LMS characteristics.
It also possesses the attractive properties of regular hardware
implementation. Unfortunately, it also suffers from some
deficiencies such as slow initial convergence (due to the
estimation delay of the AR parameters of the input signal) and
the failure to exploit the sparseness of the echo path which is
specific to echo cancellation problems and has attracted
considerable interests recently.

It is widely known that adaptive filters can be carried out in
the transform domain (by employing DCT, DFT or DWT, etc) to
achieve better convergence properties [1]. Among the applicable
schemes, the discrete wavelet transform (DWT), a powerful tool
for analysis of non-stationary signals, has received considerable
attention recently in adaptive filtering because of its two very
good properties: the time and spectral localization [3]. The
former can result in computation cost reduction, and the latter
can lead to input decorrelation so as to fasten the convergence.
In literature, a few reported results show an improvement in

signal modeling and satisfactory convergence speed for a variety
of conditions. In [4], Hosur and Tewfik studied the special
sparse structure of the wavelet transformed correlation matrix
and proposed the wavelet transform domain algorithms. It is also
shown in [5] that fewer coefficients are needed for the Haar
transform-based adaptive filter than that working in time
domain. Later in [6], the authors exploited the hierarchical
structure of the Haar transform to adaptively determine which
significant coefficients to adapt and thus realize the rapid
identification of the sparse channel impulse response as well as
the reduced additional steady state error induced by the
adaptation of those trivial coefficients. More recently in [7], the
partial Haar transform is employed to estimate the peak position
of the channel impulse response and another shorter time-
domain adaptive filter is used centering in time about the
estimated peak to adapt upon a delayed version of the input. This
work directly motivated us to improve the present fast
LMS/Newton algorithm by first employing a low-order, partial
Haar transform-based NLMS adaptive filter to locate the peak
position of the long, sparse channel impulse response and then
continue the update centering the estimated position with an
low-order fast LMS/Newton adaptive filter, upon which we
additionally apply the efficient partial update mechanism [8], [9]
to further lower the computational complexity. These
manipulations result in the proposed wavelet based partial
update fast LMS/Newton algorithm which has both a faster
convergence performance and a significantly reduced
computational complexity. This paper is organized as follows:
the conventional fast LMS/Newton algorithm is reviewed in
section 2. The proposed wavelet based partial update fast
LMS/Newton algorithm is presented in section 3. Experimental
results and comparisons are presented in section 4. Finally,
conclusions are drawn in section 5.

2. THE FAST LMS/NEWTON ALGORITHM

Figure 1 depicts the adaptive system identification problem.
The unknown channel impulse response w * is to be identified
using an adaptive filter with weight vector W (n) x(n) is the
input signal and e(n) is the instantaneous estimation error

between the channel and adaptive filter outputs d (n) and y(n) .

qo (n) is the background noise. W (n) is usually continuously
adjusted to minimize certain performance criterion such as the
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mean-square-error (MSE) of e(n) . In the Newton algorithm, the
weight update equations are given by

e(n) = d(n) - X T(n)W (n)

W (n + 1) = W (n) + , .e(n)R-1 (n)X(n) (2)
where Rk '(n) is the inverse of the estimated input covariance
matrix and p is the stepsize controlling the converging and
tracking speed, and the steady state error of the algorithm. In the
fast LMS/Newton algorithm [3], the input x(n) is modeled as an

M-order AR process (usuallyM <<«L ) so that k-'(n) can be
efficiently approximated using linear prediction method.
Consequently, the computational complexity of the basic
Newton method can be significantly reduced, similar to the LMS
algorithm, while offering significant performance improvement.
More precisely, in the fast LMS/Newton algorithm, k' (n) is
factored into the following form:

R -1 (n) = LT (n)D -1 (n)Lm (n) (3)
where LM (n) is an (L x L ) lower triangular matrix consisting of
the coefficients of the backward predictors. Due to the AR
model assumption of the input, it can be simplified to

I1 0 0 0 0 0 0
1 0 0 0 0.

LM(n) = a,,,," (n) nMl.(.) 1 00 0 0
o aM,, (n -1) ... aM,I (n - 0 0 0

oo 0 0 0 ... aM,M (n - N + M + 1) (n - N +M + 1) ...1

(4)
where the element aP i(n) is the i-th coefficient ofthep-th order

backward predictor for x(n), and D(n) is a diagonal matrix
whose i-th element is the estimated power of the i-th backward
prediction error. In [3], two algorithms with different
complexities are presented. The algorithm employed in this
paper is based on Algorithm 2, which has a much simpler
structure than Algorithm 1, and hence more suitable for
hardware implementation.

Note that the (M+I)-th through the Lc -th rows of LM (n) are
shifted version of each other and define the extended input and
coefficient vectors of X(n) and W (n) as:

XE (n) = [x(n + M), *, x(n), *, x(n - L, _M + l1)]T (5)
WE, (n) = [w-M (n) , vrI o (n), ,,IWLc+M-1 (n)]T (6)

By freezing the first M and last M unnecessary elements of
WE (n) to zero during all iterations and denoting the resultant
vector asW (n), the fast LMS/Newton algorithm can be written
as follows:

e(n) = d (n - M) X T (n - M)W (n) (7)
W (n + 1) = W (n) + 2ue(n)ua(n) (8)

Ua((n) = L2(n)D-- (n)Ll (n)XE (n) (9)
where L, (n) and L2 (n) are respectively (LC + M) x (LC + 2M)
and LC x (LC + M) matrices whose rows consist of consecutively
shifted and delayed coefficients of the M-order forward and
backward predictors [aM,M (n), aM,M-1 (n),. ,1] , and

[aM,M (n), aM,M-1 (n), * ,1] By exploiting the shifting property of

Ua((n) andbE(n) = LI (n)XE(n), it is possible to reduce the

W' q17jn)
x(n) Unknown d

System

W(n) d(n)

10 AdaptiveFlr

Figure 1. System identification structure

computational complexity of the algorithm to 2LC + 6M
multiplications and additions for each iteration. The predictor
parameters can be efficiently calculated using a lattice predictor
and the Levinson-Durbin algorithm.

3. THE WAVELET BASED PARTIAL UPDATE
FAST LMS/NEWTON ALGORITHM

Although the fast LMS/Newton algorithm is very efficient, its
2L computational complexity may be still prohibitive for some
applications such as Echo Cancellation [10] in which the number
of adaptive filter coefficients usually amount to either a few
hundreds, or more harshly, to some thousands. On the other
hand, it does not exploit the sparseness of the echo path, which
widely exists in real situations and has attracted considerable
interests recently. Among these researches, the wavelet-
transform based schemes are found to be very promising.
Wavelet transform has very good time localization property and
thus only a small number of coefficients are needed to
efficiently identify the sparse channel impulse response. It also
has the additional benefit of good spectral localization and thus
can diagonalize many types of input correlation matrices and
hence provides a certain amount of whitening for colored input.
Some relevant works can be found in literature such as [5], [6]
and [7]. It is the work in [7] that triggered our research. More
specifically, in [7], the partial Haar transform is employed to
estimate the peak of the channel impulse response and another
shorter-order time-domain adaptive filter then centers in time
about the estimated peak to adapt upon a delayed version of the
input. This has naturally helped us raise an idea of using a
similar shorter-order, partial Haar transform-based NLMS
adaptive filter to locate the peak position of the long, sparse
channel impulse in the very short beginning period, and then
switching back to fast LMS/Newton algorithm for later-stage
update. Next, we will show how this idea is implemented and,
with the introduction of partial update (PU) technique [8], [9],
how the computational complexity of the resultant algorithm can
be further reduced.

The Haar wavelets are the simplest of wavelet functions
which are discrete-time orthonormal sequences V.n(t) defined
by

m

where Vfm(t) = 2 2, for 0< t < 2m-' -1
m

--2 2, for 2m < t < 2m -1
or = 0 elsewhere
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where the indices m (a natural number) and n (an integer)
correspond to the scale and translation respectively. Thus the
N x N Haar wavelet transform matrix, where N=2K has the
following structure (exemplified withN = 8):

-1 1 1 1 1 1 1 1 -
1 1 1 1 -1 -1 -1 -1

H,
I 0 ~~~~~0 0 0

22- -2

J8 2 -2 0 0 0 0 0 0
0 0 2 -2 0 0 0 0
0 0 0 0 2 -2 0 0
0 0 0 0 0 0 2 -2

When the full matrix is utilized to transform the input vector, the
Haar wavelet transform-based adaptive filter is analogous to
other transform domain (like DCT, DFT) adaptive filter which
can thus exactly model any channel impulse response. In
contrast, any subset/dimensionality truncation, which results in
the partial Haar transform, will inevitably increase the
estimation error and thus fail to correctly identify the channel.
However, as pointed out in [7], if we merely aim at estimating
the location of the peak of the channel impulse response, we do
not have to stick to the full Haar transform because the partial
transform is less costly.

The basic idea of our work is to divide the whole convergence
process into two stages. The similarities of the weight vector
update part of the NLMS algorithm [1] and that of the fast
LMS/Newton algorithm (Equ. (8)) enables us to switch the
update part flexibly from the Haar transform domain NLMS
type to the fast LMS/Newton type. More precisely, at Stage 1, a
partial Haar transform-based NLMS adaptive filter
Wsj (Lsj x 1, Lsj <Lc) is employed to estimate the peak
position of the sparse channel impulse response, and at the same
time the input AR model u, (n) (LS2 xl, LS2 < Lc ) is also
updated but temporarily separated from the weight vector update
part. Stage 2 comes after a short time duration when the peak is
supposed to be identified and the input AR model can be
coupled again to the weight vector update part and the
convergence process continues with adaptive filter WS2
(LS2 xl) centering in time about the peak of the weights. In

order to tolerate the estimation error, NT taps prior to the
estimated peak position can be included into updating in Stage 2,
where NT is a small number which can be experimentally

selected. Without loss of generality, the length of WS2, LS2, can

be selected as LS2 = 1/2LC and its initial value can be set as the
inverse partial Haar transform of the weight vector Ws, at the
end of Stage 1. In this way, the computational complexity of the
proposed partial Haar transform-based fast LMS/Newton
algorithm can be reduced to different amounts.

Nevertheless, due to the lack of a priori knowledge, although
LS2 will have been halved, it still can not be selected as
sufficiently low as the real number of the significant coefficients
of the sparse channel. Some coefficients are also very close to
zero and the calculation redundancy still exists. To circumvent
this problem and further lower the computational complexity,
we applied the partial update (PU) technique introduced in [8,
9], which is effective and easy to be implemented, into the fast
LMS/Newton algorithm in Stage 2. The difference between [8,
9] and our algorithm is that the former executes the PU part

directly upon the input vector X(n) while in our case, the
weight coefficients are partially updated with regard to the
whitened input AR model u, (n) . To this end, together with the
part in Stage 1, the resultant PU-fast LMS/Newton algorithm in
Stage 2 comprise the whole Partial Haar transform-based Partial
Update fast LMS/Newton algorithm (PHPU-fast LMS/Newton)
which is summarized in Table 1. Despite the light computation
overhead for estimating the peak position with PH-based NLMS
algorithm, the proposed algorithm only needs
LS2 + NBL + 2 + 6M multiplications, one extra division, and
O(B) + B10g2B comparisons (the conventional algorithm needs

2LS2 +6M multiplications). A block diagram depicting the
hardware implementation detail is plotted in Fig.2.

TABLE I
THE PHPU-FAST LMS/NEWTON

1. Initialization
WSJ (0) = 0;

2. Adaptation
Stage 1:
For n= 1,2,. . ,nO
Input AR model u, (n) update

XE (n) = [x(n + M), x(n), ,x(n - L - M + 1)]T
WE(n) [w-M (n), , wo (n), , WN+M-I (n)]T
ua(n) = L2(n)Ji-1(n)Ll(n)XE(n)

Partial Haar transform-based NLMS
X(n) = HPHX(n), e(n) = d(n) - WST1 (n)X(n)
Ws, (n + 1) = Ws1 (n) + ,ue(n)X(n)

At n = nO, calculate the peak estimated position pc
Stage 2:

WS2(no) = HTHWsl(no), For n=no,no +1,no +2,

e(n) = d(n - M)- XT(n - M)WS2(n)
XE(n) [x(n + M), *, x(n), *, x(n - L -M + 1)]T
Ua (n) =L2 (n)D -1 (n)LI (n)X, (n)

Partitioning u, (n) and W(n) into B blocks of L = Lc / B coefficients each,

WS, (n) = [WI (n) W2 (n) WB (n)4
Ua (n) = L2 (n)D6 -1 (n)LI (n)X, (n)

=[u(n) u2 (n) uB (n)4
WS2 (n + 1) = WS2 (n) +±ue(n)AIN, (n) ua (n)

where A is a LS2 x LS2 matrix used for selecting NB block of

coefficients from u, (n) to be updated. It has NB identity matrix LXL on its

diagonal and zeros elsewhere. The positions of these matrices are in
accordance with those of the largest NB blocks of coefficients of

WS2 (n) with the largest norm |ui (n)112, i = 0,1, B This result can be

obtained through certain sorting algorithm and calculation of the largest norm
blocks which are specified in [8,9].

4. SIMULATION RESULTS

We now verify the efficiency of the proposed PHPU-fast
LMS/Newton algorithm using computer simulations of an
acoustic echo cancellation problem. The system model is
depicted in Fig. 3. The input signal x(n) is modeled as a speech
signal using an AR process with coefficients [1 -0.65 0.693 -
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0.22 0.309 -0.177] as given in [2]. The echo path impulse
response, as shown in Fig. 4 (a), is a realistic one with 256
coefficients given as ml (k) by the ITU-T recommendation
G.168 [10]. The background noise qo(n) is a white Gaussian

random sequence with variance 82 (n) = 0.0001 For

simplicity, no double-talk is assumed to present. The partial
Haar transform H8P is a 64x256 matrix which consists of the
64th through 128th rows of the full Haar transform matrixH8.
Hence, Ls1 =64. The selection of the stepsize of the NLMS
algorithm is not critical and thus is set to be 0.002 to guarantee
convergence stability. The switching time index no is set to be
100. As can be observed in Fig. 4 (b), the peak position is
estimated to be at around the 11th tap. In our experiment, we
introduce NT= 5 taps to tolerate the estimation error. LS2 128,
and the global stepsize of the Partial Update fast LMS/Newton
algorithm is set to be 0.5 to ensure the final steady state error is
around -40dB. Various inner block coefficient lengths L and the
number of blocks to be updated NB are tested. We tested three
cases: L=1, NB =64, L=2,NB =32, andL=4,NB=16. The
curves are obtained through the average of the results of 100
independent runs. From Fig. 5, it can be observed that the
PHPU-fast LMS/Newton algorithm with all the above
parameters configuration converged faster than its conventional
counterpart. The higher the computational complexity is, the
faster the convergence speed will be. Especially,
when L = 1, NB = 64 , the performance of the proposed algorithm
is very close to the Partial Haar-based fast LMS/Newton
algorithm (PHPU-fast LMS/Newton without PU part).

5. CONCLUSION
In this paper, a wavelet based partial update fast LMS/Newton

algorithm is proposed. By employing partial Haar transform and
partial update technique, the proposed algorithm will exhibit a
faster convergence speed and a significantly reduced
computational complexity than its conventional counterpart
performance. The efficiency of the proposed algorithm has been
verified with an adaptive echo cancellation problem.
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Figure 2. The implementation block diagrams for PHPU-fast
LMS/Newton algorithm.
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