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Department of Electrical and Electronic Engineering 

The University of Hong Kong, Pokfulam Road, Hong Kong  

ABSTRACT 

This paper proposes a new proportionate adaptive filtering 

algorithm which exploits the advantageous features of the 

generalized proportionate NLMS (GP-NLMS) algorithm 

and the fast LMS/Newton algorithm. By means of an 

efficient switching mechanism, the new algorithm works 

alternately between the GP-NLMS and the fast 

LMS/Newton algorithms in order to combine their 

respective advantages. The overall converging speed and 

steady state performance for both sparse and dispersive 

channels as well as tracking performance are thus 

significantly improved. Computer simulations on an echo 

cancellation problem verify the superior performance of 

the new algorithm over both the GP-NLMS algorithm and 

the conventional fast LMS/Newton algorithm. 

1. INTRODUCTION 

    Adaptive filtering is frequently employed in 

communications, control, and many other applications. 

Many adaptive filtering algorithms have been proposed 

[1] and they can broadly be classified into two different 

classes: the least mean squares (LMS) algorithm and the 

recursive least squares (RLS) algorithm. These two 

algorithms form the benchmarks for adaptive filtering 

study and different approaches have been proposed for 

improving their performances and reducing the arithmetic 

complexities [1].  One very efficient class of LMS 

algorithms is the fast Newton algorithms, which include 

the fast Newton transversal filters (FNTF) [2] and the fast 

LMS/Newton algorithm [3].  In these algorithms, the 

input signal to the adaptive filter is modeled as a low, M-

order auto-regressive (AR) process so that the Kalman 

gain vector in the Newton algorithm can be efficiently 

approximated. These two algorithms have a similar 

arithmetic complexity of )52( MLO  and 

)62( MLO respectively (where L represents the order of 

the adaptive filter), but the latter is more numerically 

stable than the former because of its LMS characteristics. 

It also considerably outperforms the Normalized LMS 

algorithm (NLMS) in convergence speed and possesses 

the attractive properties of regular hardware 

implementation. Unfortunately, it also suffers from some 

deficiencies such as slow initial convergence (due to the 

estimation delay of the AR parameters of the input signal) 

and the inferior tracking performance as compared to the 

NLMS algorithm. The latter is of particular importance in 

many applications involving time-varying channels such 

as echo cancellation problems [4], where the echo path 

might be non-stationary.  Another problem, which is also 

specific to echo cancellation problems, is that it does not 

exploit the sparsity of the echo path, which has attracted 

considerable interests recently. The proportionate stepsize 

NLMS (PNLMS) algorithm [5] improves the initial 

convergence of the NLMS algorithm by adapting the 

stepsizes for each coefficient in the weight vector.  

Unfortuantely, it converges rather slowly when the 

impulse response is dispersive and when the input is 

colored. Afterwards, two improved PNLMS algorithms, 

called the PNLMS++ algorithm [6] and the IP-NLMS 

algorithm [7] were proposed. Alternation between the 

NLMS and PLMS and their linearly combinations were 

proposed to improve the convergence performance. More 

recently, Hoshuyama et al proposed a Generalized 

Proportionate Affine Projection Algorithm (GP-APA) [8] 

where approximate gradient of the weight vector are used 

to adapt the stepsizes.  Faster initial converging and 

tracking speeds over the PNLMS were reported.  The GP-

APA reduces to the GP-NLMS algorithm when one input 

vector is processed at a time, which also has the lowest 

arithmetic complexity in the family.  Since the PNLMS 

algorithm and its variants are NLMS-type algorithm, their 

performances will be considerably affected by colored 

input signals, especially for dispersive channels with 
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considerable number of non-zero coefficients.   

    Motivated by these important properties of the fast 

LMS/Newton algorithm and the GP-NLMS algorithm, a 

new proportionate fast LMS/Newton (PLMS/Newton) 

algorithm is proposed in this paper to improve the initial 

convergence and tracking performances of its 

conventional counterpart.  The basic idea is to separate the 

updating of the input AR model and the NLMS part of the 

algorithm during tracking and initial convergence.  This 

allows the NLMS part to operate essentially as a GP-

NLMS algorithm in the initial converging stage and 

during time-varying environments and hence achieve a 

better overall performance.  On the other hand, when the 

weight vector has converged to a value sufficiently close 

to its steady state value or when the channel response has 

settled down to a relatively constant value after 

considerable variation, the input AR modeling can be 

coupled again to the NLMS part to further lower the 

steady state error over the GP-NLMS algorithm especially 

when the input is colored and the channel response is non-

sparse.  One important ingredient of the new algorithm is 

an efficient switching mechanism, which determines when 

the input AR modeling should be coupled to or decoupled 

from the NLMS part of the algorithm.  Experimental 

results show that a reliable decision can be derived from 

the variations of the weight vector, which can be readily 

derived from the GP-NLMS algorithm.  Moreover, since 

the structure of the new algorithm is very similar to its 

conventional counterpart, except for the additional 

arithmetic operations in determining the switching 

decision, the complexity of the new algorithm is similar to 

the GP-NLMS algorithm.       This paper is organized as 

follows: the conventional fast LMS/Newton algorithm is 

reviewed in section 2. The proposed PLMS/Newton 

algorithm is presented in section 3. Experimental results 

and comparisons with the LMS/Newton, GP-NLMS and 

NLMS algorithms are presented in section 4. Finally, 

conclusions are drawn in section 5. 

2. THE FAST LMS/NEWTON ALGORITHM 

Consider the adaptive system identification problem 

depicted in Fig. 1.  The input signal )(nx  passes through 

the unknown channel with an impulse response *
W  and 

generates the output )(0 nd , which is assumed to be 

corrected by additive noise )(0 n  to form the desired 

signal )(nd . An adaptive filter with an impulse response 

)(nW  is usually employed to identify the unknown 

channel, where the weight vector is continuously adjusted 

to minimize certain performance criterion such as the 

mean-square-error (MSE) of the instantaneous error  

)(nx

)(ny

W

)(0 nd

)(nd)(ne

Adaptive

Filter

)(nW
Echo-path

impulse

response

)(0 n+
- +

+

Figure 1.  Adaptive system identification 

estimation )(ne . The latter is equal to the difference 

between the filter output )(ny and the desired input )(nd .

In the Newton algorithm, the weight update equations are 

given by 

      )()()()( nnndne T
WX   (1) 

      )()(ˆ)()()1( 1 nnnenn XRWW (2) 

where )(ˆ 1 nR  is the inverse of the estimated input 

covariance matrix and is the stepsize which controls the 

converging and tracking speed, and the steady state error 

of the algorithm. In the fast LMS/Newton algorithm, the 

input )(nx  is modeled as an M-order AR process 

(usually LM ) so that )(ˆ 1 nR  can be efficiently 

approximated using linear prediction method. As a result, 

the computational complexity of the basic Newton method 

can be significantly reduced, similar to the LMS 

algorithm, while offering significant performance 

improvement. More precisely, in the fast LMS/Newton 

algorithm, )(ˆ 1 nR  is factored into the following form: 

      )()()()(ˆ 11 nnnn MLDLR
T

M
   (3) 

where )(nML
 is an ( LL ) lower triangular matrix 

consisting of the coefficients of the backward predictors. 

Due to the AR model assumption of the input, it can be 

simplified to  
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where the element )(, na ip
 is the i-th coefficient of the p-th 

order backward predictor for )(nx , and )(nD is a diagonal 

matrix whose i-th element is the estimated power of the i-

th backward prediction error. In [3], two algorithms with 

different complexities are presented. The algorithm 

employed in this paper is based on Algorithm 2, which 

has a much simpler structure than Algorithm 1, and hence 

more suitable for hardware implementation.  

Note that the (M+1)-th through the L-th rows of )(nML
are 

shifted version of each other and define the extended 

input and coefficient vectors of )(nX and )(nW as:
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T
E MLnxnxMnxn )]1(,),(,),([)(X    (5) 

T
MNME nwnwnwn )](,),(,),([)( 10W .    (6) 

By freezing the first M and last M unnecessary elements 

of )(nEW
 to zero during all iterations and denoting the 

resultant vector as )(nW , the fast LMS/Newton algorithm 

can be written as follows: 

       )()()()( nMnMndne T
WX    (7) 

       )()(2)()1( nnenn auWW   (8) 

       )()()(
~

)()( 1
1

2 nnnnn Ea XLDLu , (9) 

where )(1 nL  and )(2 nL  are respectively (L+M)-by-

(L+2M) and L-by-(L+M) matrices whose rows consist of 

consecutively shifted and delayed coefficients of the M-

order forward and backward 

predictors ]1,),(),([ 1,, nana MMMM and ]1,),(),([ 1,, nana MMMM .

By exploiting the shifting property of )(nau
 and 

)()()( 1 nnn EE XLb , it is possible to reduce the 

computational complexity of the algorithm to 2L+6M

multiplications and additions for each iteration. The 

predictor parameters can be efficiently calculated using a 

lattice predictor and the Levinson-Durbin algorithm. 

3. THE PROPORTIONATE FAST LMS/NEWTON 

ALGORITHM 

    Although the fast LMS/Newton algorithm efficiently 

exploits the colored nature of the input speech signal and 

gives an overall fast converging speed, its initial 

converging speed is however slightly slow because of the 

time consumed for estimating the AR model parameters. 

Besides, it does not take into account the sparse nature of 

the impulse response of the echo path. As mentioned 

earlier, the GP-APA algorithm [8] controls the step size 

for each filter tap individually based on their 

approximated time derivatives. In this paper, we shall 

consider a special case of the GP-APA algorithm with the 

dimensionality of the input data space equal to 1. It then 

reduces to a GP-NLMS algorithm with the least 

complexity: 

))()()(/()()()()()1( nnnnnnenn T
XUXXUWW  (10) 

))(,),(),(()( 21 nununudiagn LU ,  (11) 

Ln

nc
nu i

i
2)1(ˆ

)1(ˆ

2

1
)(

1
c

,
 (12) 

L

i i ncn
11

)1(ˆ)1(ĉ

)1(ˆ)1()(ˆ nwnwnc iii ,

     

 (13) 

),1()1()1(ˆ)(ˆ nwnwnw iii    Li ,,2,1 ,  (14) 

where )(nu i  and )(ˆ nc i  are respectively the stepsize and 

approximated time derivative of the i-th filter tap. 

serves as the minimum step size, and is the forgetting 

factor for calculating smoothed tap weight )(ˆ nwi  and  is 

a constant. 1||||  denotes the 1l  norm of a vector.  From 

(10)~(14), we can see that the advantages of the GP-

NLMS algorithm are two folds: First, in time-invariant 

echo path with sparse impulse response, the time 

derivatives )(ˆ nci  allow significant tap weights to be given 

a larger stepsize and vice versa. This results in a faster 

initial converging speed. Secondly, since )(ˆ nci  tends to 

reflect the time variations of the filter weights, it yields a 

faster tracking speed in slowly time-varying channels.  

However, as demonstrated by simulation results in section 

4, these two advantages will become less profound when 

the echo path is dispersive. Moreover, due to the noise 

introduced in calculating the gains, the steady state error 

of the GP-NLMS algorithm will become noisier as well.

Motivated by these observations, it is desirable to employ 

the GP-NLMS algorithm during initial convergence and 

time-varying environment, while employing a fast 

LMS/Newton algorithm near the steady state in order to 

achieve a lower steady state error and faster converging 

speed for colored inputs and various echo paths.   In other 

words, we need an efficient switching mechanism to 

switch alternately between these two algorithms according 

to a certain measure so as to increase the overall 

converging and tracking speed.  We now study a measure 

that is derived from the approximated time derivatives of 

the weight vector )(ˆ nc i  in (13).  Consider the 1l  norm of 

the vector 
1

)1(ˆ nc and from the GP-NLMS algorithm, we 

find that it will converge gradually from its initial value to 

a very small value when the algorithm is about to 

converge to its steady state.  In addition, its value will be 

quite unstable during tracking of time-varying echo path 

responses.  Therefore, it forms a good measure to 

implement the switching mechanism, where we can 

switch to the fast LMS/Newton algorithm when 
1

)1(ˆ nc

becomes smaller than a certain threshold. More precisely, 

let us denote the instant gradient of 
1

)1(ˆ nc  by )(nGc  and 

define the decaying ratio )(n  as 0/)( cc GnG , where 
0

cG represents the initial value of )(nGc obtained by 

averaging the first P data, i. e. )(kGc  from Pk ,2,1 . A 

small value of )(n  indicates a considerably diminished 

variations in the weight vector, and hence the filter has 

approached the end of its initial converging period.  By 

choosing appropriately a threshold, say ˆ , it is possible to 

compare )(n  against this threshold to determine whether 

switching is necessary. When )(n  is larger than ˆ , the 

algorithm is likely to be in its initial converging stage or 

in the stage of tracking a time-varying echo path.  The 

GP-NLMS will be chosen to give a fast initial converging 

and tracking performance. Whereas, when )(n  falls 
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below ˆ , the algorithm is likely to converge slowly and 

the fast LMS/Newton algorithm should be invoked to 

accelerate the convergence and further lower the steady 

state error. To guarantee that )(n  has actually decreased 

below the threshold, the switching decision should be 

made as )(n is less than the threshold for Q consecutive 

observations, where Q denotes the decision window 

length. The parameters ˆ , P and Q can be chosen 

experimentally in practical applications and simulation 

results show that the performance of the algorithm is not 

too sensitive to these values if they are reasonably chosen. 

The detail of the resulting PLMS/Newton algorithm is 

summarized in table 1, where for simplicity, the division 

operation is treated as multiplication and the windowing 

operations are not included and its implementation block 

diagram is plotted in Fig. 2. It can be seen that the AR 

estimation part of the fast LMS/Newton algorithm, which 

usually constitutes a small part of the algorithm, is 

implemented in each iteration. 

    When the fast LMS/Newton algorithm is invoked, the 

NLMS update in (7) to (9) based on the whitened 

input )(nua will be used.  Otherwise, the GP-NLMS update 

in (10)~(14) will be employed based on the input x(n). 

Because of this sharing, the arithmetic complexity is 

nearly the same as the GP-NLMS algorithm, except for 

the low order AR estimation part.

TABLE 1. THE PROPORTIONATE FAST LMS/NEWTON  

ALGORITHM 

1. Initialization 

)0(W 0 ; Given initial value averaging window length P,    

    calculate 0

cG

6M Mult. 6M Add.  

(Employ Levinson- 

Durbin algorithm) 

2. Adaptation 
T

E MLnxnxMnxn )]1(,),(,),([)(X      

T

MNME nwnwnwn )](,),(,),([)( 10W                      

)()()(
~

)()( 1

1

2 nnnnn Ea XLDLu
               

  FOR i=1 to L LOOP
      ),1()1()1(ˆ)(ˆ nwnwnw iii

      )1(ˆ)1()(ˆ nwnwnc iii

  END OF LOOP 
L

i i ncn
11

)(ˆ)(ĉ
         

  Calculate )(nGc
, )(n 0/)( cc GnG

IF ˆ)(n  (GP-NLMS) 

       FOR i=1 to L LOOP 
            

Ln

nc
nu i

i
2)1(ˆ

)1(ˆ

2

1
)(

1
c

 END OF LOOP 
))(,),(),(()( 21 nununudiagn LU

))()()(/()()()()()1( nnnnnnenn T
XUXXUWW

 ELSE   (Fast LMS/Newton) 
)()()()( nMnMndne T

WX

)()(2)()1( nnenn auWW

 END IF

                                      

2L Add.            

L Add.     

5L+1 Mult.    

2L-1 Add.        

 2L Mult. 

 2L Add. 

Total: 5L+6M+1Mult. 5L+6M-1Add. working with GP-NLMS  

         2L+6M Mult. 5L+6M Add. working with fast LMS/Newton  
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1
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Calculate
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Figure 2. The implementation block diagram for the PLMS/Newton 

algorithm

4. SIMULATION RESULTS 

    We now investigate the performance of the proposed 

algorithm through computer simulations of an echo 

canceller for both sparse and dispersive environments. 

The system model is similar to that shown in Fig. 1. The 

colored input signal is modeled as a speech signal using 

an AR process with coefficients [1 -0.65 0.693 -0.22 

0.309 -0.177] as given in [3].  The resultant signal 

possesses a spectrum closely resembling those of speech 

signals. The sparse echo path is a realistic one given by 

the ITU-T recommendation G.168 [9] with a length of 

128. Its impulse response plotted in Fig. 3(a) shows the 

significant coefficients are clustered only in a small 

region. The impulse response of the dispersive echo path 

is plotted in Fig. 3(b) and it is randomly generated and 

normalized to have unit power. The power of the additive 

white Gaussian noise is set to be 0.0001.  Four algorithms, 

the fast LMS/Newton, the PNLMS, the GP-NLMS and 

the proposed PLMS/Newton were compared. For the GP-

NLMS algorithm, 999.0 , 1 , 2.0 , 00001.0 ,

and 5.0 . For the fast LMS/Newton algorithm and the 

PNLMS algorithm, the stepsizes were chosen so that the 

steady state MSE of all the algorithms is approximately -

40dB. For the PLMS/Newton algorithm, ˆ =0.5, P=20,

and Q=100. Three experiments have been conducted. 

Exp.1: Sparse echo path. MSE is employed as the 

converging performance measure of all the algorithms 

(same in Exp.2). From Fig. 4, we can see the proposed 

hybrid algorithm was switched from the GP-NLMS 

algorithm to the fast LMS/Newton algorithm at around the 

1300th iteration and thus it outperformed the other 

algorithms. Exp.2: The dispersive echo path. It can be 

seen from Fig. 5 that the initial converging behavior of the 

GP-NLMS and the PNLMS algorithms considerably 

degraded due to the presence of the dispersive impulse 

response. In contrast, the proposed PLMS/Newton 
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algorithm still performs very well and has the best 

performance among the other algorithms. The switching 

happened roughly at the 1200th iteration. Exp.3: Tracking 

in sparse echo path environment. The mean square of the 

echo path impulse response estimation difference (MSD) 

is employed as the performance measure. The slowly 

varying echo path follows the model given in [3] as 

)()()()1( nvnwnwnw iiii , Li ,,2,1 ,  where  is a 

small constant equal to 0.01 and snvi )'( are a set of 

independent Gaussian white noise sequences with unit 

variance. Fig. 6 shows the tracking performance of all the 

algorithms. Because the value of )(nGc  varied 

dramatically, the PLMS/Newton algorithm quickly 

switched to the GP-NLMS mode. As a result, it has a 

performance similar to the GP-NLMS algorithm. They 

both outperformed the PNLMS and the fast LMS/Newton 

algorithms. Apparently, this resemblance of the 

PLMS/Newton and the GP-NLMS algorithms will 

increase with the value of the observation window length 

Q.

5. CONCLUSION 

A new PLMS/Newton algorithm for adaptive filtering is 

presented. It efficiently combines the advantages of the 

GP-NLMS and the fast LMS/Newton algorithms by 

means of an efficient switching mechanism, Computer 

simulations on an echo canceller application verify the 

superior performance of the new algorithm over the 

conventional fast LMS/Newton algorithm in terms of 

convergence speed and steady state performance for both 

sparse and dispersive channels as well as colored input 

signals. 
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