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Figure 1.  The SPIM: (a) Configuration; (b) d-q axis model. 
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Abstract—This paper presents a novel chaotic-speed control of 
single-phase shaded-pole induction motor drives, especially for 
application to cooling fans. It is the firstly proposed and 
implemented chaotic-speed fan. Based on the d–q axis model of 
the shaded-pole induction motor drive, Poincaré mapping and 
hence bifurcation analysis are conducted to reveal the periodic 
and chaotic operations under different system parameters. 
Consequently, a chaotic-speed fan can be achieved by properly 
choosing either the motor’s own parameters or the operation 
condition such as the frequency and amplitude of the applied 
voltage. Theoretical analysis, computer simulation and 
experimental results are given to testify the proposed chaotic-
speed fan.  
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I.  INTRODUCTION 
Chaos is a phenomenon that occurs in many disciplines, 

from as large as the universe to as tiny as a particle. In 
electrical engineering, the nonlinear circuits, power systems, 
power converters, motor drives, telecommunications and 
medical electronics have already been identified to exhibit 
chaotic behaviors. Recent research has also been extended to 
the identification and hence the stabilization of chaos in 
different motor drives, especially DC and switched reluctance 
types [1], [2]. Rather than negatively avoiding the occurrence 
of chaos in motor drives [3]-[4], a positive idea is newly born – 
the utilization of chaotic motion in motor drives. 

It is well known that a variable-speed fan can provide a 
better cooling effect than its constant-speed counterpart. 
Recently, it has been identified that a proper chaotic motion 
can greatly enhance the efficiency in heat transfer [5]. Thus, it 
is anticipated that a chaotic-speed fan can further improve the 
cooling effect. Possible controllable behaviors are the chaotic 
boundaries and the types of chaos. 

Since the shaded-pole induction motor (SPIM) is one of the 
most popular single-phase induction motors for cooling 
application [6], the purpose of this paper is to design and 
implement a novel chaotic-speed SPIM drive for application to 
cooling fans. Based on the d–q axis model of the SPIM drive, 
Poincaré mapping and hence bifurcation analysis will be 
conducted to reveal periodic and chaotic operations under 
different system parameters. Consequently, the chaotic-speed 
fan can be achieved by choosing proper system parameters. 

Theoretical analysis, computer simulation and experimental 
results will be given to testify the proposed chaotic-speed fan. 

 This paper is organized as follows: Section II will give a 
brief introduction to the SPIM, such as its advantages, 
applications, working principle and the mathematical model. 
The design principle and criterion for chaotic speed operation 
will be exploited in Section III. In Section IV, both numerical 
and experimental results using a practical SPIM will be 
presented to verify the proposed method. Section V will 
summarize the whole paper. 

II. SYSTEM MODELING 
The SPIM is widely accepted for domestic appliances, 

especially cooling fans. It offers the definite advantages of 
simple structure, low cost as well as highly rugged and reliable 
[6]-[7]. Its uniqueness is the use of the auxiliary winding, also 
called the shading winding, to produce a starting torque. As 
shown in Fig. 1 (a), a shaded-pole motor uses no starting 
switch. The stator poles are equipped with an additional 

This work was supported and funded by a grant (under project no. 
HKU7154/04E) from Research Grants Council of Hong Kong Special 
Administrative Region, China. 

IAS 2005 1337 0-7803-9208-6/05/$20.00 © 2005 IEEE



winding in each corner, that is, the shade winding. These 
windings have no electrical connection for starting but use 
induced current to make a rotating magnetic field. The shaded 
pole structure of the SPIM enables the development of a 
rotating magnetic field by delaying the buildup of magnetic 
flux. A copper conductor isolates the shaded portion of the pole 
forming a complete turn around it. In the shaded portion, 
magnetic flux increases but is delayed by the current induced in 
the copper shield. Magnetic flux in the unshaded portion 
increases with the winding current forming a rotating field. The 
interaction of these two magnetic fields generates the starting 
torque for the motor. Normally, the effect of the shading 
winding is negligible when the motor reaches speed [6]. 

Fig. 1 (b) shows the d–q axis model of the SPIM. When the 
motor is connected to the power line, its main winding voltage 
has a form of )2sin( θ+π= ftVvm  where V is the voltage 
amplitude, f is the line frequency and θ is the initial phase 
difference with respect to d-axis. Then, the system dynamic 
behavior can be expressed as [8]: 
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where R is the resistance matrix and L is inductance matrix; ims 
and ias are the currents of the main winding and shading 
winding, respectively; idr and iqr are the rotor currents in the d–
axis and q–axis, respectively; Rm, Ra and Rr are the resistances 
of the main winding, the shading winding and the rotor, 
respectively; Lmm, Laa, Ldd and Lqq are the self inductances; Lmd 
is the mutual inductance between the main winding and d–axis 

rotor winding; Lma is the mutual inductance between the main 
winding and the shading winding; Lar is the mutual inductance 
between the shading winding and the rotor when the rotor is 
aligned with the shading winding; ωr is the rotor angular speed; 
np is the number of pole pairs; δ is the angle between the main 
winding and the shading winding; J is the rotor inertia; Bm is 
the viscosity friction coefficient; Te and TL are the 
electromagnetic torque and mechanical load, respectively. 

III. DESIGN FOR CHAOTIC-SPEED OPERATION 
The SPIM model described by (1)-(5) is a periodically 

driven non-autonomous system, which is apt to sub-harmonics 
resonance and chaos. The existence and stability of harmonic 
and sub-harmonic in such forced systems have been studied 
analytically and computationally in a number of biological and 
physiological applications. The most important examples are 
the periodically forced Van der Pol equation with damping [9], 
and oscillators of the Duffing type having a nonlinear restoring 
force [10]. Other usual used examples are the forced damped 
pendulums and springs.  

In these driven harmonic oscillators, transience is found to 
lead to some steady state periodicity. The final behavior of the 
system depended on the relation between the driving frequency 
and the natural frequency (and to a lesser extent the damping 
factor). Similar behaviors are also found in first order nonlinear 
difference equations; the quadratic mapping and the related 
logistic equation. In the meanwhile, for such driven nonlinear 
oscillators, closed-form analytical solutions are usually not 
available and recourse must inevitably be made to numerical 
means.  

In order to achieve the proposed chaotic-speed operation, a 
criterion for the existing of chaos becomes significant. 
Approaches by both motor parameter design and operation 
condition control have to be conducted based on this chaos 
criterion. Poincaré mapping and bifurcation analysis can be 
utilized for such a role.  

For a system possessing more than one unique behavior, as 
a parameter is varied, an abrupt change in the steady-state 
behavior of the system is called a bifurcation. A plot of the 
steady-state obit against the bifurcation parameter is termed a 
bifurcation diagram. Thus, the bifurcation analysis facilitates 
the appraisal of the steady-state system behavior at a glance. In 
order to get such a bifurcation diagram, constructing a Poincaré 
map usually becomes quite necessary. 

Poincaré mapping is an effective tool which functions to 
replace the solution of a continuous-time dynamic system by 
an iterative map. It acts like a stroboscope that produces a 
sequence of samples of the continuous-time solution. Thus, the 
steady-state behavior of the Poincaré map, termed the orbit, 
corresponds to the steady-state waveform of the continuous-
time dynamic system. For a non-autonomous system as 
described by (1)-(5), a natural way to construct the Poincaré 
map is to sample the trajectory with the applied line frequency f. 
Hence, the Poincaré surface 15 S×ℜ∈∑  can be defined as 

}:),{(: 0
15 ttSt =×ℜ∈=∑ x  where ],,,,[ rqrdrasms iiii ω=x  is 

the solution of the state vector. The trajectory of )(tx  
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repeatedly passes the surface ∑  for every period T. The 
sequence of surface crossings, so-called the orbit, defines the 
Poincaré map as given by )P(  ,:P 1

55
nn xx =ℜ→ℜ +  where 

nx  and 1+nx  are the nth and (n+1)th samples of )(tx , 
respectively. 

Bifurcation diagrams can be plotted once the orbits under 
different values of the bifurcation parameter are available. 
Since different types of attractor form different patterns on the 
Poincaré surface, ignoring the case of the point attractor which 
has no intersection with the Poincaré surface or just leave a 

single point without return, there are three main groups. 
Namely, a limit cycle forms one or several dots whose no 
corresponds to the period of the attractor. A quasi-periodic 
trajectory projects a ring or torus dot-cloud on the Poincaré 
plane, whereas chaotic attractors usually show relatively 
complex geometries with no apparent order. As a collection of 
these orbits, a bifurcation diagram reveals the change of the 
attractors with the variation of parameters. Based on the 
bifurcation diagram, one can easily design motor parameters or 
choose the right operation condition for chaotic or non-chaotic 
motion. 

 
     (a)       (b)                   (c) 

Figure 2.  Speed bifurcation diagrams: (a) varying frequency with V=220V; (b) varying amplitude with f=10Hz; (c) varying amplitude with f=22Hz.  

 
     (a)       (b)                   (c) 

Figure 3.  Measured periodic speed waveforms: (a) V=220V, f=60Hz; (b) V=220V, f=38Hz; (c) V=160V, f=22Hz. 

 
     (a)               (b)     (c) 

Figure 4.  Measured periodic main winding current waveforms: (a) V=220V, f=60Hz; (b) V=220V, f=38Hz; (c) V=160V, f=22Hz.
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TABLE I.  MOTOR PARAMETERS 

Parameters Value Parameters Value 
np 1 Rm 5.630 Ω  
Lmm 0.4111H Ra 0.212 Ω 
Ldd 0.4105H Rr 25.0 Ω 

Lqq 0.3767H Laa 1.102 × 10−5 H 

Lmd 0.3528H δ 28° 

Lmq 0.3448H J 2.130 × 10−5 kg·m2  
Lma 0.0015H Bm 1.470 × 10−4 N·m·s  

Lar 0.0017H   

IV. EXPERIMENTAL RESULTS 
A practical SPIM drive with its motor parameters listed in 

Table I is used for exemplification. And θ=0 and mT = 0 are 
used for all results. Based on the Poincaré mapping, speed 
bifurcation diagrams with respect to different system 
parameters can be obtained. Since the motor parameters, such 
as the pole numbers, inductances and resistances, are 
essentially fixed after production, the frequency and amplitude 
of the applied voltage are selected as the bifurcation 
parameters. The results are plotted in Fig. 2. Obviously 
enough, the motor behavior varies greatly with the change of 
operation parameters. Periodic oscillation, quasi-periodic and 
chaos can all be observed.  Taking Fig. 2 (a) as an example, the 
speed bifurcation diagram shows that the motor acts like any 
other normal SPIMs in the frequency range of 40-60 Hz. 
Namely, it oscillates near a constant speed with a relative small 
oscillation amplitude, which is caused by the shading winding 
used for starting. With the decrease of the applied frequency, 
period-2 oscillation occurs. When the frequency drops further, 
complicated behaviors such as quasi-period and chaos arise. 
Despite of different patterns, similar conclusions can be cast 
for the rest of Fig 2. Therefore, different chaotic boundaries 
and even types of chaos can be resulted by varying either the 
frequency or the amplitude of the applied voltage.  

Figs. 3 and 4 show the speed waveforms and the 
corresponding main winding current waveforms, respectively, 
at various periodic-speed operations, namely the period-1, 
period-2 and period-3 operations. It should be noted that the 
period-1 waveform shown in Fig. 3 (a) is the normal speed 
waveform of the conventional SPIM drive, whereas, the 
period-2 and period-3 waveforms correspond to its abnormal 
subharmonic operations. These waveforms consist with the 
well-known phenomenon of inevitable torque pulsation hence 
speed ripple in the SPIM caused by the shading winding.  

As reflected from the speed bifurcation diagrams, the SPIM 
drive exhibits chaotic behavior at certain ranges of bifurcation 

parameters. Figs. 5 and 6 show the speed waveforms and the 
corresponding main winding current waveforms, respectively, 
at various chaotic-speed operations. It can be found that the 
chaotic speed waveforms offer the well-known chaotic 
properties, namely random-like but bounded oscillations. Also, 
these waveforms are aperiodic and very sensitive to the initial 
condition. Although, the main winding current waveforms 
seem to be more regular than the speed waveforms, they are 
still random-like and aperiodic when compared carefully. 
Physically, these chaotic motions reveal the unbalanced status 
of the interaction between the magnetic fields by the main 
winding and the shading winding, which is a kind of starting 
failures. 

By this way, a chaotic-speed SPIM fan is realized. The key 
is to locate the motor behavior into the chaotic region of the 
bifurcation diagram by either motor parameter design or 
operation condition control. It should be noted that once the 
operation condition is known, the motor parameter whose 
variation bringing chaos may be more than one.  Possible 
candidates are the main winding and the shading winding angle 
δ, the mutual inductance Lar, the ratio of Bm to J, and so on.  
However, to introduce chaos by choosing operation condition 
merely may fail for a given motor.  

The proposed chaotic motion can be adopted to improve 
heat transfer and hence the cooling effect for homogeneity. 

V. CONCLUSION 
This paper firstly proposed and implemented a novel 

chaotic-speed SPIM drive for application to cooling fans. 
Based on the d–q axis model of the SPIM drive, Poincaré 
mapping and hence bifurcation analysis has been conducted to 
reveal periodic and chaotic operations under different system 
parameters. Consequently, the chaotic-speed fan can be 
achieved by choosing proper system parameters such as motor 
parameters and operation conditions. Theoretical analysis, 
computer simulation and experimental results have been given 
to testify the proposed chaotic-speed fan. The tested results of a 
practical SPIM drive showed that the proposed method is 
fleasible enough for special applications desiring chaotic 
motions such as cooling fans or grinding machines. 
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Figure 5.  Measured chaotic speed waveforms: (a) V=150V, f=10Hz; (b) V=220V, f=10Hz; (c) V=220V, f=18Hz. 
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Figure 6.  Measured chaotic main winding current waveforms: (a) V=150V, f=10Hz; (b) V=220V, f=10Hz; (c) V=220V, f=18Hz. 
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