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Abstract This paper presents a new technique for
the chaoiztion of switched reluctance motor (SRM)
drivers. Based on the chaotic modeling of SRM
drives, effects of feedback controller gains on the
stability of the rotor speed are investigated. In
accordance, a control strategy combining piecewise
proportional feedback and time-delayed feedback is
proposed to produce bound-controllable oscillation
around any specific rotor speed. To estimate the
continuous influence of a certain control parameter, a
Poincare map sampling at every extreme points is
constructed, then the bifurcation diagrams are
drawn. Theoretical analysis and numerical
simulation for a practical 12/8 motor driver are also
given.

I. INTRODUCTION

Recently, a number of research activities on chaos in
motor drives have been carried out. Most of them are
based on the identification of chaos, the avoidance of
chaos and the stabilization of chaos in various types of
electric motor drives [1-6]. Many methods deriving form
the idea of parameter disturbing, namely OGY method,
are employed to stabilize an aperiodic or chaotic rotor
speed into a periodic or regular steady state [7-9].
However, in some industrial occasions chaotic motions
in motor drives are highly desired to improve the
effectiveness and efficiency, for example, mixing and
grinding. Such tries, so-called anti-control of chaos or
chaoization have been barely reported. In this paper,
rather than negatively avoiding the occurrence of chaos
in motors, a positive idea to utilize the chaotic motion for
some niche applications will be presented.

Recent experiences have proved that conventional
controllers can also induce chaos in motor drivers. This
paper firstly presents the analysis of the effect of
parameters of the controller on the stability of dynamic
system. It can be shown that some chaotic behaviors
potentially offer distinct advantages of the reduction of
subharmonics, electromagnetic interference (EMI) and
acoustic noise. However, this kind of chaotic motion
suffers a limited range of oscillation of the rotor speed.
To amplify its chaotic domain, a new control technique,
named time-delayed feedback control, has been
combined with the modified proportional feedback. This
novel controller has the advantages that only parameters
need to adjust and no inherent parameter of the motor is
necessary to change. It can be easily implemented with
digital controller and has high flexibility. Despite of the

benefits above, time-delayed feedback control bring
some obstacles into the analysis and computation. To
facilitate the controller design, the switching effect
should be ignored and hence, other methods to estimate
its stability must be proposed.

In section II, the modeling of chaos in switched
reluctance motor (SRM) drives is described without
ignoring the switching effect nor accepting rough
assumptions. In section III, based on the modeling of
chaos, the chaotic operation with lower ripples of the
torque and rotor speed is realized. In section IV, with
ignoring the switching effect, the modeling of
chaoization in SRM drives is derived for a controllable
chaotic motion. In section V, to estimate the continuous
influence of a certain control parameter, the Poincare
map is constructed; then the bifurcation diagrams are
proposed and analyzed.

II. MODELLING OF CHAOS IN SWITCHED RELUCTANCE
MOTOR DRIVES

Due to the double salient structure of switched
reluctance motors, nonlinear phenomena, like fringing
and saturation, are severe during the time the rotor and
stator are overlapped. So the flux linkage is related with
both phase current and rotor position. The most common
modeling of flux linkage, current and rotor position is a
smooth surface interpolated by second-order Lagrange
interpolation functions using data measured
experimentally or computed by finite element method.

A. State Equations

Fig. 1 shows the schematic diagram of a three-phase
SRM which is adopted for exemplification.

Fig. 1 Schematic diagram of SRM drives.

Since SRM phase windings are conducted in turn,
only two adjacent phase windings have currents at the
same instant given the dwell angle Od of every phase
winding equal to the commutation angle O0. In order to
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simplify the calculation of the Poincare map, the rotor
position 0 rather than time t is selected as the
independent variable of the system. Hence, the system
equation becomes [11]:

|dc (-Bco + Te (0, V-,, V-,0U,)-s)Tl) IfJo )dO

dO = (-Ri2(0,6T')+ul(0))6/co

ldO =(R2 (o - ol I 2 ) + U2 (o - Ss ) Y)1

(1)

ao=00pi, (0, W-l )d l-' i2(°O( 0,2)dW2
(2)

where co is the rotor speed, ik(, VJk) and k (0, ik) (k =1,
2) are the kth phase current and flux linkage, R is the
phase resistance, B is the viscous damping, J is the load
inertia, T, is the load torque.

B. Control Equations

For each conductive phase winding, the
corresponding current control is achieved by applying a
current hysteresis controller, as Fig. 2.
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When proportional gain ki is 1, 10, 22 V/rads'I
respectively, the corresponding trajectories of torque
versus rotor speed are shown as Fig. 3-5. It indicates that
the system exhibits fundamental, subharmonic and
chaotic operations.

Fig. 2 SRM hysteresis controller.

The current reference signal v,(0), the current control
signal vi(0) and the hysteresis band signal are given as
follows:

tVv (0) kp (C - 4(0)) + f ki (c - (0))dO
Vi (0) g=giik (0)3
AV gzii

wC is the reference speed. The current hysteresis
controller outputs the signal to turn on or off those
upper-leg power switches (Al, B1 and Cl), depending
on the phase commutation. When (vi -vi) > Av, the
upper-leg switch being the same phase of the turn-on
lower-leg switch is off until (vi - vi) < -Av, then it is on.

III. CHAOIZATION OF SWITCHED RELUCTANCE MOTOR
DRIVES

Changing system parameters such as kp, ki and gi, the
appearances and qualities of solutions can be quite
different, varying from fundamental solution to
subharmonic, even chaos. In this paper, parameters from
a practical 12/8 SRM and its controller have been used to
simulate the real operation numerically.

Fig. 3 Fundamental trajectory of Te versus co.
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Fig. 4 Subharmonic-4 trajectory of Te versus co.
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Fig. 5 Chaotic trajectory of Te versus w.
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The Waveforms and power spectra PT of the
fundamental and chaotic electromagnetic torques Te are
respectively shown in Fig. 6 and 7. Due to the broad
frequency band of the chaotic operation, the later torque
has more uniform distribution in the view of power
spectrum. Comparing Fig. 6(b) and 7(b), they can be
found that chaotic motion can reduce the annoying peaks
during commutation, and hence reduce the abrasion and
noise.
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Fig. 6 Waveform and power spectrum of the fundamental solution:
(a) Waveform of torque; (b) Power spectrum.
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IV. CHAOIZATION COMBINING TIME-DELAYED AND
PIECEWISE PROPORTIONAL FEEDBACK

As shown above, proportional gains restrain the
variation range of the rotor speed and prohibit the motor
to oscillate in a large area though it can in fact improve
the frequency of oscillation. To obtain the required
oscillation in a desired range, other control techniques
must be used. Time-delayed feedback can transform an
ordinary differential equation into an infinite-
dimensional differential equation, and therefore has the
advantage of introducing infinite kinds of dynamical
characteristics into the original systems [10].
We add a sinusoidal function of the state variable into

the reference signal:
VC (0) = k, (oi - 0)) + f k (ic - (0))dO {AA

~J4)
+ pSin(J(c6c -oi(0 - r))

In the meantime, the proportional gain kp has also
been modified as following. When the rotor speed lies
right in the desired range, no proportional feedback is
added to the reference signal, which means that the
system is overwhelmed by time-delayed feedback
control. Once the rotor speed leaves the desired domain,
the linear feedback will pull it back.

I Ac +wc 0)
kp (no) = 0

Awc + cC 0)
CV c I< A cc0c 'C Awc
0)t > Awc

(5)

Setting a desired range for the rotor speed, such as
[48, 52] rads-', different performances of the rotor speed
can be regulated by changing the magnitude and
frequency of the sinusoidal function and the delay time
as well. When the frequency a is set with 1 and 3
respectively, the system operates in the periodic and
chaotic motions as show in Fig. 8 and 9. It can be found
that the oscillation boundaries of both periodic and
chaotic rotor speed, namely [49, 53] rads-', are near to
the desired rang. It indicates that the system has a
controllable chaotic motion. As shown in Fig. 8, it is
interesting that the periodic solution is actually a
heteroclinic trajectory which has two unstable saddle
points locating respectively at 0)=47.5 rads-' and
=52.5 rads'1.

It should be noted that the commutation angle has
been chosen as the unit for rotor position because much
wider oscillation of rotor speed in spatial and temporal
concept are what are now focused on.
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Fig. 7 Waveform and power spectrum of the chaotic solution:

(a) Waveform of torque; (b) Power spectrum.
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Fig. 8 Waveform of periodic solution.
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Fig. 9 Waveform of chaotic solution.

V. SIMPLIFIED DESIGN MODELLING

When the rotor speed oscillating in a much wider
range in spatial and temporal concept is the main object
to be considered, the minor variations caused by PWM
switching operation can often be ignored without
affecting the result much. Another reason to give up the
original analysis modeling is its high order and heavy
computation time. Assume the phase current follows the
reference signal quick enough; the state equations can be
simplified as a second-order differential equation:

dO
I = co

{ dt (6)

dc-= (-Bco + Te (0, i)-T,) I J
dt

Assume the phase current stays constant in a sampling
period, the discretized control equation can be write as:

n
i, (n) = gi [kp ()c - w(n)) + E ki (wt - o(m))

+ ,uSin(u(w6c - o(n - N))]
In order to analyze the influence of a system

parameter, the bifurcation diagrams should be gained
with other parameters fixed and changing the chosen
parameter continuously. Construction of Poincare map is
a prerequisite to draw bifurcation diagrams. Here, a new
method based on extremum points to construct Poincare
map is proposed. Select the Poincare section as:

:= {(O,c): 6(t) = O} (8)

Hence, the Poincare map P: R2-+R2 is defined as:

xn+1 = P(Xn) (9)
The correspondence between the continuous

waveform of the rotor speed and its discrete mapping
points derived from Poincare map is illustrated with
exemplification of the chaotic motion as shown in Fig.
10. If the mapping has two fixed points, which means a
maximum point and a minimum point, it indicates that
the motor operates in periodic solution; if the motor
speed is like the waveform in Fig. 10, then when the
system is stable a set of dense points will be got instead
of two points.

Keep other parameters as listed in the table 1, and
vary the ,u and kp, the corresponding bifurcation
diagrams can be achieved as shown in Fig. 11 and Fig.
12. Increasing ,u, the rotor speed transfers from periodic
solution into chaos as shown in Fig. 11. Contrary to the
Fig. 11, increasing kp, the rotor speed transfers from
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chaos into periodic solution as shown in Fig. 12. It
indicates that the dynamic characteristic depends on the
balance of the sinusoidal function of time-delayed
feedback and the proportional feedback gain. It can also
be found that the boundaries of the chaotic rotor speed
for the different parameter ,u and k, always keep in the
same range. Hence, the chaotic range is controllable.
Furthermore, since no periodic window exists in chaotic
parameter areas, this chaotic behavior is robust.
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Fig. 10 Illustration of Poincare map
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Fig. 11 Bifurcation of rotor speed versus 1i.
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Fig. 12 Bifurcation of rotor speed versus kp.

VI. CONCLUSION

In this paper, the effects of parameter variations in a
conventional controller on the stability of switched
reluctance motor drives have been firstly investigated. It
can be seen that some chaotic behaviors potentially offer
distinct advantages of reduction of subharmonics, EMI
and acoustic noise. Secondly a feedback control
technique combining with time-delayed feedback and
piecewise proportional feedback is proposed to achieve
desired bound-controllable and robust chaotic motion. In
despite of its benefits, delayed feedback control increase
the computation tremendously. In order to reduce the
computation time, a simplified chaotic design modeling

507



has been derived with the assumption of the current loop
following the rotor speed loop quick enough. Meantime,
a method to construct Poincare map based on extrema
sampling has been presented. The bifurcation diagrams
show that when a certain parameter of the controller
varies continuously, the dynamic system exhibits a
sudden bifurcation into chaos.
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