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SEMI-BLIND CHANNEL IDENTIFICATION AND SYMBOLESTIMATION FOR ASYNCHRONOUSMIMO SYSTEMSYonghong Zeng,Member, IEEEInstitute for Infoomm Researh, A-STAR21 Heng Mui Keng TerraeSingapore 119613Email: yhzeng�ieee.org
Shaodan Ma and Tung Sang Ng, Fellow,IEEEDepartment of Eletrial and Eletroni EngineeringThe University of Hong KongPokfulam Road, Hong KongEmail: sdma�eee.hku.hk, tsng�eee.hku.hkABSTRACTSEMI-BLIND hannel identi�ation and symbol estima-tion for asynhronous MIMO systems are onsidered inthis paper. MIMO hannels are estimated from the se-ond order statistis of the reeived signals subjet to anambiguity matrix and unknown time delays. Then a smallnumber of pilot symbols are used to resolve the ambigu-ity matrix and time delays. A two-step symbol estimationmethod, whih estimates the hannels before reoveringthe symbols, is proposed. Only upper bounds for the han-nel orders and time delays are needed for implementingthe algorithms. Neither knowledge of real hannel ordersnor preise synhronization of different users is required,whih makes the algorithm appliable to pratial MIMOsystems. 1. INTRODUCTIONMultiple input multiple output (MIMO) system has thepotential to greatly inrease system apaity and there-fore is onsidered as a major tehnique for future wirelessommuniation systems. Sine there are multiple usersand signals propagate through different hannels usuallyhave different time delays, it is virtually impossible topreisely synhronize an MIMO system. The situationis even more obvious in the uplink of a ellular mobilesystem. Therefore, a MIMO system is usually an asyn-hronous system. Although quite a few methods havebeen proposed for MIMO hannel estimation and equal-ization [1, 6, 7, 9℄, most of them have two restritions.One is the requirement of the �rst oef�ient (a matrix) inthe Z transform representation of the MIMO matrix han-nel to be of full olumn rank whih impliitly implies pre-ise synhronization [3℄. The other is the true hannelorders are known [4, 5℄. In [9℄, a blind hannel estima-tion method for synhronous MIMO systems is proposedwhih only required an upper bound of the hannel orders.For a MIMO system, it is virtually impossible to ahievepreise synhronization and obtain the exat hannel or-ders. Very few work has been published on equalizingasynhronous MIMO systems with multipath hannels.This work is supported by a grant, HKU 7164/04E, from the Re-searh Grants Counil of the Hong Kong SAR, China.

In this paper, an asynhronous MIMO system withmultipath hannels is onsidered, whih allows differenthannels to have different time delays. By shifting thehannels, we turn the system into a form in whih onlyfew time delays need to be estimated. Channels and trans-mitted symbols of the transformed system an be blindlyestimated by some knownmethods with an ambiguity ma-trix and the time delays embedded. For estimating thetime delays and the ambiguity matrix, pilot symbols areneessary and a method is proposed. Major features ofthe methods are: (1) preise synhronization of differenthannels is not required; (2) only an upper bound for themultipath hannel orders is needed for implementation;(3) time delays for the multiple hannels an be differentand unknown, and only an upper bound for all the timedelays is required. These features make the algorithm ap-pliable to pratial MIMO systems. Simulations showthat the algorithms are effetive and robust.The rest of the paper is organized as follows. In Se-tion 2, the asynhronous MIMO system model and itstransformation are disussed. The hannel identi�ationalgorithm is presented in Setion 3. Setion 4 proposesa semi-blind two-step symbol estimation method. Somesimulation results are given in Setion 5. Finally, onlu-sions are drawn in Setion 6.In the following, supersripts T, † and ∗ stand fortranspose, Hermitian (transonjugate), and onjugate, re-spetively. Symbol def
= is used for introduing a new no-tation. Iq is the identity matrix of order q and ⊗ is theKroneker produt of matries.2. SYSTEM MODELConsider an asynhronous MIMO system with P usersand M reeivers (antennas). Eah user sends a symbol se-quene: sj(n) (j = 1, 2, · · · , P ). Assume that the trans-mitted symbols have zero expetations and are indepen-dently and identially distributed. In general, let the timedelay of the hannel from user j to antenna i be dij . Thenthe reeived signal in the ith reeiver (antenna) an be de-

0-7803-9243-4/05/$20.00 ©2005 IEEE 435



sribed as
xi(n) =

P
∑

j=1

Nij
∑

k=0

hij(k)sj(n− k − dij) + ηi(n),

=

P
∑

j=1

∑

k

hij(k − dij)sj(n − k) + ηi(n),(1)where hij(k) is the hannel response from user j to an-tenna i, Nij is the order of hannel hij(k) (hij(0) 6= 0,
hij(Nij) 6= 0), and ηi(n) is the hannel noise, whih iswhite and unorrelatedwith the transmitted signals. Obvi-ously, the atual (effetive) hannel responses are hij(k−
dij) � thus the �rst oef�ient of the MIMO matrix han-nel is matrix [hij(−dij)]ij and it is not of full olumn rankin most ases. Therefore, most known methods [1, 6, 7, 9℄annot be used for the system (see [3℄ for more explana-tions). In the following, we will transform the system intoanother form whih enables some of the known methodsto be appliable.De�ning hij(k) = 0 for k < 0 or k > Nij and dj

def
=

min
i

(dij),we have
xi(n) =

P
∑

j=1

∑

k

ĥij(k)ŝj(n − k) + ηi(n), (2)where
ĥij(k) = hij(k − dij + dj), ŝj(n) = sj(n − dj). (3)Let N̂j

def
= max

i
(Nij + dij) − dj . Then it is obvious that

ĥij(k) = 0 if k < 0 or k > N̂j . Hene (2) an be writtenas
xi(n) =

P
∑

j=1

N̂j
∑

k=0

ĥij(k)ŝj(n − k) + ηi(n). (4)We assume that M > P . Letting
x(n)

def
= [x1(n), x2(n), · · · , xM (n)]T ,

ĥj(n)
def
= [ĥ1j(n), ĥ2j(n), · · · , ĥMj(n)]T ,

η(n)
def
= [η1(n), η2(n), · · · , ηM (n)]T , (5)we an express (4) into vetor form as

x(n) =

P
∑

j=1

N̂j
∑

k=0

ĥj(k)ŝj(n − k) + η(n), n = 0, 1, · · · .(6)Considering L onseutive outputs and de�ning
x̂(n)

def
= [xT (n),xT (n− 1), · · · ,xT (n − L + 1)]T ,

η̂(n)
def
= [ηT (n), ηT (n − 1), · · · , ηT (n − L + 1)]T ,

ŝ(n)
def
= [ŝ1(n), · · · , ŝ1(n −N1 − L + 1), · · · ,

ŝP (n), · · · , ŝP (n −NP − L + 1)]T , (7)we get
x̂(n) = Ĥŝ(n) + η̂(n), (8)

where Ĥ is an ML × (N̂ + PL) (N̂ def
=

P
∑

j=1

N̂j) matrixde�ned as
Ĥ def

= [Ĥ1, Ĥ2, · · · , ĤP ],

Ĥj
def
=











ĥj(0) · · · ĥj(N̂j) 0 · · · 0

0 ĥj(0) · · · ĥj(N̂j) · · · 0. . . . . .
0 0 · · · ĥj(0) · · · ĥj(N̂j)











.(9)3. BLIND CHANNEL IDENTIFICATIONThe system model (8) is similar to that in [9℄ with Hand s replaed by Ĥ and ŝ, respetively. To use the re-sults in [9℄, the matrix Ĥ must be of full olumn rank.If M > P and the smoothing fator L > N̂/(M − P ),the matrix has more rows than olumns. Therefore, it ismost likely of full olumn rank and some results in [9℄ anbe readily used. Using the method in [9℄, we an derivea method for estimating the ĥij(k), whih is a delayedversion of hij(k). If the estimated hannels are used forequalization, obtaining ĥij(k) is enough and there is noneed to know hij(k). However, to �nally obtain the sym-bols sj(n), the delay dj (not all dij ), the minimum delayof the M hannels for user j, must be found. The resolv-ing of the dj will be disussed in the next setion. Thealgorithm for estimating the ĥij(k) is given in the follow-ing. Note that it is an improved version of [9℄ by inor-porating the maximum desription length (MDL) method[8℄.Algorithm 1 : Blind hannel identi�ation for asyn-hronous MIMO systemsIt is assumed that an upper bound for all the hannelorders, that is, a number Nupp suh that N̂j 6 Nupp (j =
1, 2, · · · , P ), is known or estimated. Choose a smoothingfator L > PNupp/(M − P ).Step 1. ComputeR = 1

Ls

∑L+Ls−1
n=L x̂(n)x̂†(n), where

Ls is the number of samples used. Compute the eigen-value deomposition (EVD) of R. Use the MDL method[8℄ to estimate the rank of H. Let the estimated rank be
r. Average the smallest ML − r eigenvalues of R toget an estimation (σ̄2

η) for the noise variane. Let R̄ =
R− σ̄2

ηIML.Step 2. Compute Q = 1
Ls

∑L+Ls−1
n=L x̂(n)x̂†(n − 1)and Q̄ = Q − σ̄2

η(JL ⊗ IM ). Then ompute the singularvalue deomposition (SVD) of Q̄. Let K1 = ML − r +
P . Choose K1 singular vetors ui (i = 1, 2, · · · , K1)orresponding to the K1 least left singular values of Q̄and denote a matrix U = [u1,u2, · · · ,uK1

].Step 3. Compute W = U†R̄U and the EVD of W.Let V1 be the matrix of size K1 × P whose olumns areeigenvetors orresponding to nonzero eigenvalues of W,and U1 = UV1.Step 4. For k = 0, 1, · · · , Nupp + L− 1, ompute
rz(k) =

{

rx(k), k 6= 0
rx(k)− σ̄2

ηIM , k = 0
,
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where rx(k) = 1
Ls

∑k+Ls−1
n=k x(n)x†(n− k).Step 5. For k = 0, 1, · · · , Nupp, let

G(k) =
[

rz(k) rz(k + 1) · · · rz(k + L− 1)
]

U1.(10)The MIMO hannel matrix is then ĥ(k) = G(k)B−1,where B is a P × P matrix to be determined, and
ĥ(k) =







ĥ11(k) · · · ĥ1P (k)... · · ·
...

ĥM1(k) · · · ĥMP (k)






.4. TWO-STEP SYMBOL ESTIMATIONThere are an ambiguity matrix B (in the estimated han-nels) and delays dj to be resolved. For resolving them,pilot symbols are neessary. In this setion, a pilot-basedmethod is proposed and then a two-step symbol estimationmethod is disussed.4.1. Estimation of the time delaysLet̄

s(n) = [s1(n − d1) s2(n− d2) · · · sP (n − dP )]
T

.(11)A linear minimum mean square error (MMSE) equaliza-tion an be onstruted as
s̄(n − γ) = H̄

†
γR

−1x̂(n), (12)where H̄γ is a matrix of sizeML×P whih is onstrutedfrom the hannel responses ĥ(k) and γ is a delay, 0 6

γ 6 Nupp + L− 1 (see [2℄, page 341). Let Ḡγ be de�nedsimilarly as H̄γ fromG(k). From Algorithm 1 (Step 5), itis obvious that H̄γ = ḠγB−1. Therefore,
B†s̄(n− γ) = Ḡ

†
γR

−1x̂(n), (13)that is,
B†s̄(n) = y(n), (14)where y(n) = Ḡ

†
γR

−1x̂(n + γ). Please note that y(n)an be omputed from the outputs and estimated hannels
G(k).Let

T(k)
def
= E(y(n)s†(n− k)), (15)where E(ξ) means the mathematial expetation of a ran-dom variable ξ and

s(n) = [s1(n) s2(n) · · · sP (n)]
T

. (16)From (14) we have
T(k) = B†E(̄s(n)s†(n− k)). (17)It is lear that

E(̄s(n)s†(n − k)) =

{

0, k 6= dj (j = 1, 2, · · · , P )
∆j , k = dj

where ∆j is a matrix with all elements being zeros ex-ept that the element at j-th row and j-th olumn being1. Therefore, if k 6= dj (j = 1, 2, · · · , P ), T(k) mustbe zero. If k = dj , the j-th olumn of T(k) is the j-tholumn of B† and all the other olumns are zeros. Sine
B† is invertible, none of its olumn is zero. Let m be anumber suh that m ≥ dj (j = 1, 2, · · · , P ), whih anbe obtained from some knowledge on the time delays. Ifwe an obtain T(k) (k = 0, 1, · · · , m), the delays dj anbe easily found (dj is the only k suh that the j-th olumnof T(k) is nonzero). In pratie, T(k) an only be esti-mated (with errors) from a �nite number of pilot samples,and therefore we should hoose dj to be the k suh thatthe power of the j-th olumn of T(k) is maximized.4.2. Symbol estimationTo use (12) for symbol estimation, the ambiguitymatrixBin the estimated hannels needs to be resolved. The samepilots for resolving the time delays an be used here. Infat, de�ning

S = [̄s(m) s̄(m + 1) · · · s̄(m + J − 1)]

Y = [y(m) y(m + 1) · · · y(m + J − 1)] (18)From (14) we have
B†S = Y. (19)A least square (LS) estimation is then

B† = YS†(SS†)−1. (20)With the estimated hannel responses ĥ(k), the ambi-guity matrix B and the time delays, the transmitted sig-nals an be reovered using (12). In this two-step method,
m + J pilot symbols are needed for eah user.5. SIMULATIONSConsider a 2-user 4-antenna system (M = 4, P = 2). Thehannel orders are 3 (for user 1) and 4 (for user 2) respe-tively (note that the two users have different hannel or-ders). The hannel responses (without the time delays dij )
hij(k) are generated randomly. For eah user, the mod-ulation sheme is 4-QAM. The time delays are: d11 =
d21 = d31 = d41 = 0, d12 = d22 = d42 = 1, d32 = 2.Hene N̂1 = 3, N̂2 = 5, Nmax

def
= max

j
N̂j = 5 and

d1 = 0, d2 = 1. Only an upper bound for all the ordersis assumed known in our simulations, that is, a number
Nupp is known suh that Nupp ≥ Nmax. To verify the ro-bustness of the algorithm to the hannel order overestima-tion, we test four ases of the hannel order upper bound(Nupp): Nmax (exat upper bound),Nmax +2, Nmax +4and Nmax +6, respetively. The signal-noise-ratio (SNR)as the ratio of the average reeived signal power to theaverage noise power is de�ned as

SNR
def
=

E(||x(n)− η(n)||2)
E(||η(n)||2) . (21)
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TheMSE between the estimated and true hannel responsesis de�ned as
MSE

def
= min

β

∑Nupp

l=0 ||ĥ(l)−G(l)β||2F
∑Nupp

l=0 ||ĥ(l)||2F
. (22)Simulations show that the algorithm is truly robust to han-nel order overestimation, noise and round-off errors.The MSE versus SNR is shown in Figure 1. We seethat the algorithm works well when only an upper boundfor all the hannel orders is known. When the hannel or-ders are overestimated, errors are inevitably introdued tothe hannel tails (ideally should be zeros), whih ausesthe MSE to beome higher. Figure 2 shows the bit error

Fig. 1. MSE versus SNR(Ls = 500)rate (BER) (average of all users) versus SNR when thetwo-step method is used. An upper bound for time delaysis hosen as m = max
j

(dj) + 3, that is, the time delaysare overestimated by at least 3. The delay γ is hosento be Nupp, and for omparison, the BER results usingthe true hannels and delays are also given (see the linewith no mark). It is lear that the symbol estimation algo-rithm works well when only upper bounds for the hannelorders and time delays are known. Furthermore, the as-sumed upper bounds an be muh larger than the exatupper bounds. 6. CONCLUSIONSIn this paper, semi-blind hannel identi�ation and sym-bol estimation algorithms for asynhronous MIMO sys-tems have been proposed. MIMO hannels and trans-mitted symbols are �rst estimated from the SOS of thereeived signals subjet to an ambiguity matrix and un-known time delays. Some pilot symbols are then used toresolve the ambiguity matrix and the time delays. Thealgorithm requires neither knowledge of real hannel or-ders nor preise synhronization of different users, whihmakes the algorithm pratial for appliations. Simula-tions have shown that the algorithms are effetive and ro-bust.

Fig. 2. BER versus SNR (two-step method, Ls = 1000)7. REFERENCES[1℄ I. Bradari, A. P. Petropulu and K. I. Diamantaras,On blind identi�ability of FIR-MIMO systems withylostationary inputs using seond order statistis,IEEE Trans. Signal Proessing, vol. 51, no. 2, pp.434-441, 2003.[2℄ Z. Ding and Y. Li, Blind Equalization and Identi�a-tion, Marel Dekker, In., New York, 2001.[3℄ Y. Inouye and R. W. Liu, A system-theoreti foun-dation for blind equalization of an FIR MIMO han-nel system, IEEE Trans. Ciruits Systems -I, vol.49,pp.425-436, Apr. 2002[4℄ A. P. Liavas, P. A. Regalia, and J. P. Delmas, On therobustness of the linear predition method for blindhannel identi�ation with respet to effetive han-nel undermodeling/overmodeling, IEEE Trans. Sig-nal Proessing, vol. 48, pp. 1477-1481, May 2000.[5℄ W. Qiu and Y. Hua, Performane analysis of the sub-spae method for blind hannel identi�ation, SignalProessing, vol. 50, pp. 71-81, 1996.[6℄ N. Thirion-Moreau and E. Moreau, Generalized ri-teria for blind multivariate signal equalization, IEEESignal Proessing Letters, vol.9, pp.72-74, Feb.2002[7℄ J. K. Tugnait and B. Huang, Multistep linearpreditors-based blind identi�ation and equaliza-tion of multiple-input multiple-output hannels,IEEE Trans. Signal Proessing, vol. 48, pp. 26-38,Jan. 2000[8℄ M. Wax and T. Kailath, Detetion of signals by in-formation theoreti riteria, IEEE Trans. Aoust.,Speeh, Signal Proessing, vol. ASSP-33, pp. 387-392, Apr. 1985.[9℄ Y. H. Zeng and T. S. Ng, A Blind MIMO hannel es-timation method robust to order overestimation, Sig-nal Proessing, vol. 84, no. 2, pp. 435-439, 2004.
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