
Title Reduction of false sharing by using process affinity in page-
based distributed shared memory mutiprocessor systems

Author(s) Hung, KP; Yung, NHC; Cheung, PYS

Citation
The 2nd International Conference on Algorithms and
Architectures for Parallel Processing, Singapore, 11-13 June
1996. In Conference Proceedings, 1996, p. 383-390

Issued Date 1996

URL http://hdl.handle.net/10722/45851

Rights Creative Commons: Attribution 3.0 Hong Kong License

Reduction of False Sharing by using Process Affinity in Bage-based
Distributed Shared Memory Multiprocessor Systems

K P Hung, N H C Yung and Y S Cheung

Department of Electrical and Electronic Engineering,
The University of Hong Kong

Computer System Research Laboratory, 805 CYC Building,
PoldkEam Road, HONG KONG.

Email:{kphung,nyung,cheungi@hkueee.hkueee.hku.hk

Abstract

an page-based distributed shared memory systems, a large
page size makes eBcient use of interconnection network,
but increases the chance of false sharing, while a small
page size reduces the level of €ake sharing, but results in an
inefficient use of the network. This paper proposes a
technique that uses process affinity to achieve data pages
clustering so as to optimize the temporal data locality on
DSM systems, and therefore reduces the chance of false
sharing and improves the data locality. To quantify the
degree of process &nity for a piece of data, a measure
called process dfinity index is used that indicates the
closeness between this piece of data and the process.
Simulation results show that process &nity technique
improves the execution performance as page size increases
due to the effective reduction of false sharing. In the best
case, an order of magnitude performance improvement is
achieved.

Keywords: Affinity scheduling, process affinity, data
locality, spatial locality, temporal locality,
false shanng, distributed shared memory

The memory structure of today’s parallel computers tends
to be hierarchical consisting of several layers of different
storage media, from processor caches, local memory to
remote memory. In a non-uniform memory access
(NUMA) system, such memory structure is created to lessen
the contention of interconnection network between
processing elements and shared memory. In specifk, a
distributed shared memory (DSM) system [11 (also called
shared virtual memory system) introduces a single-shared
address space on top of the distributed memory architecture
to ease its programming effort and consequentially creates a
memory hierarchy.

No matter what the rationale i s for a memory hierarchy,
system with memory hierarchy is characterized by their
non-uniform memory access time. Such could have

0-7803-3529-5/96/$5.s0 @ 1996 EEE

advantages as mentioned above, but for the same reason,
remote memory accesses are likely to be time consuming
and become the bottleneck of the system’s p e r f o m c e .
The techniques that can be used to alleviate this situation
and improve the performance are such as prefetching,
coherent caches, relaxed memory consistency models and
multiple-contexts [Z]. Of all these techniques, data locality
optimization perhaps receives the least attention so far,
notwithstanding its potential positive effect on system
perfonnance. Data locality can be classified into two types:
spatial locality and temporal locality. Spatial locality refers
to the use of data by accesses of nearby memory locations
from a process, while temporal locality refers to the reuse
of data by accesses of the same memory location from a
process in different times.

Although data transfer rate of interconnection network
between distributed memow modules is becoming faster
and more efficient, the transfer latency is still considered
high compared with local memory access latency. Therefore
page-based DSM system relies on the spatial locality of data
on the same page in order to hide the transfer latency.
However, the page size of such a system cannot be too large
as a well known side effect called false sharing may
increase as a result. False sharing happens when a page is
large and contains data that may be accessed by processes
residing at other processing nodes. If this is the case, then
the page will be transferred back and forth through the
interconnection network, causing significant degradation in
the system performance. The side effkct of false sharing on
large page size DSM system has been investigated in other
approaches such as the array padding and data layout 131,
the spatial data locality optimization, and the page aligned
loop scheduling 141 techniques. These approaches have
their strengths and limitations. For example, the page
aligned loop scheduling technique can only be applied to
loop scheduling, while reduction of false sharing i s just a
side effect of spatial data locality optimization; and array
padding wastes a lot of memory storage. Similarly, work
has been carried out on providing a scheme to quantdy
reuse and improve locality loops [5] . This approach
analyses the multiple references to the same array element
with &ne subscript expressions.

383

Beside spatial locality, research has also been done on
exploring the temporal locality on DSM systems. For
example, affinity scheduling is a well known technique to
explore the temporal data locality in both parallel loops [6]
and operating system tasks [7][8]. Affinity scheduling is a
scheduling method to optimize temporal locality and tries
to allocate execution entity (loop iteration or operating
system task) on the proc'essor that contains the necessary
data in its local memory or cache. These use of affinity
scheduling are sometimes; called processor affinity because
of the affinity exists between execution entity and processor
cache. This affinity is due to the differences in data access
performance between processor cache and main memory.
KSRl is an example of DSM systems that uses affinity
scheduling technique.

This paper proposes a technique that uses process affinity to
achieve data pages clustering so as to optimize the temporal
data locality on DSM systems. With that, the chance of
reusing data on the same data page by the same process at
different times is higher. Hence the probability in sharing
part of the data page with another process is minimized,
which means the false sharing effect is reduced. As a
result, a larger page size can be used to improve the spatial
data locality without se:rious degradation of execution
performance. In our approach, the affinity between data
and process is used, and it is due to the variations in
performance of remote and local data accesses. This is
different from some previous works that processes are
scheduled to the data with the expectation that temporal
data locality can be found. Therefore the effectiveness of
previous aflinity scheduling techniques is more determined
by the nature of the problem being tackled. In this method,
process affinity is quantified by some measures of data and
process PAP) relationship called process affinity indexes.

With this quantified measure, comparison of aftinities can
be objective and the ambiguity that arises in heuristic or
empirical methods can be reduced. As a result, data item
can be nominated to a process for which it has the highest
process af6nity index. In the next step, the data items are
prioritized with descending relative process affinity index
with respect to a paxtmdar process. With this priority
order, this list of data items will be clustered into pages
and assigned to that particular process. This inside-out
approach is more flexible in optimizing the temporal data
locality and is more debched from the inherent nature of
the problem. To some extent, proces
clustering can also be considered as a type of data layout
method. However, process affinity data clustering uses a
quantified approach to determine the data clusters.

This paper is organized as follows: Section 2 gives a detail
derivation of the approach using process affinity; and the
related data clustering and page affinity indexes are
described in Section 3. Section 4 presents some of the
preliminary simulation results and their interpretations.
This paper is concluded in Section 5.

2. Process Affinity Algorithm

2.1 Overview

A process is generally viewed as being responsible for
manipulating data and producing result@). Therefore data
and processes are inherently related In our attempt of
using process af€inity to cluster data into pages on a DSM
system, the measure of data's process affinity is used. T h s
so called process affinity index is derived from the data and
process relationship. which essentially descnbes the
number of read and write accesses per process. Using the
process affinity index, the affinity of a data with respect to a
certain process can be quanMed and therefore compansons
can be made objectively. In addition, data clustering index,
page affinity index and process cohesion index can also be
detived which provide supplementary informahon for the
run time DSM server to better manage the data pages.

*al
lnki

. . . .
0 MM

Figure 1. Minity Indexes and Data-Page-Process
Relationship

As depicted in Figure 1, data and process @AI')
relationship informahon is pnmarily the read and write
frequencies of each process with respect to each data item.
Based on this DAP information, process affinity index can
be calculated which comprises of an absolute process
affkity (MA) index and a relative process affinity (RPA)
index. The RPA index is used as a measure of the closeness
of a data item to a specific process compared with all other
processes. This data item is then nominated to a process for
which it has the highest RPA mdex. When all the data are
exhausted, the nominated data list is sorted in a descending
order according to the RPA index. Data in this prioritued
list are then grouped together according to their RPA
indexes to form pages and these pages are assigned to the
process according to their priority in the list.

Some pages are closer to a process and therefore have the
higher privilege not to be replaced first in the page
replacement scheme. The page affinity index is used to
measure this metric and it is simply the arithmetic mean of
all the individual data items. The last index is called

process cohesion index. It is used to detefmine the degree
of similarity between two processes in data access pattern.
Lf they share a large portion of the same data, then they will
have a higher process cohesion index, and therefore more
plausible to be scheduled together.

2.2

The relationship between data and process is basically
determined by memory access. A memory access can be one
of the two types, namely read access and write access. Each
of these accesses may change the data distribution of the
underlying machine in a certain way, and therefore they are
the primary information used to deduce the process affinity
index. Broadly, DAP relationship information may be
defined as representing the per process number of read and
write accesses. To extract such information from a parallel
program, it is perhaps best carried out either at the compiler
level or the programming language level. These two
possible directions are discussed below.

Data and Process PAP) Relationship

The first direction is at the compiler level. For example,
FORTRAN 90D 191 defines a data parallel programming
language that offers no explicit expression of data
distribution to processes. The compiler is supposed to be
intelligent enough to resolve the data distribution problem
automatically or to totally ignore the data distribution and
suffer from significant effect of remote data accesses. Since
it is not easy to construct efficient FORTRAN 90D
compiler, High Performance FORTRAN [lo] was defined
to supplement mainly the expression of data distribution
strategy in the source program. Similarly, DAP
information can be ex3racted either by explicitly indication
in the source program by program developer or by using an
automatic data access calculation process with the aid of
heuristic methods. Essentially, the read and write access
information acquired for the simulation presented in this
paper is obtained through the latter

Secondly, at a programming language level, object oriented
programming language can also be considered as an
alternative for representing the DAP relationship
information. For example in C*, it allows program
developer to categorize the data as public, private, or
protected type such that the scope of data sharing is well
defined. Furthermore, with program entities expressed as
objects, it should aid to determine the data read and write
frequencies by a process systematically.

After the extraction, the data and process relationshp
information can be constructed into a DAP matrix . Let
symbols P, represents the process i for i=1,2, ..., n and Dj
to represents the data item j for j=1,2, ..., m, where n is
the total number of parallel execution processes and m is the
total number of data items used by the processes. Moreover,
a tuple is defined as (Rij ,WL,) to represent the DAP
relationship information of process Pi, with respect to data
item Dj, where Rij is the read access frequency and Wi, is

the write access frequency. A typical DAP matrix is
illustrated below:

Typical DAP matrix

From the matrix. the DAP relationship can be obtained, for
example, P2 has 5 read accesses and 4 write accesses to D3

2.3 Process Affinity Index

With the DAP relationship information being made
available, process affinity index can be derived. To measure
the degree of data affinity to a process, it is important to
understand how data accesses can influence the existing
data distribution. This influence in turn depends on at least
the following factors: data read frequency, data write
frequency, and the number of processes related to the same
data item.

Two process &inity indexes are defined as a measure of
how close the relationship between a piece of data is to a
process. They are the absolute process affinity index (APA
Index) and the relative process affinity index (RPA Index).
and the proposed method is sketched as below.

First, the absolute process affinity (APA) index of Dj with
respect to Pi is defined as:

APA(Pi,Dj) = C r i j R i j + CwljWi, (1)

where C r i j and Cwi, are the weighmg factors for read and
write access of Pi on Dj respectively, and the relative
process affinity (RPA) index of data j , Dj, with respect to
process i, Pi as:

(C r i , R i j + CwijWij)

n
RPA (P i , D j) = (2)

(C r i j R k j t CwijWkj)
k= 1

where n is the total number of processes.

The weighing facton, C r i and Cwi ,, are the adjustments
to reflect the significance of read access and write access of
D j by Pi. In determining these factors, the write invalidate
coherence protocol is assumed as it is a common
implementation on a lot of DSM systems [111. In essence,
a write operation to a local page modifies the data of its
page and invalidate all other shared pages in the system. If
a read operation is requested later on by another process, a
new page of the data would have to be reloaded from the
owner of the page. By assuming that the read and write
operations on local memory are of comparable speed, if the

385

read and wnte quests are distributed unlfonnly, then the
need for an extra reload operation will depend on the
relabve numbers of read and write access frequencies

Let us consider a data item D, and a process P , A reload
of D, will occur on a read request of P, if D, is not local to
P, There are two possibilities that this may occur

It IS the first time lhat P, issues a read request for D,
The read request firom P, is preceded by a wnte request
on D, by Pk and k is not equal to 1

The first possibility depends on the initial distribution of
data and this can occur at most once in a process execution.
For the second possibrdity, its frequency is determined by
the comparison of the inumber of read accesses on D, by P,
and the summation of write frequencies in all Pk where
k = l , . . , n and k#i

I t ;
Figure 2. Process i read frequency i s larger than

summation of write frequencies in all processes k other
than i

Tim,:

Figure 3. Summation of write frequencies in all
processes k other than i is larger than process i read

frequency

A reload operation of lDj by pi should be executed after a
Write operation on D, by PI, (k f i) and before a read
operation of Dj by Pi can be performed. With the
assumption that the read and write operations are separated
uniformly, Figure 2 shows the situation when Ri is greater
than S i j = 2 W k j (k # i). After each write operation on Dj
by Pk (k f i) , it must be followed by a read operation of
D j by Pi followed. Hence, the total number of extra reload
operations is determined by Si j . On the other hand, Figure
3 depicts the situation when Ri is smaller than Si j . Using
the similar argument as before, the total number of extra
reload operations in this case is determined by Rij. In short,
the number of extra reload operations due to all read
requests on D by process P i can be expressed as:

min(R i i , S,,) where SI, = ifkj (3)
a l l k # I

where min(a, b) is an operahon that returns the minimum
value among a and b. This reload operauon i s a costly
operation because of the fact that D, have to be transferred
from a remate prouessing node and therefore incurred a
remote memory acwss latettq. In a DSM system. this is the
latency of replicating a remote page.

Assume the local memory access &MA) latency be t l and
the ratio of remote memory access @MA) latency to LMA
be c Then, the total number of read requests, R,,, on D,
by process P, introduces a reload cost:

R e l o a d cost = c.RL,, ti (4)

A local memory aqms is required in a wnte operation.
while a local memory access with addition to a reload cost
are required for a read operation. As a result, we have the
weighing factors as.

cw,, = tl (5a)

Cr, , = (1 + (c . R L , ,) / R , ,) t l (5b)

or normalized to

From this argument, the RPA index given by equation (2)
and the ADA index given by equation (1) of Pi against D,
can be calculated and they are the primarily measures of
data D,’s process affinity to process P,.

3. Data Clustering and Page Affinity

3.1 Data Clustering Method

Up to this point, process affinity index of all data items can
be determined. The next step is to make use of these
calculated process affinity index values to cluster data items
into data pages. To begin with, each data item is nominated
to its closest process, which has the highest process affinity
index with respect to that process. The nomination decision
is given by the following:

If R P A (P , , D j) = m a x { RPA(Pk,D7))
a l l P K E S

where S = set of processes

then Dj -> P,, da ta i t e m D, is nominated
t o process PI

386

where max { . . . } is an operation that returns the maximum
value from a set of values.

In addition, the nominated data list per process is sorted in
a descending order according to the RPA index. Such data
items are then clustered into pages according to the page
size of the process. The reason for this arrangement is to
prevent the data items with very small W A index mixed
with data items with large W A index. This is because data
items with small RPA index will introduce large amount of
page transfer in the system, and data items with large RPA
index are localized to their corresponding processes.
Mixing them together may cause a lot of unnecessq data
transfers of data items with large RPA index, thus adversely
affect the system performance.

M e r clustering the sorted data list into pages, data pages
are allocated to the correspondmg process in order. In the
case of extra pages that cannot be allocated to a process due
to memory space limitation, the remaining pages are then
allocated sequentially according to the space availability in
other processes.

3.2 Page Minity Index

Page affinity index (PA), PAi, is used to measure a page's
affinity to process P,. This page afliinity index is the
arithmetic mean of individual. data item's RPA index.
Pages with higher PA index is scheduled closer to the
corresponding process at system startup, and remained with
its process as long as possible by employing a suitable page
replacement scheme.

PA,: = [RDA(P,,Dk)] / p a g e s i z e (7)
all Dt

in
p a w I

3.3 Process Cohesion Index

The last index that can be derived from the RPA index is
the process cohesion Index (PC Index). It is used to
measure the degree of data sharing between two processes
and is defined as follows:

With process cohesion index, process scheduling algorithm
can be designed to optimize the data locality when
assigning different processes into the same processing node.
By doing so, the execution performance may be improved.

4. Preliminary Simulation Results and
their lnterpretation

The purpose of the simulation is to demonstrate the
usefulness of the process a&nity algorithm, and the
preliminary area of focus is the effect of process affinity to
false sharing in a page-based DSM system.

Matrix multiplication, Gaussian elimination [12] and fast
Fourier t ransformm) [13] are selected as test vehicles in
this simulation study. The experiments tested and compared
are:

*

0

matrix multiplication with matrix size of 64x64 and
I28x 128,
linear equation solver using Gaussian elimination with
64 and 128 equations,
and fast Fourier transform of 1024 points,

based on varying the size of a page and the resultant
execution time to complete solving the problems, between
the case of sequential arrangement of data into pages and
evenly distributing the pages into different processing
nodes, and the case of using the process affinity indexes
and other related affinity indexes to determine the
allocation of data to process, clustering of data into a page
and the distribution of pages to processes as described in
section 3.

The simulation was written in the C++ programming
language and executed as 15 processes running on 15 SGI
Indy workstations. The assumptions made in the simulation
are that first, remote memory access (RMA) latency that
includes replicating a remote page and performing a local
memory @MA) access operation is assumed to be 100
execution time units, while local memory access latency is
assumed to be 2 execution time units. As the RMA and
LMA latencies are still substantially different in many
distributed memory architectures today, these execution
time assumptions are deemed to be reasonable. Second, an
arithmetic operation such as the multiplication or addition
of two floating point numbers is assumed to be 1 execution
time unit. Third, the remote memory access latency should
theoretically vary as page size changes, however it is
assumed that the RMA latency is varying within a small
range especially for small page size.

From the results shown in Figures 4 and 5, a number of
points can be observed. First, the performance difference
between the execution time units with process affinity and
without process affinity is minimal for page size equal to or
smaller than the matrix row size. From the calculated
relative process affinity (RPA) index, it was discovered that
the number of data items with the highest RPA index that
clustered together is closed to the row size. This quite
simply highlights the fact that false sharing does not occur
at these page sizes. In other words, process affinity has no
impact at all when the above condition is satisfied. The
minor discrepancies between the two cases are more due to
the initial data distribution.

387

Matrix Multiplication 64x64

8 * 12 f4 118 258 512 10%

Page Size (b*e)

Figure 4. Matrix multiplication (64x64)' execution time
unili versus page size

Matnix Multiplication 128x128

Figure 5. Matrix mu1t;iplication (128x128) execution time
unit versus page size

Second, the performan1;e difference between the two cases
widens when the page size increases beyond the matrix row
size. In these cases, Bilse sharing becomes a dominating
factor and as a result, the case of without process affinity
requires a lot more execution time to handle the remote
memory accesses that are the consequence of a process now
has to share data with some other processes. On the other
hand, with process aftinity, this false sharing phenomenon
is drastically reduced to a level that gives a performance
better than the case where page size is equal to or smaller
than the matrix row size (i.e. 512 bytes for 128 floating
point numbers) for the mmtrix size equals to 128. Using this
as our discussion basis, it is noted that for page size of 1024
bytes, the reduction in execution time units is by almost
50% when the process affinity algorithm is adopted. In the
best case where the p,age size equals to 8192 bytes, the
number of execution time unit for the process affinity case
is about one-tenth of the matrix multiplication without

process ainity. Similar results hold for the 64 by 64 matrix
multiplication.

For the test case of linear equation solver using Gaussian
elimination, results are depicted in Figures 6 and 7. We
can observed that the performance difference between the
execution time units with process ilrsnity and without
process affinity is minimal for page size less than or equal
to 1024 bytes for the number of equations equals to 128,
and is increased as the page size increases beyond this
point. The argument for this observation is similar to that
of matrix multiplication case. When the page size is small,
false sharing phenomenon is insignificant ,and the
execution time to solve the Gaussian eiimination with using
data affinity and without using data atrinity are almost the
same. However, false sharing is becoming significant when
page size increases. The exec,ution time of solving the
problem without using, data, affinity is increased
correspondingly, b~ut that, execution time is kept almost
constant in the case data affinity empioyecf. ~, .

Gaussian Elimination 64

Figure 6. Gaussian elimination (64 equations) execution
time unit versus page size

Gaussian Elimination 128

Figure 7. Gaussian elimination (128 equations) execution
time unit versus page size

i

388

As shown in Figure 7, the reduction in execution time units
is by more than 50% when process affinity is employed
with page size of 2048 bytes. In the best case where page
size is 8192 bytes, the number of execution time unit for the
case using process affinity is about one-seventh of the case
without using process aEinity. Similar observations can be
found in the 64 linear equations solver using Gaussian
elimination.

The last test case is to solve the fast Fourier transform with
1024 points and the results are depicted in Figure 8. The
execution time performance difference for solving this
problem with using data affinity and without using data
affinity is small when page size is below 32 bytes, and this
difference widens as the page size is increased. The
turning point of page size 32 bytes is small compared to
that of the cases of matrix multiplication and Gaussian
elimination. From the calculated relative data affinity
(RDA) index, it is found that its data items show less
affinity to a specific process. This means the RDA indexes
of a piece of data item with respect to different processes
are close to each other. As a result, data sharing between
different processes are common and fafse sharing effect can
be sigmficant in a relatively small page size.

Fast Fourier Transform 1024

€4 128 6 6

Page Size (byte)

Figure 8. Fast Fourier transform (1024 points)
execution time unit versus page size

As depicted in Figure 8, the execution time reduction in the
FIT test case is by more than 50% when process affinity is
employed with page size of 128 bytes. In the best case
where page size is 512 bytes, the number of exration time
unit for the case using process affinity is about one-seventh
of the case without using process affinity.

5. Conclusions

In this paper, we introduced the concept of data to process
afiiNty and proposed a set of equations that enables a
number of indexes to be calculated, namely: data and
process affinity index, page affinity index and process
cohesion index. These indexes allow the affinity
relationships between data and process to be deduced as

well as how these data should be grouped together to form
pages, and how these pages are grouped together and
adhered to a process.

Preliminary simulation was conducted to demonstrate the
usefulness of the process affinity concept, particularly in the
area of reducing or eliminating false sharing in page-based
DSM systems. By using a matrix multiplication of size 642
and 128*, it can be concluded system performance can be
improved substantially by using a page size larger than the
matrix row size and the process affinity algorithm as
depicted in the early sections. Such improvement can be as
large as an order of magnitude in the case of page size
equals to 2048, matrix size equals to 128 as shown in figure
5. Similar results are obtained for the case of using other
problems such as the linear equation solver using Gaussian
elimination and the fast Fourier transform.

Furthermore, there are two more issues that are worth
considering. First, as some data are shared quite equally
among many processes, placing such data into a page may
introduce a huge amount of page transfer over the DSM
system. Therefore it may be useful to adopt a mixed page-
based and shared variable DSM implementation strategy
1141. In this case, the extensively shared data can be shared
between processes in shared variable entities and
communicated using message passing method so that
network transfer loading may be reduced and system
performance may be improved.

The second issue is parallel loop scheduling. The process
affinity algorithm may be applied to scheduling parallel
loop, and combined with ideas of multithreaded self
scheduling [IS] to formulate a more effective loop
scheduling technique designed for DSM systems.

References

K. Li, “Shared Virtual Memoly on Loosely
Coupled Multiprocessors, PhD Thesis, Yale
University, Sept 1986.

Kai Hwang, “Advanced Computer Architecutre -
Parallelism, Scalability, Programmability”,
McGraw-Hill International, 1993, pp.475-544.

J. Torrellas, M. S. Lam, J. L. Hennessy, “Shared
Data Placement Optimizations to Reduce
Multiprocessor Cache Miss Rates,” Proceedings of
International Conference on Parallel Processing,
pp. 266-270 1990.

E. D. Granston, H. Wijshoff, “Managing Pages in
Shared Virtual Memory Systems: Getting the
Compiler into the Game,” Proceedings of
International Conference on Supercomputzng, pp.
1993.

389

M. E. Wolf, M. S. Lam. “A Data Locality
Optimizing f4lgorithm,” ACM SIGPUN ’91
Conference an Programming Language Design
and lmplemenifation, pp. 30-40 June 1991.

E P Markatcis, T J LeBlanc, “Using Processor
Affinity in Loop Scheduling on Shared-Memory
Multiprocessor,” IEEE Transactions on Parallel
and Distributed Systems, pp. 379-400 5(4) April
1994.

E. D. Lazowska, M. Squillante, “Using Processor-
cache Affinity in Shared- Memory Multiprocessor
Scheduling,” I’EEE Transactions on Parallel and
DisfributedSystems, pp. 131-143 4(2) Feb 1993.

R. Vaswani, .J. Zahojan, “The Implications of
Cache Afstnilty on Processor Scheduling for
Multiprogrammed, Shared Memory
Multiprocessors,” Proceedings of the 13th ACM
Symposium on Operating Systems Principles,
pp.26-40 1991.

G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel,
U. Kremer, IC. Tseng, M. Wu, “Fortran D
language specification,” Technical Report TR90-
141, Dept of Computer Science, Rice University,
1990.

High Perforrnance Fortran Forum, “High
Performance Fortran language specification,
version 1.0,” Technical Report CRPC-TR92225,
Center for Research on Parallel Computation, Rice
University, 19913.

B. Nitzberg, V. Lo, “Distributed Shared Memory:
A Survey of Issues and Algorithms,” IEEE
Computer, pp. 52-61 Vol. 24 Aug 1991

M Cosnard, D. Trystram, “Parallel Algorithms
and Architet:tures”, International Thomson
Computer Pres!;, 1995, pp.481-488.

S. G. Akl, “The Designand Analysis of Parallel
Algorithms”, Prentice-Hall, Englewood Cliffs, NJ,
1989, pp.231-241.

F. B. Bodin, T. Priol, D. Gannon, P. Mehrotra,
“Directions in parallel programming: HPF, Shared
Virtuai Memory, and Object Parailelism in PC++,”
Purallel Computer: Theory and Practice, pp. 183-
215, IEEE Computer Society Press 1996.

IS. P. Hung, N. H. C. Yung, Y. S. Cheung,
“Multithreaded Self-Scheduling: Application of
Multithreading on Loop Scheduling for
Distributed Shared Memory Multiprocessor,”
Proceedings of IEEE 1st International Conference
on Algorithms and Architectures for Parallel
Processing, pp.680-689 Vol. 2 April 1995

390

