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Abstract 

an page-based distributed shared memory systems, a large 
page size makes eBcient use of interconnection network, 
but increases the chance of false sharing, while a small 
page size reduces the level of €ake sharing, but results in an 
inefficient use of the network. This paper proposes a 
technique that uses process affinity to achieve data pages 
clustering so as to optimize the temporal data locality on 
DSM systems, and therefore reduces the chance of false 
sharing and improves the data locality. To quantify the 
degree of process &nity for a piece of data, a measure 
called process dfinity index is used that indicates the 
closeness between this piece of data and the process. 
Simulation results show that process &nity technique 
improves the execution performance as page size increases 
due to the effective reduction of false sharing. In the best 
case, an order of magnitude performance improvement is 
achieved. 

Keywords: Affinity scheduling, process affinity, data 
locality, spatial locality, temporal locality, 
false shanng, distributed shared memory 

The memory structure of today’s parallel computers tends 
to be hierarchical consisting of several layers of different 
storage media, from processor caches, local memory to 
remote memory. In a non-uniform memory access 
(NUMA) system, such memory structure is created to lessen 
the contention of interconnection network between 
processing elements and shared memory. In specifk, a 
distributed shared memory (DSM) system [ 11 (also called 
shared virtual memory system) introduces a single-shared 
address space on top of the distributed memory architecture 
to ease its programming effort and consequentially creates a 
memory hierarchy. 

No matter what the rationale i s  for a memory hierarchy, 
system with memory hierarchy is characterized by their 
non-uniform memory access time. Such could have 
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advantages as mentioned above, but for the same reason, 
remote memory accesses are likely to be time consuming 
and become the bottleneck of the system’s p e r f o m c e .  
The techniques that can be used to alleviate this situation 
and improve the performance are such as prefetching, 
coherent caches, relaxed memory consistency models and 
multiple-contexts [Z]. Of all these techniques, data locality 
optimization perhaps receives the least attention so far, 
notwithstanding its potential positive effect on system 
perfonnance. Data locality can be classified into two types: 
spatial locality and temporal locality. Spatial locality refers 
to the use of data by accesses of nearby memory locations 
from a process, while temporal locality refers to the reuse 
of data by accesses of the same memory location from a 
process in different times. 

Although data transfer rate of interconnection network 
between distributed memow modules is becoming faster 
and more efficient, the transfer latency is still considered 
high compared with local memory access latency. Therefore 
page-based DSM system relies on the spatial locality of data 
on the same page in order to hide the transfer latency. 
However, the page size of such a system cannot be too large 
as a well known side effect called false sharing may 
increase as a result. False sharing happens when a page is 
large and contains data that may be accessed by processes 
residing at other processing nodes. If this is the case, then 
the page will be transferred back and forth through the 
interconnection network, causing significant degradation in 
the system performance. The side effkct of false sharing on 
large page size DSM system has been investigated in other 
approaches such as the array padding and data layout 131, 
the spatial data locality optimization, and the page aligned 
loop scheduling 141 techniques. These approaches have 
their strengths and limitations. For example, the page 
aligned loop scheduling technique can only be applied to 
loop scheduling, while reduction of false sharing i s  just a 
side effect of spatial data locality optimization; and array 
padding wastes a lot of memory storage. Similarly, work 
has been carried out on providing a scheme to quantdy 
reuse and improve locality loops [ 5 ] .  This approach 
analyses the multiple references to the same array element 
with &ne subscript expressions. 
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Beside spatial locality, research has also been done on 
exploring the temporal locality on DSM systems. For 
example, affinity scheduling is a well known technique to 
explore the temporal data locality in both parallel loops [6] 
and operating system tasks [7][8]. Affinity scheduling is a 
scheduling method to optimize temporal locality and tries 
to allocate execution entity (loop iteration or operating 
system task) on the proc'essor that contains the necessary 
data in its local memory or cache. These use of affinity 
scheduling are sometimes; called processor affinity because 
of the affinity exists between execution entity and processor 
cache. This affinity is due to the differences in data access 
performance between processor cache and main memory. 
KSRl is an example of DSM systems that uses affinity 
scheduling technique. 

This paper proposes a technique that uses process affinity to 
achieve data pages clustering so as to optimize the temporal 
data locality on DSM systems. With that, the chance of 
reusing data on the same data page by the same process at 
different times is higher. Hence the probability in sharing 
part of the data page with another process is minimized, 
which means the false sharing effect is reduced. As a 
result, a larger page size can be used to improve the spatial 
data locality without se:rious degradation of execution 
performance. In our approach, the affinity between data 
and process is used, and it is due to the variations in 
performance of remote and local data accesses. This is 
different from some previous works that processes are 
scheduled to the data with the expectation that temporal 
data locality can be found. Therefore the effectiveness of 
previous aflinity scheduling techniques is more determined 
by the nature of the problem being tackled. In this method, 
process affinity is quantified by some measures of data and 
process PAP) relationship called process affinity indexes. 

With this quantified measure, comparison of aftinities can 
be objective and the ambiguity that arises in heuristic or 
empirical methods can be reduced. As a result, data item 
can be nominated to a process for which it has the highest 
process af6nity index. In the next step, the data items are 
prioritized with descending relative process affinity index 
with respect to a paxtmdar process. With this priority 
order, this list of data items will be clustered into pages 
and assigned to that particular process. This inside-out 
approach is more flexible in optimizing the temporal data 
locality and is more debched from the inherent nature of 
the problem. To some extent, proces 
clustering can also be considered as a type of data layout 
method. However, process affinity data clustering uses a 
quantified approach to determine the data clusters. 

This paper is organized as follows: Section 2 gives a detail 
derivation of the approach using process affinity; and the 
related data clustering and page affinity indexes are 
described in Section 3. Section 4 presents some of the 
preliminary simulation results and their interpretations. 
This paper is concluded in Section 5. 

2. Process Affinity Algorithm 

2.1 Overview 

A process is generally viewed as being responsible for 
manipulating data and producing result@). Therefore data 
and processes are inherently related In our attempt of 
using process af€inity to cluster data into pages on a DSM 
system, the measure of data's process affinity is used. T h s  
so called process affinity index is derived from the data and 
process relationship. which essentially descnbes the 
number of read and write accesses per process. Using the 
process affinity index, the affinity of a data with respect to a 
certain process can be quanMed and therefore compansons 
can be made objectively. In addition, data clustering index, 
page affinity index and process cohesion index can also be 
detived which provide supplementary informahon for the 
run time DSM server to better manage the data pages. 

*al 
lnki 

. .  . .  
0 MM 

Figure 1. Minity Indexes and Data-Page-Process 
Relationship 

As depicted in Figure 1, data and process @AI') 
relationship informahon is pnmarily the read and write 
frequencies of each process with respect to each data item. 
Based on this DAP information, process affinity index can 
be calculated which comprises of an absolute process 
affkity (MA) index and a relative process affinity (RPA) 
index. The RPA index is used as a measure of the closeness 
of a data item to a specific process compared with all other 
processes. This data item is then nominated to a process for 
which it has the highest RPA mdex. When all the data are 
exhausted, the nominated data list is sorted in a descending 
order according to the RPA index. Data in this prioritued 
list are then grouped together according to their RPA 
indexes to form pages and these pages are assigned to the 
process according to their priority in the list. 

Some pages are closer to a process and therefore have the 
higher privilege not to be replaced first in the page 
replacement scheme. The page affinity index is used to 
measure this metric and it is simply the arithmetic mean of 
all the individual data items. The last index is called 



process cohesion index. It is used to detefmine the degree 
of similarity between two processes in data access pattern. 
Lf they share a large portion of the same data, then they will 
have a higher process cohesion index, and therefore more 
plausible to be scheduled together. 

2.2 

The relationship between data and process is basically 
determined by memory access. A memory access can be one 
of the two types, namely read access and write access. Each 
of these accesses may change the data distribution of the 
underlying machine in a certain way, and therefore they are 
the primary information used to deduce the process affinity 
index. Broadly, DAP relationship information may be 
defined as representing the per process number of read and 
write accesses. To extract such information from a parallel 
program, it is perhaps best carried out either at the compiler 
level or the programming language level. These two 
possible directions are discussed below. 

Data and Process PAP) Relationship 

The first direction is at the compiler level. For example, 
FORTRAN 90D 191 defines a data parallel programming 
language that offers no explicit expression of data 
distribution to processes. The compiler is supposed to be 
intelligent enough to resolve the data distribution problem 
automatically or to totally ignore the data distribution and 
suffer from significant effect of remote data accesses. Since 
it is not easy to construct efficient FORTRAN 90D 
compiler, High Performance FORTRAN [lo] was defined 
to supplement mainly the expression of data distribution 
strategy in the source program. Similarly, DAP 
information can be ex3racted either by explicitly indication 
in the source program by program developer or by using an 
automatic data access calculation process with the aid of 
heuristic methods. Essentially, the read and write access 
information acquired for the simulation presented in this 
paper is obtained through the latter 

Secondly, at a programming language level, object oriented 
programming language can also be considered as an 
alternative for representing the DAP relationship 
information. For example in C*, it allows program 
developer to categorize the data as public, private, or 
protected type such that the scope of data sharing is well 
defined. Furthermore, with program entities expressed as 
objects, it should aid to determine the data read and write 
frequencies by a process systematically. 

After the extraction, the data and process relationshp 
information can be constructed into a DAP matrix . Let 
symbols P, represents the process i for i=1,2, ..., n and Dj  
to represents the data item j for j=1,2, ..., m, where n is 
the total number of parallel execution processes and m is the 
total number of data items used by the processes. Moreover, 
a tuple is defined as (Rij ,WL,)  to represent the DAP 
relationship information of process Pi, with respect to data 
item Dj,  where Rij  is the read access frequency and Wi, is 

the write access frequency. A typical DAP matrix is 
illustrated below: 

Typical DAP matrix 

From the matrix. the DAP relationship can be obtained, for 
example, P2 has 5 read accesses and 4 write accesses to D3 

2.3 Process Affinity Index 

With the DAP relationship information being made 
available, process affinity index can be derived. To measure 
the degree of data affinity to a process, it is important to 
understand how data accesses can influence the existing 
data distribution. This influence in turn depends on at least 
the following factors: data read frequency, data write 
frequency, and the number of processes related to the same 
data item. 

Two process &inity indexes are defined as a measure of 
how close the relationship between a piece of data is to a 
process. They are the absolute process affinity index (APA 
Index) and the relative process affinity index (RPA Index). 
and the proposed method is sketched as below. 

First, the absolute process affinity (APA) index of Dj with 
respect to Pi is defined as: 

APA(Pi,Dj) = C r i j R i j  + CwljWi, (1) 

where C r i j  and Cwi, are the weighmg factors for read and 
write access of Pi on Dj respectively, and the relative 
process affinity (RPA) index of data j ,  Dj, with respect to 
process i, Pi as: 

( C r i , R i j  + CwijWij) 

n 
RPA (P i ,  D j  ) = ( 2 )  

( C r i j R k j  t CwijWkj) 
k= 1 

where n is the total number of processes. 

The weighing facton, C r i  and Cwi ,, are the adjustments 
to reflect the significance of read access and write access of 
D j  by Pi. In determining these factors, the write invalidate 
coherence protocol is assumed as it is a common 
implementation on a lot of DSM systems [ 111. In essence, 
a write operation to a local page modifies the data of its 
page and invalidate all other shared pages in the system. If 
a read operation is requested later on by another process, a 
new page of the data would have to be reloaded from the 
owner of the page. By assuming that the read and write 
operations on local memory are of comparable speed, if the 
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read and wnte quests are distributed unlfonnly, then the 
need for an extra reload operation will depend on the 
relabve numbers of read and write access frequencies 

Let us consider a data item D, and a process P ,  A reload 
of D, will occur on a read request of P, if D, is not local to 
P, There are two possibilities that this may occur 

It IS the first time lhat P, issues a read request for D, 
The read request firom P, is preceded by a wnte request 
on D, by Pk and k is not equal to 1 

The first possibility depends on the initial distribution of 
data and this can occur at most once in a process execution. 
For the second possibrdity, its frequency is determined by 
the comparison of the inumber of read accesses on D, by P, 
and the summation of write frequencies in all Pk where 
k = l ,  . . , n and k#i 

I t ;  
Figure 2. Process i read frequency i s  larger than 

summation of write frequencies in all processes k other 
than i 

Tim,: 

Figure 3. Summation of write frequencies in all 
processes k other than i is larger than process i read 

frequency 

A reload operation of lDj by pi should be executed after a 
Write operation on D, by PI, (k f i) and before a read 
operation of Dj by Pi can be performed. With the 
assumption that the read and write operations are separated 
uniformly, Figure 2 shows the situation when Ri is greater 
than S i j  = 2 W k j  (k # i). After each write operation on Dj 
by Pk ( k f i ) , it must be followed by a read operation of 
D j  by Pi followed. Hence, the total number of extra reload 
operations is determined by Si j .  On the other hand, Figure 
3 depicts the situation when Ri is smaller than Si j .  Using 
the similar argument as before, the total number of extra 
reload operations in this case is determined by Rij. In short, 
the number of extra reload operations due to all read 
requests on D by process P i  can be expressed as: 

min( R i i ,  S,, ) where SI, = ifkj (3) 
a l l k  # I 

where min(a, b) is an operahon that returns the minimum 
value among a and b. This reload operauon i s  a costly 
operation because of the fact that D, have to be transferred 
from a remate prouessing node and therefore incurred a 
remote memory acwss latettq. In a DSM system. this is the 
latency of replicating a remote page. 

Assume the local memory access &MA) latency be t l  and 
the ratio of remote memory access @MA) latency to LMA 
be c Then, the total number of read requests, R,,, on D, 
by process P, introduces a reload cost: 

R e l o a d  cost = c.RL,, ti ( 4 )  

A local memory aqms is required in a wnte operation. 
while a local memory access with addition to a reload cost 
are required for a read operation. As a result, we have the 
weighing factors as. 

cw,, = tl (5a) 

Cr, ,  = (1 + ( c . R L , , ) / R , , ) t l  (5b)  

or normalized to 

From this argument, the RPA index given by equation (2) 
and the ADA index given by equation (1) of Pi against D, 
can be calculated and they are the primarily measures of 
data D,’s process affinity to process P,. 

3. Data Clustering and Page Affinity 

3.1 Data Clustering Method 

Up to this point, process affinity index of all data items can 
be determined. The next step is to make use of these 
calculated process affinity index values to cluster data items 
into data pages. To begin with, each data item is nominated 
to its closest process, which has the highest process affinity 
index with respect to that process. The nomination decision 
is given by the following: 

If R P A ( P , , D j )  = m a x  { RPA(Pk,D7)  ) 
a l l  P K E S  

where S = set  of processes 

then Dj -> P,, da ta  i t e m  D, is nominated 
t o  process PI 
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where max { . . . } is an operation that returns the maximum 
value from a set of values. 

In addition, the nominated data list per process is sorted in 
a descending order according to the RPA index. Such data 
items are then clustered into pages according to the page 
size of the process. The reason for this arrangement is to 
prevent the data items with very small W A  index mixed 
with data items with large W A  index. This is because data 
items with small RPA index will introduce large amount of 
page transfer in the system, and data items with large RPA 
index are localized to their corresponding processes. 
Mixing them together may cause a lot of unnecessq data 
transfers of data items with large RPA index, thus adversely 
affect the system performance. 

M e r  clustering the sorted data list into pages, data pages 
are allocated to the correspondmg process in order. In the 
case of extra pages that cannot be allocated to a process due 
to memory space limitation, the remaining pages are then 
allocated sequentially according to the space availability in 
other processes. 

3.2 Page Minity Index 

Page affinity index (PA), PAi, is used to measure a page's 
affinity to process P,. This page afliinity index is the 
arithmetic mean of individual. data item's RPA index. 
Pages with higher PA index is scheduled closer to the 
corresponding process at system startup, and remained with 
its process as long as possible by employing a suitable page 
replacement scheme. 

PA,: = [ RDA(P,,Dk) ] / p a g e s i z e  ( 7 )  
all Dt 

in 
p a w  I 

3.3 Process Cohesion Index 

The last index that can be derived from the RPA index is 
the process cohesion Index (PC Index). It is used to 
measure the degree of data sharing between two processes 
and is defined as follows: 

With process cohesion index, process scheduling algorithm 
can be designed to optimize the data locality when 
assigning different processes into the same processing node. 
By doing so, the execution performance may be improved. 

4. Preliminary Simulation Results and 
their lnterpretation 

The purpose of the simulation is to demonstrate the 
usefulness of the process a&nity algorithm, and the 
preliminary area of focus is the effect of process affinity to 
false sharing in a page-based DSM system. 

Matrix multiplication, Gaussian elimination [12] and fast 
Fourier t ransformm) [13] are selected as test vehicles in 
this simulation study. The experiments tested and compared 
are: 

* 
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matrix multiplication with matrix size of 64x64 and 
I28x 128, 
linear equation solver using Gaussian elimination with 
64 and 128 equations, 
and fast Fourier transform of 1024 points, 

based on varying the size of a page and the resultant 
execution time to complete solving the problems, between 
the case of sequential arrangement of data into pages and 
evenly distributing the pages into different processing 
nodes, and the case of using the process affinity indexes 
and other related affinity indexes to determine the 
allocation of data to process, clustering of data into a page 
and the distribution of pages to processes as described in 
section 3. 

The simulation was written in the C++ programming 
language and executed as 15 processes running on 15 SGI 
Indy workstations. The assumptions made in the simulation 
are that first, remote memory access (RMA) latency that 
includes replicating a remote page and performing a local 
memory @MA) access operation is assumed to be 100 
execution time units, while local memory access latency is 
assumed to be 2 execution time units. As the RMA and 
LMA latencies are still substantially different in many 
distributed memory architectures today, these execution 
time assumptions are deemed to be reasonable. Second, an 
arithmetic operation such as the multiplication or addition 
of two floating point numbers is assumed to be 1 execution 
time unit. Third, the remote memory access latency should 
theoretically vary as page size changes, however it is 
assumed that the RMA latency is varying within a small 
range especially for small page size. 

From the results shown in Figures 4 and 5, a number of 
points can be observed. First, the performance difference 
between the execution time units with process affinity and 
without process affinity is minimal for page size equal to or 
smaller than the matrix row size. From the calculated 
relative process affinity (RPA) index, it was discovered that 
the number of data items with the highest RPA index that 
clustered together is closed to the row size. This quite 
simply highlights the fact that false sharing does not occur 
at these page sizes. In other words, process affinity has no 
impact at all when the above condition is satisfied. The 
minor discrepancies between the two cases are more due to 
the initial data distribution. 
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Matrix Multiplication 64x64 

8 * 12 f4 118 258 512 10% 

Page Size (b*e) 

Figure 4. Matrix multiplication (64x64)' execution time 
unili versus page size 

Matnix Multiplication 128x128 

Figure 5. Matrix mu1t;iplication (128x128) execution time 
unit versus page size 

Second, the performan1;e difference between the two cases 
widens when the page size increases beyond the matrix row 
size. In these cases, Bilse sharing becomes a dominating 
factor and as a result, the case of without process affinity 
requires a lot more execution time to handle the remote 
memory accesses that are the consequence of a process now 
has to share data with some other processes. On the other 
hand, with process aftinity, this false sharing phenomenon 
is drastically reduced to a level that gives a performance 
better than the case where page size is equal to or smaller 
than the matrix row size (i.e. 512 bytes for 128 floating 
point numbers) for the mmtrix size equals to 128. Using this 
as our discussion basis, it is noted that for page size of 1024 
bytes, the reduction in execution time units is by almost 
50% when the process affinity algorithm is adopted. In the 
best case where the p,age size equals to 8192 bytes, the 
number of execution time unit for the process affinity case 
is about one-tenth of the matrix multiplication without 

process ainity. Similar results hold for the 64 by 64 matrix 
multiplication. 

For the test case of linear equation solver using Gaussian 
elimination, results are depicted in Figures 6 and 7. We 
can observed that the performance difference between the 
execution time units with process ilrsnity and without 
process affinity is minimal for page size less than or equal 
to 1024 bytes for the number of equations equals to 128, 
and is increased as the page size increases beyond this 
point. The argument for this observation is similar to that 
of matrix multiplication case. When the page size is small, 
false sharing phenomenon is  insignificant ,and the 
execution time to solve the Gaussian eiimination with using 
data affinity and without using data atrinity are almost the 
same. However, false sharing is becoming significant when 
page size increases. The exec,ution time of solving the 
problem without using, data, affinity is increased 
correspondingly, b~ut that, execution time is kept almost 
constant in the case data affinity empioyecf. ~, . 

Gaussian Elimination 64 

Figure 6. Gaussian elimination (64 equations) execution 
time unit versus page size 

Gaussian Elimination 128 

Figure 7. Gaussian elimination (128 equations) execution 
time unit versus page size 

i 
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As shown in Figure 7, the reduction in execution time units 
is by more than 50% when process affinity is employed 
with page size of 2048 bytes. In the best case where page 
size is 8192 bytes, the number of execution time unit for the 
case using process affinity is about one-seventh of the case 
without using process aEinity. Similar observations can be 
found in the 64 linear equations solver using Gaussian 
elimination. 

The last test case is to solve the fast Fourier transform with 
1024 points and the results are depicted in Figure 8. The 
execution time performance difference for solving this 
problem with using data affinity and without using data 
affinity is small when page size is below 32 bytes, and this 
difference widens as the page size is increased. The 
turning point of page size 32 bytes is small compared to 
that of the cases of matrix multiplication and Gaussian 
elimination. From the calculated relative data affinity 
(RDA) index, it is found that its data items show less 
affinity to a specific process. This means the RDA indexes 
of a piece of data item with respect to different processes 
are close to each other. As a result, data sharing between 
different processes are common and fafse sharing effect can 
be sigmficant in a relatively small page size. 

Fast Fourier Transform 1024 

€4 128 6 6  

Page Size (byte) 

Figure 8. Fast Fourier transform (1024 points) 
execution time unit versus page size 

As depicted in Figure 8, the execution time reduction in the 
FIT test case is by more than 50% when process affinity is 
employed with page size of 128 bytes. In the best case 
where page size is 512 bytes, the number of exration time 
unit for the case using process affinity is about one-seventh 
of the case without using process affinity. 

5. Conclusions 

In this paper, we introduced the concept of data to process 
afiiNty and proposed a set of equations that enables a 
number of indexes to be calculated, namely: data and 
process affinity index, page affinity index and process 
cohesion index. These indexes allow the affinity 
relationships between data and process to be deduced as 

well as how these data should be grouped together to form 
pages, and how these pages are grouped together and 
adhered to a process. 

Preliminary simulation was conducted to demonstrate the 
usefulness of the process affinity concept, particularly in the 
area of reducing or eliminating false sharing in page-based 
DSM systems. By using a matrix multiplication of size 642 
and 128*, it can be concluded system performance can be 
improved substantially by using a page size larger than the 
matrix row size and the process affinity algorithm as 
depicted in the early sections. Such improvement can be as 
large as an order of magnitude in the case of page size 
equals to 2048, matrix size equals to 128 as shown in figure 
5. Similar results are obtained for the case of using other 
problems such as the linear equation solver using Gaussian 
elimination and the fast Fourier transform. 

Furthermore, there are two more issues that are worth 
considering. First, as some data are shared quite equally 
among many processes, placing such data into a page may 
introduce a huge amount of page transfer over the DSM 
system. Therefore it may be useful to adopt a mixed page- 
based and shared variable DSM implementation strategy 
1141. In this case, the extensively shared data can be shared 
between processes in shared variable entities and 
communicated using message passing method so that 
network transfer loading may be reduced and system 
performance may be improved. 

The second issue is parallel loop scheduling. The process 
affinity algorithm may be applied to scheduling parallel 
loop, and combined with ideas of multithreaded self 
scheduling [IS] to formulate a more effective loop 
scheduling technique designed for DSM systems. 
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