
Title Performance analysis of the doubly-linked list protocol family for
distributed shared memory systems

Author(s) Lau, Albert CK; Yung, Nelson HC; Cheung, YS

Citation Ieee International Conference On Algorithms And Architectures
For Parallel Processing, 1996, p. 365-372

Issued Date 1996

URL http://hdl.handle.net/10722/45849

Rights Creative Commons: Attribution 3.0 Hong Kong License

PERFORMANCE ANALYSIS OF THE DOUBLY-LINKED EIS% PRQ'TOCOL FAMILY
FOR ~ ~ ~ T ~ ~ ~ T E ~ SHARED MEMORY SYSTEMS

ALBERT C K LAU, NELSON H C YUNG and Y S CI-IEUNG
Department of Electrical and l:lrctron~c Englneerlng, The IJnrversitv of' Hong Kong

Chow Yei Ching Bulldlng, Pokhlarn Koad, Hong Kong

ABSTKACT The doubly-linked list (DLL) protocol provides a
memory efjcienl, scalable, high-perforninnce and yet easy to
implement method to maintain nremorv coherence in
distributed shared memory (DSM) syyterns. In this paper, the
performance analysts of the DLL famii'v qf protocols is
presented. Theoretically, the DLL protocol with stable owners
has the shortest remote memory access latency among the
DLL protocol family. According to the simulated performance
evaluation, the DLL-Sprotocol is 65.7% faster than the DDM
algorithm for the linear equation solver; and is IG.576 faster
for the matrix multiplier. From the trend of the performance
flgures, it is predicted that the improvement in perforniance
due to the DLL-S protocol will be considerab1.v greater when a
larger number of processors are used, indicating that the
DLL-S protocol is also the most scalable of the protocois
tested.

1. Introduction
Distributed Shared-Memory P S M) [I] is an important

aspect of parallel processing because it allows programmers to
use the shared-memory programming model on systems that
have distributed main memory. Traditionally, interprocessor
communications in distributed memory multiprocessors rely on
message passing, in which the programmers are responsible
for handling all the formatting, sending and receiving of
messages. With DSM, however, interprocessor
communications can be performed simply by reading and
writing the shared memory space, while the underlying
mechanism is transparent to the programmers. In order to
create a shared memory space from physically distributed
memory, a DSM protocol is generally required to handle the
remote memory accesses and to maintain memory coherence.

In this study. the base system architecture of the DSM
system is assumed to be a generalized multiprocessor model,
called the hierarchical cluster model 121. In this model,
multiple clusters are connecled by an interconnection network
(Figure la) . Each clusters has a small number of Processing
Elements (PES) and its local memory (Figure I b) . In the
hierarchical cluster model. programmers have to use both the
shared-memory model for intra-cluster communications and
the message-passing model for inter-cluster communications.
With DSM, the complications of the underlying architecture
are hidden from the programmers, who see only a uniform
contiguous metnog space.

One of the early software DSM system is IVY [3], which
implemented the DSM concept as virtual shared memory. In
IVY. when a page fault occurs in a cluster's local memory, the
faulting page is fetched from a remote cluster that has a valid
copy of the page, instead of loading from disk. It experimented
with various DSM algorithms and concluded that the Dynamic
Distributed Manager @DM) algorithm generally had the best
performance. In the DDM algorithm, pages can migrate and
replicate freely throughout the system as needed for shared
accesses by different clusters. The page management is
performed by individual owner cluster of a page that keeps the
copy-set, which is the set of clusters that has valid copies of the

0-7803-3529-5/96/$5.00 @ 1996 IEEE

Figure la. The hierarchical cluster model.
1 2 n

I memory)

page. Whenever there is a write access to a page, the owner of
the page invalidates all other copies of the page in the system
listed in the copy-set, then transfers the ownership to the
cluster that writes to the page.

As the DDM algorithm is an extension of the basic virtual
memory system, a standard feature supported by Virtually all
contemporary microprocessors, the overhead caused by the
algorithm is small. However. there are rooms for improvement
in the DDM algorithm. First, the DDM algorithm performs
write invalidation by using information from the copy-sets,
which are dynamic memory structures whose maximum size is
the number of clusters in the system. The worst case total size
of the copy-sets is thus equal to the number of pages in the
system times the maximum size of a copy-set - for a system
with 1024 clusters and 128 Mbyte main memory with I Kbyte
pages, the maximum total size of all copy-sets in a cluster has
128x2'" (more thzn 128 millions) entries! This severely limits
the scalability of the system. Second, the burst of invalidation
messages generated by the owner during write-invalidations
may congest the part of network around the cluster - in the
worst case, for a system with N clusters, if every cluster in the
system is invalidating a page in every other clusters, the
number of messages sent will be N. (N - 1). i.e., the maximum
instantaneous number of invalidation message in the system is
O(N2). In Li's paper [31, a method to partially distribute the
copy-set using trees of clusters was proposed; however, as
dynamic memory structures are still needed in the algorithm,
the problem is still not completely solved.

To address this problem, the Doubly-Linked List @LL)
protocol 141 was proposed. The DLL protocol is a software
DSM algorithm that is suitable for implementation in the
distributed operating systems of a wide varieties of
multiprocessor systems. As in the DDM algorithm, the DLL
protocol is transparent to programmers and allows migrations
and replications of memory pages. However, instead of using
copy-sets, linked lists of clusters formed by the P-links which
require constant storage space in the page tables are used to
perform write invalidation. The total space required to store all
the P-links in a cluster is equal to the number of pages in the

Figure I b: A cluster

365

system - for the same 1024 clusters system as mentioned
above. only a constant 128x2'" (1024 times fewer than the
worst case of DDM) entries is needed to store the P-links.
Moreover, the use of links allows irivalidalions to be performed
in a distributed way in which the owners need not send large
bursts of invalidation messages - for a system with h' clusters.
the maximum instantaneous number of messages is 2h'. i.e..
O(N). Furthermore, in the DDM algorithm. every cluster
performing an invalidation of a page needs to send an
acknowledgment message, whereas in the DLL protocol, only
one acknowledgment message is needed for the invalidation of
a page. Therefore. in theory. the DLL protocol minimizes both
the possibility of network congestion and the number of
messages used.

In this paper, the performance analysis of the basic DLL
protocol @LL-B), the DLL protocol with N-link Reduction
(DLL-R) and the DLL protocol with stable owners (DLL-S), is
presented. In the basic protocol, the cluster that most recently
acquires a page becomes the owner of the page. Although this
method lengthens the time required to locate the owners, it
speeds up the read-modify-write memory access sequences
which are used in many applications. As the read operations
change the owner of the page to the requesting cluster. it can
then perform the write invalidation directly. The DLL-R
protocol is developed to shorten the time required to locate the
owners by partially reducing the length of the chains of N-
links, and yet it preserves the quick read-modify-write
advantage of the basic protocol. In the new DLL-S protocol,
ownership is not transferred during read accesses, thus
'eliminating the need to trace through chains of N-links to
locate the owner. In addition, multiple read accesses can be
serviced simultaneously by clusters that have copies of the
page. However, it loses the fast read-modify-write advantage of
the basic protocol.

Theoretically, the DLL-S protocol has the shortest remote
memory access latency among the DLL family of protocols.
According to the simulation study. the DLL-S protocol
achieves an improvement of 65.7% over the DDM algorithm
for the linear equation solver, and an improvement of 16.5%
for the matrix multiplier.

The organization of the paper is that the DLL-B and the
DLL-R protocols are outlined in the section 2. The DLL-S
protocol is dmussed in section 3. A theoretically analysis of
the protocols is presented in section 4. The performance
evaluations of the protocols by simulations are presented in
section 5, and finally, conclusions are made in section 6.

2. The Basic DLL Protocol
In the DLL protocol family, the memory space is divided

into fixed size pages as in virtual memory systems (Figure 2).
Each cluster maintains its own page table, which contains
information about all the memory pages in the system. Each
memory page in the page table can have one of the three states
-- E (exclusive), S (shared) or I (invalid). E state means the
cluster has the only copy of the page in the whole system. S
state the cluster has a copy of the page but it is not the only
copy. I state means the cluster does not have a valid copy of
the page.

Every page has an owner cluster, although page ownership
can be transferred. In the DLL-B protocol. the owner of a page
is the cluster that most recently acquired the page. It is the

Shared (vimal)
Mmwr). space -

'.' - :::: +--+ r"f'.- "' - L1"Ser 2 local "lory

Figure 2. The shared (virtual) menioty space.
responsibility of the ovvner to supply the page to the requesting
clusters. Also contained in the page table are the P-link and
the N-link for each page. The P-link points to the cluster that
is the previous owner of the page, while the N-link points to
the cluster to which the page ownership is given. A null N-link
means the cluster is thie owner of the page. From any cluster.
the owner of a page Cim be reached by following its N-links;
and from the owner of a page, all clusters in the system that
have copies of a page c,an be Visited by following the P-links.

2.1 Read Accesses
Read accesses to p,ages with E or S states are performed

locally; however, when a cluster performs a read access to an 1
page, a remote read access is required to obtain the page from
the owner. The cluster sends a read-request (RR) message to
the page's N-link. Follclwing the chain of N-links, the message
will eventually reach the owner of the page, which replies by
sending a copy of the requested page back to the requesting
cluster through the read-data (RD) message. It then points its
N-link to the requesting cluster and sets the page state to S.
The requesting cluster, on receiving the RD message, copies
the page to its local memory, sets the page state to S and its N-
link to NULL and points its P-link to the servicing cluster, At
this point, the requesting cluster becomes the new owner of the
page and completes the read access.

The following is ain example of a remote read access:
Assume cluster CO is tlhe owner of page PO and cluster cl.
whose PO is I state and the N-link of p0 points to CO, now
perfonns a read access: to PO. Therefore, c l sends an RR
message to CO, which replies by sending an RD message
containing a copy of PO to c l , changes the state of p0 to S and
sets the N-link to point to c l . When c l receives the RI,
message, it copies the page p0 to its local memory, changes the
page state to S, N-lin;k to NULL and P-link to Col and
completes the read access. The process is depicted in Figure 3.

Figure 3: Head reque,st by cl

2.2 Write Accesses
If a cluster perform!$ a write access to an E page, the

request can be completedl locally; otherwise, a remote memory
access is generated. lf the: page state is S, alf other copies of the
page in the system musl be invalidated to maintain memory
coherence. A write-invalidate WZ) message is sent through the
chain of N-links to the owner, which sets its own page state to
I and sends a write-invdidate-forward (WIF) message to the
page's P-link. The WIF message goes through the chain of P-
links, thus invalidating e111 copies of the page in the system,
except the one in the requesting cluster, which ignores the

366

message. When the WIF message reaches the end of the P- sends a WD message. which contains a copy of PO. to c3. It
links chain. a write-rnvnlrrlnte-perfurnretl lWP) message is then sends a WIF message to the cluster pointed to by its P-
sent back to the requesting cluster. On receiving the WIP link and changes the state of its own PO to I and resets its P
message, the requesting cluster sets the page state to E. and and N-links to null and to c3. respectively.
both the N-link and the P-link to NULL. At this point, the The WIF message, following the P-links, goes through
write access is completed. every cluster that contains a copy of PO, i.e., c l and CO. which

The following is an example,of a write access to an S page. also changes the state of PO to I and reset the P and N-links to
First. assume the page table state in Table 1 and now CO null and to c3. respectively. When the WIF message reaches
perfoms a write access to PO. Since pO is in state S in CO, other CO. whose P-link is originally null, CO will send a WIP message
clusters with copies of CO must have their copies invalidated. to c3. When c3 receives both the WD and the WIP messages, it
Therefore. a W message is sent to the cluster pointed to by the copies PO into its local memory, and set both the P and N-links
N-link, i.e.. cluster c l Following the N-links. c l forwards the to null. The cluster c3 becomes the new exclusive owner of PO.
WI message to c2, which is the current owner of PO. Cluster c2 The process is depicted in Figure 4.
then sends a WIF message to the cluster pointed to by its P-
link, i.e., cluster c l , changes the state of its PO to I. and resets
its P-Iink to null and N-link to Co. Cluster cl. on receiving the
WIF message, changes the state of PO to I. fonvards the
message to the cluster pointed to by its own P-link. i.e., cluster
CO. and reset its P and N-links to null and CO. respectively.
When CO receives the WIF message. as it is the requesting
cluster, it ignores the message. Since cO’s P-link is null, all
copies o f PO in the system, except the one in CO, are
invalidated. At this point, CO should send a WXP message back
to the requesting cluster; however, as the requesting cluster is
CO itself, so this message is skipped. Finally, CO changes the
state of PO to E. sets both I of its P and N-links to null, and
completes the write access. The cluster CO. becomes the new
exclusive owner of p0. The process is depicted in Figure 5 .

5 .

Figure 4r

2.3 Advantages and Disadvantages
One major advantage of the DLL protocol is the constant

page table size for a given system memory size. As mentioned
earlier, page tables of protocols that use sets or trees varies
dynamically in size, making these protocols difficult to
implement. In DLL, however, page movement i s kept track of
by using the N-links and P-links, which only require a
constant amount of memory in the page tables.

----I ~ - ~ . l Second, in the DLL protocol, the responsibilities of
__t m ~ s s a g t

I --+ N-link 1 invalidating a page are distributed by the chain of P-links to all ’ P-link all NULL] clusters that have copies of the page. This prevents the large
burst of messages generated by the owner during invalidations.
Moreover, only one acknowledgment message is sent for each
invalidation of a page, instead of one per cluster that has the
page as in the DDM algorithm.

Third, in the basic DLL protocol, the cluster that most
recently performs a read access to a page becomes the owner of
the page. This favors read-modify-write sequences that when a

page must first be obtained from the owner before dl the reading from it. it can perfom the write-invalidation directly
copies are invalidated. The cluster sends a write-request (WR) without the need to locate the owner,
message through the chain of N-links to the owner. which Nevefiheless. the DLL protoco~ does have its
rep’ies by sending a disadvantages. First, as copies of pages in different clusters
requesting cluster with the write-data fbf’’D) message. have to be invalidated one by one, the time required for the
Afterwards, the invalidation process as in a write access to an invalidation process is long, This calls for the use of o&er

the WD and the WIP messages, it Copies the page to its local consistelicy inode1 [5] [6] and write-buffering [7], which allow
memory, sets the page state to E. and both the N-link and the to be performed before the
P-link to NULL: At this point. the write access is completed. colnplelion of accesses. Second, in the DLL-B

The following is an example ofa write access to an I Page. protocol. a message travels to the owner by going through a
Again assume the state of the systeln in Table 1 and now, chain of N-li&j. which grows longer for every read request another cluster, ~ 3 , perfoms a write access to PO which is in I performed to the page, The time wasted in following the N-
state. It sends a WR message via the N-links to the owner of link
PO. i.e., cluster c2. When c2 receives the WR message, it first

by c3

c2

Figure 5: Write request by CO

Table 1 : State of p0 in CO, cl & e2
is performed to an page. a COPY of the cluster performs write accesses to page immediately after

Of the page back to the

s Page is prfoonned. When the requesting cluster R%%‘es both performance enhancement techniques such as relaxed memory

lltelnory
‘

be substantial as the chain of ~ - 1 i n k ~ grows long,

367

2.4 The DLL Protocol with N-link Reduction
To address the second drawback of the DLL-B protocol

discussed in the previous section. the DLL protocol with N-
link reduction (DLL-R) was developed to reduce the lengtli of
the chain of N-link during read accesses. N-link reduction
reduces the length of the chain of N-links during every read
request to a page. According to DLL-B. the cluster that
generates the read request will become the new owner o f the
page after the request has been serviced. Therefore. all the
clusters that are involved in forwarding the RR message may
change their N-links to the requesting cluster. even though the
request has not yet been completed. The requesting cluster
should lock the page and queue all accesses to it until the RD
message is received.

For instance. assume the N-link of cluster CO points to
cluster cl and that of c l points to cluster c2, which is the
owner of page PO. Cluster CO now put a lock on PO and sends a
RR message to its N-link. i.e.. c l . to request read access to PO.
When c l receives the RR message. it fonvards tlie message to
c2 and at the same time sets its N-link lo point to CO. which
will become the new owner of PO after the completion of the
read access. Therefore, the N-link of cIuster cl is reduced.

Although only the N-links of clusters that are previously
involved in forwarding a message are reduced. N-link
reduction puts no estra cost to the protocol because it only uses
the original RR message without adding new information to it.

3. The DLL Protocol with Stable Owners
The objective of developing the DLL-S protocol is to

completely reduce the chains of N-links used in locating the
owner of pages. Moreover. it allows multiple read accesses to
the same page to be serviced siinultaneously by different
clusters that have copies of the page.

The memory organization and initialization method of the
DLL-S are the same as the DLL-B and tlie DLL-R. The initial
order of distribution of the pages is again immaterial to the
correctness of the protocol provided that tlie page table of each
cluster is initialized to reflect the initial page placement.

3.1 Memory Access Methods
The read access methods of the DLL-S are different from

that of the DLL-B but the write access methods are essentially
the same. The read access methods are esplained below.

If a page is in an E or S state. the cluster already has a
valid copy of the page and thus rend accesses to the page can
be handled locally. However. as in the DLL-B, when a read
access is performed to an I page. the page must be obtained
from another cluster that has a valid copy of the page. It sends
an RR message to the cluster painted to by its N-link. If the
cluster receiving the RR message does not have a valid copy of
the requested page. it fonvards the message to its own N-link.
Eventually, the RR message reaches a cluster that has a valid
copy of the requested page. Note that this cluster may or may
not be the owner of the page. When a cluster that has a valid
copy of the requested page receives the RR message. it creates
an RD message that contains a copy of the requested page and
copies of its N-link and P-link aud sends it back to the
requesting cluster, changes the state of the 1,equested page to S
and sets its P-link to point to the requesting cluster. When the
requesting cluster receives the RD message. it copies the page
to its local memory and set the local physical address field of
the page table accordingly. changes the state of the page to S

' Cluster State P-link N-link
CO S c l NIXL
C l S NUL.L CO

c2 I NULL CO

Table 3. Final SbZtQ of p0 in each cluster
3.2 Significance of the DLL-S Protocol

The DLL-S protocol ;shows two improvements over the
DLL-B and DLL-R. First, all clusters in the system that have
copies of a certain page can service a remote memory access to
that page so the number of read accesses that can be serviced
sinn~ltaneously is equal to the number of clusters that have
copies of the page. This exlploits more parallelism.

Second. in the DLL-S, all clusters in a linked list have their
N-links pointing to the owner of the page. This is not only an
improvement over the DLL-B, in which a message must go
through a chain of N-links to reach the owner. but also an

368

improvement over the DLL-R. in which the chain of N-links is
only partiallq reduced

The only addihonal cost of the DLL-S IS that the RD
message now contains tlie value of the N-link a id P-link of the
replymg cluster. in addition to the copy of the requested page
This addition (several bytes). however. is \er). sinal1 compared
to the usual page size (hundreds or thousmds of bytes) and can
therefore be justified Nonetheless <is the o\\nerslup of pages is
no longer changed b j re,id accesses. the ,idvantagc of’ thc fast
read-modi@-write sequence in the b m c DLL protocol IT lost

4. Theoretical Analysis of the Protocols
T k s section compares the DLL-B DLL-R and DLL-S

protocol. and the DDM algorithm theoreticallq with respect to
the areas includmg remote inemor) x c e s s lateiiq, page table
size and message distnbution
4.1 Remote Memory Access Latency

The remote memory access latency (T,-) is defined as the
time interval between the issue of a remote memory access and
the completion of that access It can be divided into 3 parts.
nameiy the send time (Ts). the in\afidation tiinc (TI) and the
reply time (T,) The softaare overliead and qucuiiig delay for
remote memory accesses are approuitiately tlie same for the
protocols discussed and therefore will no1 be included in the
companson
4.1.1 Send Time

The send time is defined as the time required for the
memory access request message to travel from the requesting
cluster to the cluster that will service the request In order to
evaluate the send time, one must first understand the concept
of cycles of accesses

Define one ’cycle of accesses to a page’ to be ail the
accesses performed to the page between two in\.nlidation
operations of that page For instance cluster CO perforins a
wnte access to page p0 thus invalidating all copies of p0 in
other clusters, then. all clusters perforins read access to p0 to
read the value written by CO, finally, CO writes to PO again -
this IS considered as one cycle of access

The significant of cycles of accesses in the analysis of
remote memory access latency is thaL if a certain cluster skip a
cycle of accesses to a certain shared page, a inaxmuin of one
additional step will be necessary for any messages from that
cluster to reach their destination Consider the following
example Cluster CO performs a rend access to page 0 in cycle
0. then, another cluster c l performs a write access to page 0.
thus ending cycle 0 and starting cycle 1 Cluster CO does not
perform any accesses to page 0 before yet another cluster c2
performs another vmte access to page 0. thus ending cycle 1
and starting cycle 2 In this case. cluster 6) skips a cycle (cycle
I) of page 0 Now. if CO perfonns a remote iiieuioq access to
page 0, it will send a message to cl. which IS no longer the
owner of page 0 because c2 has written to page 0 Therefore,
one additional step is needed between c l and c2 before tlie
message can reach its destination This additional number of
messages needed is only a maximuin because there are chances
that the message can reach its destination without going
through all the steps For e\ample. if tlie second cluster that
wrttes to page 0 IS cl instead of c2 then cO’s remote memory
access message wll reach its destination in only one step

By the above argument. the following can be deduced If a
cluster skips n cvcles of accesses to a certain page, a

inaximuni of n additional steps will be required for the request
message of a remote rnemorv access peoformed by that cluster
fo that page to reach its destination.

The effect of cycles of accesses applies to the DLL
protocols. as well as to the DDM algorithm. In the following
analysis, we shall assume the clusters never miss cycles 01
accesses. In cases where cycles of memory accesses are
skipped. the above rules may be used to estimate the additional
overhead required.

In the analysis. the physical distances between any two
clusters are assumed to be the same in order not to bias the
study to any particular network topology. The time required for
a request message to travel one hop, i.e., from a cluster to
another. is assumed to be t,. while the time require for a data
message to travel one hop is assumed to be td. Note that both tr
and id depends of the speed and latency of the network, which
in turn depends on the traffic condition of the network. and td

also depends on the system page size.
4. I, I. 1 Send time for the DLL-B protocol

According to the DLL-B protocol, the send time is not a
constant but rather a variable depending on the number of
clusters that the request message goes through before it reaches
the owner. As a chain of N-links is used to locate the owner of
a page in DLL-B, we can deduce that the send time TS of any
particular remote access is:

(1)
In equation (I) . the cluster that performs the remote access

request is the n,th cluster to do so in the current cycle of
accesses of the page. Recalling from the DLL-B definition.
assuming that the cluster skip no cycle of accesses, a request
message from a cluster will require only one step to reach the
owner of a page if it is the first read access performed to the
page after the most recent invalidation. Then. for every cluster
that perfonns read access to the page, the chain of N-links will
grow one step longer.

If, on average, the number of clusters that perform memory
access to the page in one cycle of access equals to %,, the
average send time Fs for t h s particular page will be:

r7 (DLL -B) = n, .tr

Notice that the average send time for DLL-B is O (E r)
This means that if more clusters share the same page, the
aberage sent bme for that page will be higher This limits the
scalability and the amount of parallelism of the system
4.1.1.2 Send time for the DLL-R protocol

In the DLL-R protocol, since the N-links of all clusters that
are involved in forwarding an RR message are updated to point
to the requesting cluster. i e , the new owner, one would expect
its performance to be better than O(Fr) In fact, for clusters
that have not missed any cycle, the send hme Ts is‘

(3)
for the first cluster that perform remote access to the page
iininediately following its Invalidahon, and is

(4 1
for all clusters that perform remote read access to the page
after the first Therefore the average send bme for DLL-R for
a page shared by an average of iir clusters is

T, (DLL - R first cluster) = t ,

T, (DLL - R) = 2t,

369

is not taken into account here. In the DDM algorithm. as
copies of the page are invalidated in parallel, a large burst of
invalidation messages are sent by the owner simultaneously.
According to the characteristics of common networks. the
latency of the network:$ rises sharply when the traffic reaches
60-80%1 of the capacity of the network [8][9] As a result. f, for
the 'DDM algorithm may increase, radically when a large burst
of messages is generated. thus increasing the overall
invalidation time, Our simulation showed that the actual
invalidation time of the DDM algorithm could be longer than
the invalidation time of the DLL protocol.
4.1.3 Reply Time

The reply time of a remote memory access is defined as the
time interval between the generation of the data message by
the cluster that services the request and the receipt of it by the
requesting cluster. The reply time for write invalidation
requests IS always zero its no data message is generated.

The reply time for all read and write requests is the same
for all the protocols discussed and is equal to td. It is because
the data message i s always sent directly to the requesting
cluster

4.2 Page Table Size
The page table size is constant for all the DLL family of

protocols. There is one ~ecord for each page in the system and
four fields, in eacli record, namely the state of page, N-link, P-
link and local physical address. In the page table of the DDM
algorithm, there is also one record for each page in the system
and four fields in each record, namely the state of page,
probable owner. copy-se1 and loqal physical address. The state
of page and the local physical address field of the two DSM
algorithms are the same: and the N-link field is equivalent to
the probable owner field. Therefore, we need only to compare
the size of the P-link fielld to that of the copy-set.

Let the memory required to store a cluster ID be one unit:
then the total size of the 1P-link field in a cluster is np, where np
is the number of pages in the system. On the other hand, the
copy-set is a dynamic memory structure whose size range from
zero to A'. where N i s the number of clusters in the system. As
a result. the worst case total size of the copy-sets in a cluster is
n p . ,V. I n other words. thle worst case size of the copy-sets is N
times that of the P-links. For typical application, the number of
clusters sharing the same pages could be several hundreds or
thousands, meaning the total size of the copy-sets could be
several hundreds or thousands times larger than the P-links.
Moreover. enough memory must be saved for the copy-sets:
otherwise the system may fail by running out of memory.
4.2.1 Message Distribution

In order to look into the message distribution of the
protocols. the pattem by ,which a cluster generates message is
analyzed. I n the DLL family of protocols, each cluster usually
only generates one message at any one time, except in the case
of a WR request. in which the owner generates a WD and a
WIF message simultaneous. Therefore, the maximum number
of messages generated by a cluster is 2 and the total worst case
number of messages generated in the whole system
simultaneously is 2N. which is O(N).

For the DDM algorithm, the maximum number of
tnessages generated by a cluster is N - 1, which occurs when
the owner of a page services a write-request and has to send a
data message plus N - 2 invalidation messages to invalidate

Note that the average send time still increases nhen the
number of clusters sharing a page incrcases: however. there is
an upper-bound of24 - a major impro\~eincnt over DLL-B.
4. I. 1.3 Send time for the DLL-S protocol

In the DLL-S protocol, the owner of a page is not changed
by read accesses. Therefore, provided that ii clustcr has not
skipped the previous cycle of accesses. i t always knows exactly
where the owner of a page is. Hence. tlic send time is:

(6)
If a cluster skipped the previous cycle of accesses.

additional steps will be required as discussed earlier. However.
as any clusters that have a certain pagc ma^ scnicc the read
request to that page. the chance thaf additional steps are
required is small indeed.
4.1.1.4 Send time for the DDM algorithm

In the DDM algorithm, the owner of a page is not changed
by read accesses. so the send time required is the same as in
the DLL-S protocol:

(DLL - S) = Ty (DLL - SI = f r

7, (DDM) = (DDM) = /, (7)
Note that in the DDM algorithm. only the owner of tlie

page may service a read request.
4.1.1.5 Comparison

When comparing the sent time. the DLL-S protocol and tlie
DDM algorithm are the clear winner. However. the DLL-S
protocol has an advantage. here because every cluster that has a
copy of a page may service a read request to that page; while in
the DDM algorithm. only the owner ma? service any request.
The send time of the DLL-R is slightly poorer than the above
two but is.still acceptable owing to the 2r, upper-bound.
4.1.2 Invalidation Time

The invalidation time is defined as the time between the
receipt of the write request by the owner of the requested page
and the receipt of all the acknowledgment messages by the
requesting cluster. The invalidation time for read accesses i s
always zero.
4.1.2. I Invalidation fime for the DLL protocol family

The invalidation time of all variations of the DLL protocol
is the same. For a remote write request, if this is the wrth
remote request performed to the page during the current cycle
of accesses. the number of copies of the page in the system is
n,. Therefore. apart from the owner's copy of the page. n, - I
WIE messages plus one WIP messagc are required to
invalidated all other copies of the pagc. The invalidation time
and average invalidation time are thus:

4.1.2.2 Invalidation time for the DDM algorithm
During write invalidation in the DDM algorithm. copies of

the page are invalidated in parallel. with one invalidation
message and one acknowledgment message for each of them.
Therefore, the invalidation time for remote write access is
constantly equal to:

4.1.2.3 Comparison
From the above analysis. the DDM algorithm scems to be

the obvious winner. However. the effect of network congestion

T , (DLL)=~,~ , ~ (D L L) = i i r t , (8)

T, (DDM) = (DDM) = 21, (9)

370

every other cluster’s copy of the pdge Therefore. the worst
case number of messages generated in the whole sqstem
simultaneously is iV (N - 1). whlch IS O(JV2)

Although 11 is tlie worst case situations. se\ era1 Insights
can be gained from the above an:il\sis First ‘1 cluster i n the
DDM algorithm can generate mdin inore ~ncssdges than a
cluster in the DLL protocols. whicli iiicans high probability of
congesuon at that part of the network Second in general. the
number or messages in the network at anv one time would be
higher for the DDM algorithm th,m for the DLL protocols.
requiring a higher-bandwidth iieti\oik Third. owing to tlie
burst nature of tlie messages generated bj the write
invalidation operations in the DDM dlgorithin. it highly favors
a broadcast or multicast network on the other hand. the DLL
protocol works well with any kind of network

5. Simulated Performance Evaluation
The simulations are implemented a s user level prograins in

a network of workstatlons running PVM 3 [101 The network
transfer rate of 0 8 byte/cycle (equivalent to 40MBls on a
50MHz system) and the message passing latency of SO0 cycles
are assumed [1 11 The page siie IS set to be lkbyte for all three
algonthms In various studies of iiitcrconnection network
performance the latency is shown to rise shaply when the
network becomes saturated [8] [91

Two common appiicauons, namely tlie linear equation
solver and the matnx multiplier, are used in the simulations to
evaluate the performance of the DSM protocols The linear
equaQon solver solves 256 equations bv the Gauss-Seidel
method [lZ] which is an iterative inethod - the results are
repeatedly read. recaiculated and written back to the shared
memory Therefore, there are a large amount of read-mod@-
wnte sequences involved The matrix iiiultiplier multiplies two
64x64 square matnces by reading the corresponding elements.
multiplying and adding the results then writing the results
back to the shared memo0 The number of shared memory
accesses in the matnx multiplier IS much smaller than in the
linear equation solver. and there i s no read-modify-write
sequence These programs are written with the assumption of a
true shared memorq, I e . the distributed nature of the system is
ludden Systems of up to 16 clusters drc siinrtlatcd

Figure 7 depicts the plot of thc speedup for the linear
equahon soher. in which the speedup is obtained by

Process time bv I cluster
Processing time by N cluster

speedup = ___

With a speedup of 4 07 with I6 clusters the DLL-S
protocol is the best performer. although the perforiiiauce of the
DLL-R prot$ol is very close to that of the DLL-S protocol
With the shorter remote meinorq access latenc) arid parallel
read accesses offered by the DLL-S as discussed before, one
wouId expect a greater improveinent over the DLL-R
However, as there are many read-modifv-write sequences in
the linear equation solver. the DLL-B and DLL-R protocols
with their qwck read-modifywrite pt opert) liavc greater
advantage, and therefore they perform better I n this case. the
DDM algonthm ackeves only a speed up of 1 55 and 3 35
with 8 and 16 clusters, which are 39 6% and 17 5% less than
the DLL-S This IS mainly because of the network congestion
and increase in network la te in cmscd b? the bursts of
invalidation messages

In order to understand further the iiiipact of the quick read-

0 4 8 12 16
No. of clusters

Figtire 8 Plot oJ speedup for the linear equation solver
50,000

p 40,000

30,000
*
g 20,000
h 8 1o.oM3
z

0 4 8 12 16
No. of clusters

F+yre 7 Plot of tzo of control msg for linear equation solver
14.000

P
E
m

U
c

c

0 z

37 1

O J
0 4 8 12 16

No. of cluster
Figiirc 9 Plot of no of data msg for linear equation solver

modi@-write feature. the total number of control messages.
i.e , messages that do not contain memory page data, and the
total number of data messages are plotted for the DLL-R and
the DLL-S protocols in Figure 7 and Figure 9 From the plots,
the DLL-R protocol uses 26% more control messages but 15%
fewer data messages than the DLL-S protocol. The extra
control messages are used by the DLL-R protocol to go
through the N-links which are only pmal ly reduced
However. to elplain the larger number of data messages used
by the DLL-S protocol, one have to look into the deb& of the
iterative method used in the linear equahon solver In each
iteration of the solver, the results from the previous iteration
are read from the shared memory, and the new results are
written back to the memory after some calculahons In the
DLL-R arter the results are read, the cluster becomes the
owner of the page in which the results are stored, so when the
results are wntten back to the memory, the WI request can be
service immediately and no data message IS involved In the
wnte accesses In the DLL-S. however, readmg the results
from the memory does not gwe the ownership of the page to
the cluster. so when the results are wntten back, a WI request
is sent to the current owner of the page If before the WI
request is serviced. the cluster recems a WIF message (from
another cluster also trying to m t e the iterauon results to the
page) thus invalidating its copy of the page, the prevlous WI
request have to be aborted and a new WR request, wheh
involves a data message transfer, is generated As a result, the
number of data messages used by the DLL-S protocol is

10 1 I

4 :: 2
, - - 1

5 +

0 4 8 12 16
No. of clusters

Figure 11. Plot of speedup for matrix nrulriplier
’

’ signifcantly higher than that used by the DLL-R protocol.
Figure IO shows the average instantaneous number of

messages in the system for the linear equation solver. This is
an indication of how frequently messages are generated by the
protocols. With an average of rnore than 8 messages in the
system at any one time. the DDM algorithm generates
messages much more frequently than the DLL protocols,
owing to its large number of invalidation and xknowledgment
messages required. The DLL-B protocol has the average
instantaneous number of messages in the system equal to 5.1,
which is larger tlian the other the DLL protocols. It is because
remote memory access messages have IO go through long
chains of N-link to reach the owner. which makes these
‘messages exist in the network for a longer time. The fact that
the DLL-S protocol generates more messages at one time than
the DLL-R protocol and yet has better performance is due to its
parallel read accesses feature. which services more RR
messages at one time.

Figure I I depicts the speedup obtained by the protocols for
the matrix multiplier. With a spccd up of 5.82 with 16 clustcrs,
the D!J,-S protocol is again the best performer, followed by
the DLL-R protocol. which has speed up of 5.32 with 16
clusters. The difference between the DLL-S protocol and the
DLL-R protocol is larger in this case - the DLL-S protocol is
9.4% faster than the DLL-R protocol in the 16 clusters case -
chiefly because there is no read-inodi&-writc sequence in the
matrix multiplier so the quick read-modify-write advantage of
the DLL-B and DLL-R protocols is not exploited. Tlus is also
the reason of the performance of the DLL-B protocol being so
close to the DDM algorithm.

Finally. from the trend of the graphs. the differences
between the performance of the DLL-S protocol aiid the other
three protocois are predicted to be even greater when the
number of clusters used is larger than 16. This indicates that
the DLL-S protocol is the most scalable of the four DSM
protocols discussed.

6. Conclusions
The DLL protocol is a memorq. efficient. scalable. high-

performance and yet easy to implement protocol to maintain
memory coherence in DSM systems. In this paper, the DLL
protocols with stable owners is introduced and its performance
compared. both theore:tically and by simulation. to the basic
DLL protocol and the DLL protocol with N-link reduction. as
well as the DDM algorithm. From the results! it appears that
the DLL-S protocol ha!; superior performance to the others.

However, one drawback of the DLL-S protocol as
coinpared to the DLL-13 and DLL-R protocol is that it does not
liave the advantage of’ quick read-mode-write. which turns
out to affect its performance to some extent. This fact also
suggests that different applications may favor different DSM
protocol and therefore. a protocol can never be absolutely the
best.

References
[11 B.Nitzbrrg a i d V.Lo, “Distributed Shared Memory: A Survey of

Issue and Algorithms,” IEEE Computer, pp. 52-60, Aug. 1991.
121 K. Hwang, Advanced Computer Architecture, McGraw Hill, pp.

19-27, pp. 248-256, pp. 487-590, 1993.
[3J K.Li and P.Hudak; -“Memory Coherence in Shared Virtual

Mcinory Systems,’‘ A’CM Trans. Computer Sysrm, Vol. 7 No.

[4] A.C.K. I m , K.H.W. Leung, N.H.C. Yung and P.Y.S. Cheung,
“On the Doubly-Linked List Protocol for Distributed Shared
Memory Mutliprocessor Systems,” Proc. IEEE 1st Zntl. ConJ on
Algorithms and Architectures for Parallel Processing, pp, 293-
302. Apr. 1905.

[5] K. Ghorachorloo, D. Lenoski, J . Laudon, P. Gibbons and J.
Heiuiessy, “Memory Consistency and Event Ordering in Scalable
Shared-Memory Multiprocessors,” Proc. I7th Annu. Int. Symp.
Computer Arch., pp. 1:s-26, Jun. 1990.

[6] K. Ghamhorloo, S. Adve, A. Gupta, J. Hemessy and M. 1 1 1 ,
“Programming for Different Memory Consistency Models,”
Jq!rrnal of Paralkcl and Distributed Computing, 15, pp, 399-

171 M Dubois, C. Scheurich and F. Brigs, “Memory access
bufkring in multiprocessors, ” Proc. 13th Annu. Inr. Symp. on
(‘oniputer Arch.. pp. 434-142, Jun. 1986.

IS] W. Ilallv and €1. Aoki. “Deadlock-Free Adaptive Routing in
Multicomputer Networks using Virtual Channels,” ZEEE
7’rwrsaction.r vn Parallel and Distributed System, pp, 466475,
Apr. 1993.

[9] P. Mohapatra, S. Woiig and C. Das, ‘‘Performance Analysis of
Cotnbiiiing Multistage Interconnection Networks,”Proc. of 1994
Ititemarional Conf cm Parallel Processing, pp. 13-16, Aug.
1994.

IO] A.C;eisl. A.Heguelin. J.Dongarra, W Jiang, R.Manchek,
V.Suiideram. PW 3 User’.T Guide and Reference Manual, Oak
Ridge National Laboratory, 1994.

I I] TMS320C4x User’s Guide, Texas instruments, pp.1-1 - 1-12,
1992.

121 S . N t l , The Design and Analysis of Parallel Algorithm, Prentice
Hall, pp. 203-205, 1989.

4, pp. 32 1-359, NOV. 1989.

407, 1902.

372

