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BLIND MIMO CHANNEL ESTIMATION WITH AN UPPER BOUND
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ABSTRACT

Many known second-order statistics based blind algorithms
for MIMO channel estimation are sensitive to channel order
overestimations. To overcome this problem, an algorithm
is proposed in [1] for SIMO system only, and then a simple
generalization of it to MIMO system is presented in [2]. In
this paper, improvements and refinements on the algorithm
in [2] are given, which makes the method robust to noise
and round-off error. The method can give estimations of
all channel impulse responses subject to a scalar matrix
ambiguity when only an upper bound for all MIMO channel
orders is known.

1. INTRODUCTION

Many methods have been proposed for channel estimation
of multi-input multi-output (MIMO) systems [3, 4, 5, 1, 6,
7, 8, 9, 10, 11]. The subspace (SS) method [3, 8], the lin-
ear prediction (LP) approaches [4, 6, 7, 9, 10] and the outer
product decomposition (OPD) [5] algorithm are most popu-
lar among them. The SS has a simple structure and achieves
good performance for single-input multi-output (SIMO) sys-
tem [8], but it requires precise knowledge of the channel or-
der [12], which is very difficult to obtain due to noises and
roundoff errors. Also, the extension of it to MIMO system
is not so successful because it generally can only estimate
the channels subject to a polynomial matrix ambiguity [3].
The LP and OPD can be used for both SIMO and MIMO
system and are valid when the channel orders are overes-
timated, but their performance is sensitive to observation
noise. It has been pointed in [13, 6] that LP’s claimed
robustness to channel order overestimation does not hold
when the SOS contains estimation errors. It was shown in
[4] that the LP algorithm can achieve acceptable perfor-
mance when the assumed order equals that provided by an
order detection criterion (the maximum description length
(MDL) or the Akaike information criteria (AIC) [14]) over-
estimated by a few (one or two) taps only. This means that
the LP is not fully robust to order overestimation. In MIMO
systems, there are many different channels and these chan-
nels may have different channel orders. Therefore, known
order detection methods such as the MDL and AIC which
are valid for SIMO system cannot be used for MIMO sys-
tem anymore. It is much more difficult to estimate channel
orders in an MIMO system. Therefore, a practical channel
estimation method must first tolerate channel overestima-
tions.
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In [1], a method robust to order overestimation is pro-
posed for SIMO channel estimation (in the following the
method is called GRDA). A simple generalization of the
GRDA to MIMO system is presented in [2]. Although the
generalized method is proved theoretically to tolerate order
overestimation, simulations show that it is not very robust
to noise and round-off errors. In this paper, two major
improvements on the method, namely, using eigenvalue de-
composition (EVD) to optimize an estimation and apply-
ing the MDL to detect the rank of correlation matrices, are
given. The two improvements make the method not only
tolerate order overestimation but also be robust to noise
and round-off errors.

In the following, superscripts T, † and ∗ stand for trans-
pose, Hermitian and conjugate, respectively. Symbol

def
= is

used for introducing a new notation. Iq is the identity ma-
trix of order q and ⊗ is the Kronecker product of matrices.

2. SYSTEM MODEL

Assume that there are P users with each user sending a
symbol sequence: sj(n) (j = 1, 2, · · · , P ) and M receivers
(antennas) with received signal: xi(n) (i = 1, 2, · · · ,M). A
MIMO system can be described as

xi(n) =
P

j=1

Nij

k=0

hij(k)sj(n− k) + ηi(n), (1)

where hij(k) is the channel response from user j to antenna
i, Nij is the order of channel hij(k), and ηi(n) is the channel

noise. We assume that M > P . Letting Nj
def
= max

i
(Nij),

hij(k) are zero-padded if necessary, and

x(n)
def
= [x1(n), x2(n), · · · , xM (n)]T ,

hj(n)
def
= [h1j(n), h2j(n), · · · , hMj(n)]

T ,

η(n)
def
= [η1(n), η2(n), · · · , ηM (n)]T , (2)

we can express (1) into vector form as

x(n) =
P

j=1

Nj

k=0

hj(k)sj(n− k) + η(n), n = 0, 1, · · · . (3)

By considering L consecutive outputs and defining

x̂(n)
def
= [xT (n),xT (n− 1), · · · ,xT (n− L+ 1)]T , (4)

η̂(n)
def
= [ηT (n), ηT (n− 1), · · · , ηT (n− L+ 1)]T , (5)
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ŝ(n)
def
= [s1(n), s1(n− 1), · · · , s1(n−N1 − L+ 1), · · · ,

sP (n), sP (n− 1), · · · , sP (n−NP − L+ 1)]T ,
(6)

we get

x̂(n) = Hŝ(n) + η̂(n), (7)

where H is aML× (N+PL) (N def
=

P

j=1

Nj) matrix defined

as

H
def
= [H1,H2, · · · ,HP ],

Hj
def
= hj(0) · · · · · · hj(Nj) · · · 0

. . .
. . .

0 · · · hj(0) · · · · · · hj(Nj)

 .
(8)

3. THE ALGORITHM

The following assumptions for the statistical properties of
transmitted symbols and channel noise are assumed.

(A1) Transmitted symbols are independent and identi-
cally distributed.

(A2) Noises are white and uncorrelated.
(A3) Noises and transmitted signals are uncorrelated.
(A4) A smoothing factor L has been chosen such that

the matrix H is of full column rank.

3.1. Derivation of the algorithm

Based on the assumptions (A1-3), we can verify that

R
def
= E(x̂(n)x̂†(n)) = σ2sHH

† + σ2ηIML, (9)

R̄
def
= R− σ2ηIML = σ2sHH

†, (10)

Q
def
= E(x̂(n)x̂†(n− 1))
= σ2sHJ̃N+PLH

† + σ2η(JL ⊗ IM ), (11)

Q̄
def
= Q− σ2η(JL ⊗ IM) = σ2sHJ̃N+PLH

†, (12)

where σ2s and σ
2
η are the variances of the transmitted sym-

bols and noises respectively, Jq is a q×q down shift matrix,
that is, it is a lower triangular Toeplitz matrix with its first
column being (0, 1, 0, · · · , 0)T , and

J̃N+PL = diag(JN1+L,JN2+L, · · · ,JNP+L). It is easy to
verify that the rank of R̄ and Q̄ are respectivelyN+PL and
N+P (L−1). Let K =ML−(N+PL)+P , which is the di-
mension of the left null space of Q̄. Let ui (i = 1, 2, · · · ,K)
be K linear independent vectors (a basis) in the left null
space of Q̄, that is,

u†i Q̄ = u†iHJ̃N+PLH
† = 0. (13)

It is proved in [2] that

u†iHŝ(n) = α†i s(n), (14)

where αi
def
= (αi1, · · · ,αiP )T with αij being an arbitrary

complex number, and s(n)
def
= (s1(n), · · · , sP (n))T . Use

these K vectors ui (i = 1, 2, · · · ,K) to define a matrix U
as

U
def
= [u1,u2, · · · ,uK ]. (15)

We also define a P ×K matrix α by

α
def
=

 α11 α21 · · · αK1
α12 α22 · · · αK2

· · · · · ·
α1P α2P · · · αKP

 . (16)

Then we have

U†Hŝ(n) = α†s(n). (17)

From the definitions of the matrices, we have

E(α†s(n)s†(n)α) = σ2sα
†α

= E(U†Hŝ(n)ŝ†(n)H†U)

= U†R̄U. (18)

Note that K =ML− (N +PL)+P > P and the matrix α
has more columns than rows. In the following, it is assumed
that α is of full row rank. Let V1 be a matrix of size
K × P whose columns are eigenvectors corresponding to
nonzero eigenvalues of U†R̄U. Then, it is easy to verify
that there exists an invertible matrix B of size P × P such
that α† = V1B

†. Therefore,

U†
1Hŝ(n) = B

†s(n). (19)

where U1
def
= UV1. Then we get a critical formula as fol-

lows:

s†(n) = ŝ†(n)H†U1B
−1 = ẑ†(n)U1B

−1, (20)

where ẑ(n)
def
= Hŝ(n) = x̂(n)− η̂(n). We also define z(n) def=

x(n)− η(n).
Now we are ready to estimate the channels. From (3)

we see that hj(k) = E(x(n)s
∗
j (n− k))/σ2s . Let

h(k)
def
= [h1(k),h2(k), · · · ,hP (k)] (21)

be the MIMO channel matrix. Similar to [2], it can be
verified that

h(k)σ2s = E(z(n)ẑ
†(n− k))U1B

−1. (22)

By defining an M ×M matrix rz(k) as

rz(k)
def
= E(z(n)z†(n− k)), (23)

which can be computed from rx(k)
def
= E(x(n)x†(n− k)) by

the formula

rz(k) = rx(k)− rη(k) = rx(k), k = 0
rx(k)− σ2ηIM , k = 0

,

we finally get

h(k) = [rz(k), rz(k + 1), · · · , rz(k + L− 1)]U1B
−1σ−2s .

(24)

In (24), only matrix B−1 cannot be determined from the
statistics of outputs of the MIMO system. That is, the
MIMO channels are estimated from its output second order
statistics (SOS) with ambiguity of a P×P matrix. This am-
biguity matrix is intrinsic for any SOS-based blind channel
estimation method.

The right null space of Q̄ is also used by the GRDA
method. However, it is difficult to use the right null space
for MIMO system identification because the characteriza-
tion of it needs the unknown channel orders, and, unlike a
SIMO system, a MIMO system usually has many different
channel orders.
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3.2. Practical algorithm

We assume that an upper bound for all the channel or-
ders, that is, a number Nupp such that Nj Nupp (j =
1, 2, · · · , P ), is known or estimated. Choose a smoothing
factor L such that ML > PNupp + PL. The number K,
that is, the dimension of the left null space of Q̄, is unknown
because the sum of all the channel orders, N , is unknown.
To overcome this difficulty, we use the MDL [14] to estimate
it. The practical algorithm is summarized in the following.

Algorithm Blind MIMO Channel Estimation
Step 1. Compute R = 1

Ls

L+Ls−1
n=L x̂(n)x̂†(n), where

Ls is the number of samples used. Compute the EVD of R.
Use the MDL to estimate the rank of H. Let the estimated
rank be r. Average the smallest ML − r eigenvalues of
R to get an estimation (σ̄2η) for the noise variance. Let
R̄ = R− σ̄2ηIML.

Step 2. Compute Q = 1
Ls

L+Ls−1
n=L x̂(n)x̂†(n− 1) and

Q̄ = Q − σ̄2η(JL ⊗ IM ). Then compute the singular value
decomposition (SVD) of Q̄. Let K1 =ML−r+P . Choose
K1 vectors ui (i = 1, 2, · · · , K1) corresponding to the K1

smallest left singular values of Q̄ and denote a matrix U =
[u1,u2, · · · ,uK1 ].

Step 3. Compute W = U†R̄U and the EVD of W.
Let V1 be the matrix of size K1 × P whose columns are
eigenvectors corresponding to nonzero eigenvalues of W,
and U1 = UV1.

Step 4. For k = 0, 1, · · · , Nupp + L− 1, compute

rz(k) = rx(k)− rη(k) = rx(k), k = 0
rx(k)− σ̄2ηIM , k = 0

,

where rx(k) is estimated by output samples.
Step 5. Form a matrix

G = GT (0) GT (1) · · · GT (Nupp)
T
= rz(0) rz(1) · · · rz(L− 1))

rz(1) rz(2) · · · rz(L))
· · · · · ·

rz(Nupp) rz(Nupp + 1) · · · rz(Nupp + L− 1)

U1.

The MIMO channel matrix is then h(k) = G(k)β, where β
is a P × P matrix to be determined and

h(k) =

 h11(k) · · · h1P (k)
... · · ·

...
hM1(k) · · · hMP (k)

 .
4. DISCUSSIONS ON THE METHOD

There are two major improvements over the method in [2],
namely, applying the MDL to detect the rank of correlation
matrices (Step 1) and using EVD to optimize an estimation
for s(n) (Step 3). The two improvements make the method
not only tolerate order overestimation but also be robust to
noise and round-off errors.

The tolerance to noise and round-off errors of the algo-
rithm is closely related to the property of matrix α. Since
K1 = ML − r + P > P (in MDL, r < ML), α has
more columns than rows (this is different from [2] where
α has only P columns). Simulations show that larger K1

(if K1 K) gives better performance to α (larger P th sin-
gular value). This justifies using the MDL to estimate K
because it gives a relatively precise estimation. Alterna-
tively, we can use (M − P )L− PNupp + P to approximate

K (that is, replace K1 by this number in the algorithm),
which is a direct generalization of that used in GRDA. If
the channel orders are overestimated, this estimation may
be much smaller than the actual value and therefore the
algorithm’s performance will be bad. For a SIMO system,
the estimation of K is equivalent to the estimation of the
channel order. However, for a MIMO system, they are dif-
ferent because a MIMO system has many different channel
orders and therefore the orders cannot be obtained from K.

For a SIMO system, the algorithm is the GRDA with
an amendment. The amendment is that the rank of H
is estimated from the eigenvalues of R by the MDL. For
simplicity, in the following, the method is called modified
GRDA (MGRDA). Using the EVD to optimize an estima-
tion for s(n) (see Step 3) is equivalent to the EPC criteria
in GRDA. The computational complexities of the two algo-
rithms are nearly the same, because the estimation of the
rank of H by the MDL is very simple if the eigenvalues of
R are known. The eigenvalues of R are also required in
GRDA for estimating the noise variance. Since the MDL
usually gives a more precise estimation of K than the di-
rect estimation in GRDA, the amendment usually gives rise
to better performances both in accuracy and robustness to
order overestimation, which is supported by simulations.

5. SIMULATIONS

In the following, signal-noise-ratio (SNR) means the ratio of
the average received signal power to the average noise power

SNR
def
= E(||x(n)−η(n)||2)

E(||η(n)||2) . The mean square error (MSE)

between the estimated and true channel responses is de-

fined as MSE
def
= minβ

Nupp
l=0

||h(l)−h̄(l)β||2F
Nupp
l=0

||h(l)||2
F

, where h̄(l) and

h(l) are the estimated and true channel responses respec-
tively, while the true channel responses are zero-padded, β
is a matrix with size P × P , and || · ||F means the Frobe-
nius norm for matrix. It is easy to prove that the optimal

β =
Nupp

l=0 h̄†(l)h̄(l)
−1 Nupp

l=0 h̄†(l)h(l) .

Let Nmax
def
= max

j
Nj . Only an upper bound for all

the orders is assumed known in our simulations, that is, a
number Nupp is known such that Nupp ≥ Nmax. To ver-
ify the robustness to channel order overestimation, we test
four cases of the channel order upper bound (Nupp): Nmax

(exact upper bound), Nmax + 2, Nmax + 4 and Nmax + 6,
respectively. In the following, a Monte Carlo realization
means: 1 a random Rayleigh fading channel (tap coef-
ficients are random complex numbers with Gaussian dis-
tribution) is created; 2 a data packet with 1000 random
4-QAM input samples is transmitted through the wireless
channel with random Gaussian noises. Extensive simula-
tions show that the algorithm is truly robust to channel
order overestimation, noise and round-off errors.

5.1. MIMO channel estimation

Consider a 2-user 4-antenna system (M = 4, P = 2) with
N1 = 2 and N2 = 4. The smoothing factor is chosen as
L = PNupp/(M −P ) +1. The MSE versus SNR is shown
in Figure 1, where 500 samples are used for estimating the
statistical correlation matrices. In Figure 2, the SNR is
fixed to 20dB, while the sample size used is changed from
300 to 900. All the results are averaged over 100 Monte
Carlo realizations. From the figures, we see that the algo-
rithm works well when only an upper bound for the channel
orders is known. Furthermore, the assumed upper bound
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Figure 1: MSE versus SNR (500 samples)

Figure 2: MSE versus sample size (SNR=20dB)

can be much larger than the exact upper bound. When
the channel orders are overestimated, there are additional
channel coefficients at the tails to be estimated. Errors are
inevitably introduced to these coefficients (ideally should
be zeros), which causes the MSE to become higher. Other
simulations show that the smoothing factor does not affect
the MSE significantly.

For comparison, simulation results are given in Figure 3
to 4 when the method in [2] is used, where the parameters
are the same as those in Figure 1 to 2, respectively, except
that the smoothing factor is chosen as L = PNupp/(M −
P ) + 7 to obtain the best performance. Obviously, the
results are much worse. Here the smoothing factor do have
significant impact on the performance.

5.2. SIMO channel estimation

The MGRDA and GRDA (by EPC criteria) are tested on
the same conditions. A single-user 4-antenna system (M =
4, P = 1) is considered. First, the channel in [1] (p. 1455)
is used for the simulation. The smoothing factor is chosen
as L = Nupp + 2, which is recommended by the GRDA.
We test the cases for Nupp being 4 (true order), 6, 8 and
10, respectively. The MSE versus SNR is shown in Figure

Figure 3: MSE versus SNR (method in [2], 500 samples)

Figure 4: MSE versus sample size (method in [2],
SNR=20dB)

Figure 5: MSE versus SNR (200 samples)
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Figure 6: MSE versus SNR (bad channel, 200 samples)

5, where 200 samples are used. Secondly, the channel is
constructed by oversampling a three-ray, long delay (delays
at 0, 0.5, and 3 baud periods) multipath channel. The
channel, with order 5, is given in [1] (p. 1456). This channel
is very ill-conditioned because the least nonzero singular
value of R̄ is very small [1]. The smoothing factor is again
chosen as L = Nupp+2. We test the cases for Nupp being 5
(true order), 7, 9 and 11, respectively. Figure 6 shows the
MSE versus SNR, where 200 samples are used.

From the simulation results, it is obvious that in most
cases the MGRDA achieves better performance in both ac-
curacy and robustness to channel order overestimation than
the GRDA. For low SNR, the MGRDA is sometimes worse
than the GRDA because the MDL usually gives an over-
estimation of K. It is seen from the figures that even if
Nupp equals to the exact channel order, the two methods
still achieve different performances. The reason is that the
MGRDA does not assume that the exact order is known
and still uses the MDL to estimate the dimension of the
null space, while the GRDA acknowledges the information
and therefore obtains the true dimension of the null space.
For a good conditioned channel, knowing the true dimen-
sion can obtain the best performance (Figure 5), but for a
bad conditioned channel, it may not (Figure 6, the reason
is that the smallest nonzero eigenvalue is very small and an
overestimation of K is justified). Furthermore, the GRDA
method recommends the smooth factor L larger than the
estimated channel order (preferably Nupp+2). In MGRDA,
L can be much smaller, usually L = Nupp/3 +1. Noticing
that the size of the matrix R is ML ×ML, we know that
the computational complexity increase rapidly with larger
L.

6. CONCLUSIONS

It has been shown that the proposed SOS-based blind method
can accurately estimate the channels subject to a scalar ma-
trix ambiguity when only an upper bound for all the MIMO
channel orders is known, that is, it tolerates channel order
overestimation. Furthermore, simulations have shown that

the method is robust to noise and round-off errors.
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