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Abstract— In this paper, we present an accurate frequency off-
set estimation method for frequency-selective channels. Through
the iterative use of the chirp z-transform (CZT) algorithm, an
accurate frequency offset estimator is proposed, approaching
the Cramer-Rao Bound (CRB) even at low signal-to-noise ratio
(SNR). Further, the estimation can be achieved within one block
of training sequence, thus avoiding the transmission of repetitive
known blocks as is usually required in many conventional
methods. Meanwhile, the overall complexity is acceptable. More
importantly, the CZT operation can utilize the fast Fourier
transform (FFT) structure that is favourable for digital signal
processor (DSP) implementation. Simulation results show that
two or at most three iterations of the CZT computation are
sufficient for an accurate frequency offset estimation in the SNR
range from 0 dB to 30 dB.

I. INTRODUCTION

Wireless communication systems are subject to channel
impairments such as multipath propagation and fading in ad-
dition to additive noise [?], [?]. Frequency offset due to either
limited oscillator precision or the Doppler shift can cause a
significant performance loss in the coherent detection [?], [?]
if the nontrivial frequency offset is not properly compensated.
Frequency offset compensation in such systems will help
improve their performance. Many wireless communication
systems operating over frequency-selective fading channels
employ training sequences (TS) to estimate the frequency
offset and the channel impulse response [?]-[?].

The objective of this paper is to develop a frequency
offset estimator for frequency-selective channels. In [?], TS
is utilized for frequency offset estimation and a maximum
likelihood (ML) estimator is derived. The frequency offset
estimation requires a two-step procedure. First is a coarse
search as in [?]. Then various fine-frequency estimators based
on interpolation techniques have been used for the fine search
([?]-[?] and references therein) to improve the estimate ac-
curacy. However, the performance of the interpolation-based
techniques are frequency dependent. Furthermore, they involve
operations of division and square root, which are undesirable
for digital signal processing (DSP) implementation. The pulse-
pair based (PP-based) methods [?]-[?] always perform a cor-
relation across the TSs first, then obtain the angle of the cross-
correlation result ([?] and references therein). The PP-based
methods are quite simple, thus amenable for implementation.

This work is supported in part by the Research Grant Council of Hong
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However, its performance is only satisfactory at sufficiently
high signal-to-noise ratio (SNR); in other words, its perfor-
mance deteriorates significantly in the low SNR region [?].
The performance of the PP-based methods can be improved
with more TSs. However, this improvement is achieved at the
price of increased redundancy, and the overhead of the TSs
can be significant when the data burst is short.

In this paper, we propose an accurate frequency offset
estimation algorithm based on the iterative use of the chirp z-
transform (CZT). The algorithm works in the following steps:
1) determine the approximate range of the true frequency
offset, based on the fast Fourier transform (FFT); 2) over
the approximate range, CZT is carried out to obtain a better
frequency offset estimate; 3) based on the previous frequency
offset estimation result, a finer region for the next CZT
operation can be identified; 4) repeat steps 2 and 3 until a
satisfactory frequency offset estimate is obtained.

Our algorithm has a number of desirable properties. First, it
is an accurate frequency offset estimation algorithm. Since the
search range of CZT is much narrowed after each iteration,
performance enhancement is obtained with each additional
application of the CZT algorithm, until the desired accuracy
has been achieved. Second, our algorithm does not require
the transmission of multiple TSs, and the whole operation can
be finished within one TS. Thus, the above two contributions
make our proposed method much better than the PP-based
methods [?]-[?]. Third, the computational complexity is also
acceptable, and is feasible for practical implementation. An
iterative approach is also adopted in [?], which proposes a
method called Luise and Reggiannini estimator with iterative
filtering (LRIF). However, its complexity is higher than our
approach. Further, the CZT algorithm can be realized by using
the FFT structure that is favourable for DSP implementation,
thus avoiding extra hardware cost. Through simulations, we
show that two or at most three iterations of the CZT algorithm
are sufficient to approach the Cramer-Rao Bound (CRB).

This paper is organized as follows. In Section II, we
present the signal model for frequency-selective channels.
In Section III, we propose the frequency offset estimation
method based on the iterative use of the CZT, and analyze the
performance and computational load. In Section IV, simulation
results are presented. Conclusion is given in Section V.
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II. SIGNAL MODEL

Under the assumption of a linear modulation (e. g. PSK and
QAM) and a frequency-selective channel with a slow variation
in time compared with the signaling interval, the received
signal sampled at the symbol rate are expressed by

y(n)=ej2πnv0x(n) + w(n), n = 0, 1, · · · ,N − 1, (1)

where v0 is the normalized frequency offset which results from
oscillator frequency mismatch and Doppler shift, w(n) is the
sample of zero-mean complex Gaussian noise with variance
σ2

w, and x(n) is given by

x(n) =
L−1∑
l=0

h(l)s(n − l), n = 0, 1, · · · ,N − 1, (2)

where h =
[

h(0) h(1) · · · h(L − 1)
]T

is the channel
impulse response that has a length of L, s(n), −L+1 ≤ n ≤
N −1, are the training symbols, and T denotes transpose. The
received signal can be written in vector form as

y=Γ(v0)Sh+w, (3)

where y =
[

y(0) y(1) · · · y(N − 1)
]T

, Γ(v0) =
diag

{
1 ej2πv0 · · · ej2π(N−1)v0

}
, [S]i,j = si−j , w =[

w(0) w(1) · · · w(N − 1)
]T

and Rw = E (wwH ) =
σ2
wIN , IN is the N×N identity matrix, E (·) is the expectation

operator, and H denotes Hermitian transpose.

III. FREQUENCY OFFSET ESTIMATION

In this section, we present our iterative CZT-based algorithm
for frequency offset estimation, and analyze its performance
and computational complexity.

A. ML Frequency Offset Estimation

From (??), the likelihood function for the parameter v0 is

Λ(v0) =
1

(πσ2
w)N

exp

{
− [y − Γ(v0)Sh]H [y − Γ(v0)Sh]

σ2
w

}
.

(4)
Then the maximum likelihood (ML) estimate of v0 is given
by

v̂0 = arg max
v

{
N∑

n=0

y(n)s∗(n)e−j2πnv

}
. (5)

The parameter estimation in (??) can be efficiently com-
puted through discrete/fast Fourier transform (DFT/FFT). In
frequency offset estimation and other applications ([?] and
references therein), however, we are only interested in ob-
taining frequency samples equally spaced over a portion of
the unit circle, rather than the whole circle. Unfortunately,
the DFT/FFT results are over the whole frequency range,
including the points outside the region of interest. To improve
the frequency resolution of the DFT/FFT method, one possible
scheme is to augment the original sequence with zero-padding,
which increases the computational load. A more efficient
method to achieve the above purpose is to adopt the chirp
z-transform (CZT) [?], [?].

B. Chirp Z-Transform (CZT)

The z-transform of a sequence d(n), n = 0, 1, · · · , N − 1,
is given by

D(z) =
N−1∑
n=0

d(n)z−n. (6)

When the above operation is computed at equal-spaced points
around the unit circle, i.e., z = zk = ej2πk/N , this sampled
z-transform in (??) is equivalent to the familiar DFT [?].

Using CZT [?], [?], D(zk) can be computed at the points
zk given by

zk = AW−k, k = 0, 1, · · · ,K − 1, (7)

where W = W0e
−j2πζ0 , A = A0e

j2πρ0 , with W0 and A0

being positive real numbers. The results from CZT can be
viewed as the contour of a spiral in the z-plane along which the
samples are obtained. The parameter W0 controls the rate at
which the contour spirals. The parameters A0 and 2πρ0 are the
location in radius and angle, respectively, of the first sample,
i.e., for k = 0. The remaining samples are located along the
spiral contour with an angular spacing of 2πζ0. Consequently,
if W0 = 1, the spiral is, in fact, a circular arc, and if A0 = 1,
this circular arc is part of the unit circle. In this paper, we set
W0 = 1 and A0 = 1, and let K = N . Then the CZT starts
from 2πρ0 to 2πρ0− (N −1) ·ζ0, covering a range of 2πζ0N .
Thus, the performance of the CZT algorithm can only be the
same as that of the DFT algorithm when the sequence y(n) is
zero-padded to length 1/ζ0 ≥ N when Nζ0 ≤ 1. Obviously,
the complexity of DFT will always be much higher than that
of CZT, depending on the frequency range of interest. From
the Bluestein identity [?], [?], CZT can also be efficiently
computed by FFT.

C. Iterative CZT-Based Estimator

In our approach, the high accuracy frequency offset estima-
tion algorithm is achieved by the iterative use of CZT. The
procedure is given as follows.

First, the optimization involved in (??) can be computed
by the FFT. Thus, we can obtain a coarse frequency offset
estimate ε̂0 and determine the approximate range of the true
frequency offset. ∆v0 = 1/N is the frequency sampling
interval.

Then an fine-frequency offset estimator based on iterative
CZT can be performed, and a finer frequency offset estimate
can be obtained based on the previous frequency offset esti-
mation result and the finer search range.

Let ε̂i and ∆vi, i = 1, 2, 3, · · ·, be the estimated frequency
offset and the normalized frequency sampling interval of the
ith CZT iteration. Then the range for the ith CZT iteration
can be determined as

− (∆vi−1/2 + pσv) + ε̂i−1 < v < (∆vi−1/2 + pσv) + ε̂i−1,
i = 1, 2, 3, · · · ,

(8)
where σ2

v is the CRB of frequency offset estimate given by [?],
[?] when there is no error from the finite frequency sampling
interval (which has been accounted by ∆vi−1). Thus, ∆vi =
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(∆vi−1 + 2pσv) /N , i = 0, 1, 2, · · ·. The error boundary terms
in (??) are further explained as follows.

The DFT/FFT is an unbiased maximum likelihood estimator
(MLE) at moderately high SNR [?], and the asymptotic
probability density function (PDF) of the maximum likelihood
estimate for a scalar parameter is Gaussian distributed [?].
Furthermore, since CZT can be viewed as a refined imple-
mentation of the DFT [?], [?], the frequency estimate ε̂i−1,
i = 1, 2, 3, · · ·, should be a Gaussian random variable with
zero-mean and variance σ2

v when there is no error caused
by the finite sampling interval (i.e., assuming N → ∞, the
sampling interval is infinitely small). Therefore, we choose
±pσv as the possible range for v as in (??), where p should be
a positive value that is high enough so that the probability for
v to fall outside of (−pσv + ε̂i−1, pσv + ε̂i−1), i = 1, 2, 3, · · ·,
(occurrence of out-lier) is very small. For example, when
p = 4, the probability for having an outlier is smaller than
0.0001.

Since the errors ∆vi−1 and σv are independent, we have
the range in (??) for the iterative CZT computation.

After determining the finer search region, another CZT
operation can be performed to produce

ε̂i = arg max
(k∆εi)

{∣∣∣∑N−1
n=0 y(n)s∗(n)e−j2π(εi+k∆εi)n

∣∣∣2} ,

i = 1, 2, 3, · · · ,
(9)

where εi = − (∆vi−1/2 + pσv) + ε̂i−1 is the location in
normalized frequency of the first sample, and ∆εi = 2 ×
(∆vi−1/2 + pσv) /N is the finer step size.

Here we specify the stopping rule for the CZT iteration.
If ∆vi, i = 1, 2, · · ·, is smaller than the required frequency
offset precision, or if ∆vi is on the order of σv , CZT is
terminated; otherwise the CZT loop computation continues
until the above conditions are met. Finally, we obtain the fre-
quency offset estimate ε̂M , where M is the total number of the
CZT iterations. Considering the CRB of the frequency offset
estimate, 2 or 3 times of CZT iterations are always sufficient
for achieving highly accurate frequency offset estimate, which
is also confirmed by simulation results. In practice, the term
σ2

v cannot be known exactly due to the unknown SNR, and
has to be approximated. For this purpose, we always assume
SNR takes a fixed and small SNR value. In this way, we can
have a larger region for the CZT search, reducing the outlier
probability.

As a summary, the framework of the proposed method
is shown in Fig. 1. The control module (CM) in Fig. 1 is
responsible for determining the number of CZT iterations.

D. Analysis of the Iterative CZT-Based Method

In our algorithm, the final estimation error of the frequency
estimate consists of two parts. One is the error resulting from
the frequency quantization. The frequency quantization can be
assumed to be uniformly distributed in the range of (∆vM )2,
where ∆vM is the normalized frequency sampling interval of
the final CZT iteration. Obviously, the mean squared error
(MSE) contributed by this part is (∆vM )2 /12. The other is

CZT_based algorithm

Control Module

Y

N

*y n s n

0ˆ ˆM v

ˆ i

*y n s n

FFT

0ˆ

ˆ i

Fig. 1. The framework of the iterative CZT-based frequency offset estimation.

from the frequency estimator itself, which is σ2
v . The above

two errors are independent. When the CRB of the frequency
offset estimate is approached at the last iteration, the final MSE
of the frequency offset estimate (v̂0 = ε̂M ) is on the order of

MSE ∼ (∆vM )2

12
+ σ2

v . (10)

Since the CZT iteration is not terminated until ∆vi, i =
1, 2, 3, · · ·, is on the order of σv , (∆vM )2 is on the order of
σ2

v and (∆vM )2 /12 � σ2
v , i.e., the MSE of the frequency

offset estimate approaches σ2
v .

E. Comparison of Computational Load

Since the computational load of complex multiplications
is much higher than that of complex additions, we use the
number of complex multiplications as an indicator for the
complexity of different frequency offset estimation methods.

Based on the Bluestein identity, the computational load (CL)
of CZT can be reduced significantly. The number of complex
multiplications required for the whole estimation algorithm is
on the order of [?], [?]

CLCZT = TCZT · (3N log2 N+11N )
= 3TCZTN log2 N + 11TCZTN ,

(11)

We then compare the complexity of our iterative CZT-based
algorithm with other popular methods. For an FFT estimator
to achieve the same estimation accuracy, data should be zero-
padded, which means a large number of frequency samples
will be computed. The number of complex multiplications for
FFT with zero-padding is on the order of

CLFFTzp =
Nzp

2
· log2 Nzp, (12)

where Nzp = 2π/φ0, and φ0 is the bin-width for the last CZT
operation, since the sequence should be zero-padded to length
Nzp. For example, if the accuracy of the normalized frequency
estimate is less than 10−4, then Nzp should be larger than 104,
which makes CLFFT � CLCZT .

The number of complex multiplications required for the
traditional PP method with one block of training sequence
is on the order of

CLPP > N . (13)
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This computational load is less than that of the CZT-based
method. However, the traditional PP method only yields good
performance at sufficiently high SNR (SNR � 1) [?], [?].

The number of complex multiplications required for the
computation of the Luise and Reggiannini estimator with
iterative filtering (LRIF) [?] is on the order of

CLLRIF = 4N (χ+1) + TIF(16N−10), (14)

where χ denotes the parameter for the LRIF method and the
optimal value is χ = N/2, TIF is the number of iterations
and TIF always varies between 2 and 4. We show in the next
section that LRIF is more complex than our method.

IV. SIMULATION RESULTS

To demonstrate the performance of the proposed method,
simulations have been performed for frequency-selective chan-
nels. The training sequence is a QPSK format with only one
block. The channel impulse response is given by

h(k) =
5∑

i=0

Aig(kTs − τn − t0), (15)

where An and τn are the random attenuation and delay of each
path, Ts is the sampling period, t0 = 3Ts, and g(t) is a raised
cosine rolloff filter with a rolloff of 0.5. Simulation results are
obtained through 3000 independent Monte Carlo trials.

A. MSE Performance

Fig. 2 shows the MSEs of the frequency offset estimation
for different SNRs, which are also compared with the CRB.
The SNR is defined as SNR = 1

N

∑N−1
n=0 x 2(n)/σ2

w. In the
experiment, sequence length N = 32. In the SNR range from
0 dB to 30 dB, it is shown that CZT2 has better performance
than that of the traditional PP method, and CZT3 approaches
the corresponding CRB. Due to the error resulting from
frequency quantization, the FFT, CZT1 and CZT2 algorithms
all exhibit MSE floors at different SNR. However, we can
reduce the error with more CZT iterations. Thus, it is always
possible to approach CRB of the frequency offset estimate for
our algorithm. In Fig. 2, it is shown that our proposed method
can still achieve highly accuracy frequency offset estimate
even at low SNR.

16 32 64 128
N (log)

M
S

E

FFT
PP
CZT1
CZT2
CZT3
CRB

10
-9

10
-8

10

10

10
-5

10
-4

10
-3

-7

-6

10
-10

Fig. 3. CRB and MSE of frequency offset estimation versus N .
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Fig. 2. CRB and MSE of frequency offset estimation versus SNR for
different estimators. FFT: FFT method without zero-padding; PP: traditional
PP method; CZT1, CZT2, CZT3: CZT method with 1, 2, and 3 iterations.

Fig. 3 shows the MSEs of the frequency offset estimation
for different value N , which are also compared with the CRB
at a fixed SNR of 25 dB. For N from 16 to 128, it is shown
that CZT2 has better performance than that of the traditional
PP method and CZT3 approaches the corresponding CRB.
We should note that even under an SNR as high as 25 dB,
the traditional PP and FFT still cannot approach CRB, while
CZT3 does.

B. Complexity Comparison

In Fig. 4 and Fig. 5, the computational complexity compar-
ison of four typical frequency offset algorithms is illustrated:
FFT with zero-padding (CLFFTZP

), LRIF (CLLRIF ), CZT
with 1, 2 and 3 iterations(CLCZT1, CLCZT2, CLCZT3), and
the traditional PP algorithm (CLPP ). It is obvious PP has
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Fig. 5. Computational load of frequency offset estimation versus N .
SNR = 25dB and TIF = 2.

the least complexity, and CZT is more complex than PP by
almost an order of magnitude. However, it should be noted
that the performance of PP is much inferior to that of CZT2,
and CZT2 is still less complex than the other two methods.
Furthermore, the CZT operation can utilize the FFT structure
that is favourable for DSP implementation.
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Fig. 4. Computational load of frequency offset estimation versus SNR.
N = 32 and TIF = 2.

V. CONCLUSIONS

In this paper, we propose a novel frequency offset estima-
tion algorithm for frequency-selective channels. Through the
iterative use of the CZT algorithm, highly accurate frequency
offset estimation can be achieved, approaching the CRB, even
at low SNR. Further, the estimation can be finished within
one block of training sequence, thus avoiding the transmission
of repetitive known blocks as is usually required in many

conventional methods. Meanwhile, the complexity is only
higher than the PP method, but is still lower than other
approaches that deliver the same level of accuracy. More
importantly, the CZT operation can utilize the FFT structure
that is favourable for DSP implementation. Simulation results
show that two or at most three iterations of CZT is sufficient
for an accurate estimation in the SNR range from 0 dB to 30
dB. In all, our approach is an accurate, flexible and affordable
method for frequency offset estimation.
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