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Abstract─The real electricity markets are usually oligopoly, 
where market suppliers (generators) will have some market 
power and can adopt strategic bidding strategies for 
maximum profits. Generally, the game-theory based 
methods are the natural way to analyze the market 
equilibrium and study the strategic behaviors. As a widely 
studied method in game theory, the conjecture variation 
technique is reported to model the strategic behavior in 
deregulated electricity markets recently. Unfortunately, the 
conjecture variation models have been criticized for the 
drawback of logical inconsistence and abundant equilibria. 
Aim for this, the existence and uniqueness of consistent 
conjectural variation equilibrium in the electricity markets 
are investigated. Due to some good characteristics of 
electricity markets and using an infinite horizon 
optimization model, it is shown that the consistent 
conjecture variation will satisfy a coupled nonlinear 
equation system and there is only one equilibrium. 
 
Index terms─ Electricity markets, Oligopoly, Consistent 
conjecture variation, Existence & uniqueness 
 
 

I. INTRODUCTION 

UO to the well-known reasons of various market 
barriers, such as the long construction period and 

huge capital investment, the real electricity markets are 
more akin to the oligopoly, which means that individual 
market supplier (generator) will have some market power 
and can manipulate the market price in some extent 
through his behavior. Such a fact brings up the problem of 
strategic bidding [1]. Generally, the bidding in electricity 
markets can be modeled as a supplier game, and game-
theory based methods are applied to analyze the market 
equilibrium and study the strategic behaviors[2][3][4][5], 
where the essence of strategic bidding is the study on how 
to exploit and utilize the market power either explicitly or 
implicitly. 1 

    Recently, the conjectural variation (CV)–based 
method, a well studied model in game theory, is also 
applied for the study of generators’ strategic behavior in 
electricity markets[6][7][8][9]. The conjectural variation is 
defined as one’s belief or expectation on the rival’s 
reaction to his decision [10].  Hence, it can be expected that, 
after taking into account of the conjecture about the 
rivals’ response, the CV model will provide a better way 
to study the suppliers’ strategic behaviors. First in the 
literature of electricity engineering, [6] applied the 
conjectural variation approach to simulate the Spain 
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electricity markets, and then [7] applied it to simulate the 
England & Wales electricity markets. [8] studied the 
relationship between the conjectural variation approach 
and the classical game-theory bidding strategies. 
Furthermore, for the situation of repeated hourly bidding 
in electricity markets, [9] tried to introduce the dynamic 
conjecture variation approach. All of them have presented 
us the successful applications of conjecture variation 
approach.  

However, the world is never perfect. For the conjecture 
variation approach, some fundamental problems still 
remain unsolved. The major arguments against the CV 
method are: (1) the conjecture variation may be logically 
inconsistent because supplier may have expectations 
about how his rivals will behave that need not to be 
correct, or suppliers are ‘right for wrong reason’; (2) there 
may be abundant of equilibrium. The criticism on 
inconsistent conjecture variation spurred the modern 
searches for “Consistent conjectures” [11][12][13][14]. 
Generally, a conjectural variation is consistent if it is 
equivalent to the actual response taken by his rivals. But 
the abundance of equilibrium still makes trouble. The 
multiplicity of equilibrium raises a question about the 
very meaning of equilibrium and which equilibrium 
should be reached. Although, the requirement of 
consistent conjectures will limit this unwanted abundance 
of equilibrium, there is still a strong need to solve the 
uniqueness of equilibrium, because the unique 
equilibrium can solve the problem of many oligopoly 
solution concepts by determining a single equilibrium 
price and quantity. To author’s knowledge, there is still 
no rigorous mathematical proof on the uniqueness of 
consistent conjecture variation equilibrium in a general 
oligopoly market. For some unknown reason, most of 
done work just skips this issue [8][9][14]. Fortunately, given 
some good characteristics of electricity markets, such as 
increasing quadratic cost function and down-slope linear 
demand function, it is possible to obtain some nice result. 

 Given this background, it is the aim of this paper to 
focus on the existence and uniqueness of consistent 
conjecture variation equilibrium in the oligopolistic 
electricity markets. It is assumed here that each supplier 
has the perfect information about how his rivals will 
response to his action. And particularly in our formulation, 
the conjecture variation is taken as the supplier’s decision 
variable, and a dynamic adjustment process is proposed to 
maximize the profits. Based on Pontryagin’s maximum 
principle, the consistent conjecture variations are 
formulated as a coupled nonlinear equation system. Then 
through the fixed-point theory, it is rigorously proved that 
there is only unique conjecture variation equilibrium, and 
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in equilibrium, it results a more competitive behavior than 
the Cournot competition. 

This paper is organized as follows. With the 
consideration of increasing quadratic cost functions and 
down-slope linear demand function in electricity markets, 
Section II gives the basic formulation of consistent 
conjecture variation equilibrium. Then in section III, it is 
proved that that there is only unique conjecture variation 
equilibrium. Section VI gives the numerical example with 
conclusions in section V. 
 

II. MODELS 

Considering an oligopolistic electricity market with n  
suppliers (generators), and the system demand is modeled 
by an inverse demand function which takes the form: 

     ∑
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Where D: total demand; e, f: positive coefficients, 

publicly known for every supplier; iq : generation  of 

supplier i; for the market balance condition 
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     Each supplier has the quadratic production cost 
function which takes the form: 
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Where ia , ib , ic : parameters of the cost function, positive. 
      With the assumption of non-cooperative competition, 
the individual supplier’s profit is the revenue minus the 
cost: 

       ( )iiii qCpq −=π                               (3) 
      Each supplier (generator) is a profit-maximizer. In 
order to rationally maximize his profit, each supplier 
should take into account of the rivals’ response to his 
action when making the generation decision. Such a belief 
or expectation on the rivals’ reaction to ones’ own 
generation decision is defined as ‘conjectural variation’. 
For example, given supplier i , his conjecture on 
supplier j ’s variation as a reaction to his output change is 
defined as[10]: 
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A useful concept is the integrated response of supplier i ’s 
rivals: 
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With (3) and (5), yield: 
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Then based on the first-order condition (6) for optimality, 
a dynamic adjustment process for each supplier is 
proposed: 
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Where iβ  is a positive parameter, representing the speed 
of adjustment. Equation (7) also means that supplier 
makes the generation decision in the direction of 
increasing profits.  

Actually, the conjecture variation iCV can be handled 
as a decision variable. Doing so, define a control variable 

iii qfCVu = , and assume that supplier’s objective is to 
maximize the discounted stream of profits over an infinite 
planning period, i.e.: 
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Subject to the state equation: 
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Where r is the common discount rate.  
For the above equation system, the Pontryagin’s 

maximum principle gives the necessary conditions for 
optimality. The current-value-Hamiltonian for supplier i  
is given as:  
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Then the necessary conditions for optimality are: 

i

i
i

H
q

λ∂
∂=& , ),,,1( , ijnj

H
q

j

j
j ≠=

∂
∂

= L&

λ
               (12) 

00 =⇒=
∂
∂

i
i

i

u

H λ                                         (13) 

( )2
n n

i
i i i i i j i j

j i j ii

H
r r f c q f q b f

q
λ λ λ λ

≠ ≠

∂
= − = + + + + +

∂ ∑ ∑&      (14) 

i
j j

j

H
r

q
λ λ ∂

= −
∂

&                        (15) 

Where 
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With equation (12) and (13), we can obtain: 
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In the steady state, jλ& =0, then with equation (15), yield: 
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For there are ( )1−n variables and ( )1−n  equations, it is 
possible to solve this equation system.  Rewrite equation 
(17) in the form of matrix: 
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With Guass-Jordan-Elimination, it is easy to solve above 
equation (18), which yield: 
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From equation (13) and (14), we can obtain:  
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In the steady state, 0=iq& , i.e.: 
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From equation (20) and (21), we have: 
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Without loss of generality, we can assume that the 
discount rate r is very close to zero, and we know 
that iii qfCVu = , hence obtain: 
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Actually, equation (23) implies lots of interesting 
information. In what follows, some discussions are given. 

 Case 1: duopoly case (two suppliers)  

Given 2=n , with (23), yield: 
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Compared above equation (24) with the equation (10) in 
reference [9], it can be known that equation (10) in 
reference [9] can only be correct for duopoly case, and 
will not hold for a general oligopoly market.  

Case 2: perfect competition (infinite supplier)  

Given ∞=n , from equation (23), we can have: 
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Which means that if there are infinite suppliers in the 
market,  the competition is perfect. This conclusion also 
matches the economic definition of perfect market.  

 Case 3: general oligopolistic market 

Any other markets are less competitive than the 
prefect market, thus for rationality, we should 
have 1−>iCV ( ni ,,1L= ). Furthermore, in electricity 

markets, the slope of inverse demand function f and 

production cost function coefficient ic  are all positive, 

thus we have 0>++ ii fCVcf  ( ni ,,1L= ). Also from 
equation (23), it is easy to see that the conjecture variation 
will always be negative, which means that market 
outcome is more competitive than Cournot ( 0iCV = ). 
Finally, for a general oligopoly market, we have: 

niCVi ,,1  ,01 L=<<−                       (26) 

III. EXISTENCE & UNIQUENESS OF CONJECTURE 
VARIATION EQUILIBRIUM 

       The next key issue is to show that there is only one 
equilibrium for the coupled nonlinear equation system 
given by (23). 

For convenience, define a new variable 

iii fCVcfx ++=  and ∑
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is one-to-one mapping between the conjecture variation 



iCV and the new variable ix . If it can be proved that there 

is only one equilibrium of ix , then it is also equivalent 
that there is only one conjecture variation equilibrium. 
And indeed in what follows, it is proved that there is only 
equilibrium of ix . 

  From equation (23), we obtain: 
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Rearrange equation (27), we can get: 
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With the inequality (26), we have ii cx ≥ , and thus get the 
right solution as: 
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Define a function: 
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  It is easy to see that ( )yG  is continuous and 

differentiable. To show that there exists at least one 
equilibrium, it is equivalent to show that there exists at 

least one fixed point *y  , such that ( ) ** yyG = . 

  The parameter f is always positive and generally the 

parameter ic  is positive too, thus we can have: 
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and 
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closed, convex and compact set, therefore for Sy ∈ , we 

also have ( ) SyG ∈ . That is to say, the function ( )yG  is a 

continuous mapping from S to S , therefore, according to 
Brower’s fixed-point theory, there exists at least a point 

Sy ∈* , such that: 
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I.e., there exists at least one equilibrium.  
Thus in equilibrium: 
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Without changing the existence of equilibrium, we can 
compress the compact set S to a new compact set 
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Very clearly, it is know that: 
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And it is very easy to check that: 
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Thus we know that ( )yG  is a concave function of y . 

Lemma 1: (1) when 1=n , we have one unique 
equilibrium fcx += 11 ; (2) when 2≥n , given 
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(i.e., in figure 1, A is about A1) . 

The proof of lemma 1 can be found in Appendix at the 
end of this paper.  
       From the concave property of function ( )yG , 
knowing that in figure 1 A is above A1 and B should be 

lower or equal to B1 ( ( ) ∑
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that the there is no more than one fixed point 1
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Figure 1 Existence and uniqueness of equilibrium 



  Although the issue of existence and uniqueness of 
equilibrium is well addressed, it is still difficult to 
calculate the equilibrium directly. For convenience of 
equilibrium computation, the following dynamic 
adjustment process can be used in the iteration:  
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IV. NUMERICAL RESULTS    

       The IEEE 6-generator 30-bus system is used to 
verify the above analysis. The inverse demand function in 
the electricity market is given as: 
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The cost function parameters of suppliers (generators) are 
listed in Table 1 

TABLE I  

Cost function coefficients  

Supplier ia  ib  ic  

1 0     2     0.02     
2 0      1.75      0.0175    
3 0      3      0.025      
4 0      3      0.025      
5 0     1     0.0625     
6 0 3.25 0.00834 

The discount rate r  is set to be zero. With iteration, the 
dynamic process (40) is used to calculate the unique 
equilibrium.  Table 2 shows the equilibrium results: 

Table 2 Computation results: generation, profits, CV 

 CV      
value 

Gen-
(MW/H) 

Profits 
($/H) 

Supplier 1 -0.80725 353.4 1727.4 

Supplier 2 -0.80365 405.12 2076.6 

Supplier 3 -0.81241 258.44 1082.9 

Supplier 4 -0.81241 258.44 1082.9 

Supplier 5 -0.82528 142.9 707.48 

Supplier 6 -0.77609 560.18 2709.8 

The total generation is 1978.5 (MW), and the MCP is 
10.431($/MWH).   

The following Table 3 shows the computation results 
when all suppliers are price-taker (i.e., CV= 1− ) 

  Table 3 Computation results with all price-taker suppliers: 
generation, profits, CV 

 CV 
value 

Gen-
(MW/H) 

Profits  
($/H) 

Supplier 1 -1 348.43 1214 

Supplier 2 -1 412.49 1488.8 

Supplier 3 -1 238.74 712.47 

Supplier 4 -1 238.74 712.47 

Supplier 5 -1 127.5 507.98 

Supplier 6 -1 685.68 1960.5 

The total generation is 2051.6 (MW), and the MCP is 
8.9685($/MWH). 

Table 4 shows the computation results when all 
suppliers are Cournot-taker (i.e., CV=0) 

  Table 4 Computation results with all Cournot-taker suppliers: 
generation, profits, CV 

 CV 
value 

Gen 
(MW/H) 

Profits  
($/H) 

Supplier 1 0 319.06 3054 

Supplier 2 0 347 3461.7 

Supplier 3 0 261.39 2220.5 

Supplier 4 0 261.39 2220.5 

Supplier 5 0 166.82 1426.2 

Supplier 6 0 406.23 3988.5 

The total generation is 1761.9 (MW), and the MCP is 
14.76 ($/MWH). 

Compared these results, it is easy to see that each 
supplier holds some market power, and the market 
equilibrium results are less competitive than the perfect 
competition case (less generation and larger MCP). But 
compared with the dispatched results from the Cournot, 
the market equilibrium results are more competitive 
(more generation and smaller MCP). Therefore, we can 
see that the simulation results support the above analysis 
very well.  

V. CONCLUSIONS    

      The traditional conjecture variation approach for the 
analysis of strategic behavior in the oligopolistic markets 
has been criticized widely for some common drawbacks: 
(1) inconsistent conjecture variation; (2) abundant of 
equilibrium.  Given this background, this paper studies 
the dynamic oligopolistic competition to explore the 
unique property of consistent conjecture variation 
equilibrium in electricity markets. After taking the 
advantage of some good characteristics of electricity 
markets, such as the increasing cost function and down-
slope demand function, it is shown that the consistent 
conjecture variation should satisfy a coupled nonlinear 
equation system and with the fixed-point theory, it is 
proved that there is only one unique conjecture variation 
equilibrium, and in equilibrium, it results a more 
competitive behavior than the Cournot. The simulation 
results support the analysis very well. 

VI. APPENDIX  

Lemma 1: (1) when 1=n , we have one unique 
equilibrium fcx += 11 ; (2) when 2≥n , given 

∑
= +

==
n

i i fc
yy

1
min

1
 , for the solution given by (13), we  



can have n,1,i  , L=+< fcx ii , and ( ) minmin yyG >  . 

Proof: (1) when 1=n , it is the extreme case of monopoly 
competition, thus clearly we have one unique solution 

fcx += 11 . 

(2) when 2≥n ,  the solution given by (13) is : 

( ) ( )
( ) ,n,i
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In order to show: 
 ,n,ifcx ii L1  , =+<              (A-2)  

the equivalent condition is: 

( ) ( ) ( )( )iiiii cffyfcfyccffyc ++<+++++ 1242 22 (A-3) 

Rearrange it, yield: 

  ( ) ( ) yfcfycfcfyc iiii
222 24 ++<++     (A-4) 

Then we have: 
      ( )( )ii ccffyy ++<1                        (A-5) 
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, it is clear that: 
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Thus: 
( )( ) ( ) 1minminmin >+>++ iii cfyccffyy     (A-7) 

i.e., inequality (A-5) will hold and equivalently inequality 

(A-2) will hold, therefore, given ∑
= +

==
n

i i fc
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1
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1
, we 

can have: 
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