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Abstract—This paper proposes a new family of approximate 
QR-based least-squares (LS) adaptive algorithms called p-A-
QR-LS for blind minimum output energy (MOE) detection in 
CDMA communications systems. It extends the A-QR-LS 
algorithm by retaining different numbers of diagonal plus 

1−p  off-diagonals of the triangular factor of the augmented 
data matrix. For 1=p  and N  ( N  is the length of the 
weighting vector), it reduces to the A-QR-LS and the QR-RLS 
algorithms, respectively. It not only provides a link between 
the QR-LMS-type and the QR-RLS algorithms through a 
well-structured family of algorithms, but also offers more 
freedom in the complexity-performance tradeoffs for practical 
receiver design in communication systems. The performance 
of the proposed algorithm is verified by computer simulations. 

I. INTRODUCTION 
One major impediment to the performance of code-division 

multiple access (CDMA) systems is multiple access interference 
(MAI), which arises from the users simultaneously using the same 
frequency band. The linear MMSE multi-user detector (MUD) [1] 
has been proposed as an effective and relatively simple technique 
to mitigate MAI in CDMA systems. In [2], Honig et al proposed a 
blind MMSE receiver, called the minimum output energy (MOE) 
detector for MAI suppression in CDMA systems. The MOE 
detector minimizes the output energy of the receiver while 
preserving the signals of desired users. Under ideal conditions, it 
achieves performance close to that of the optimal MMSE receiver 
at high signal-to-noise ratio (SNR) [3]. The generalized sidelobe 
canceller (GSC) [4] is a popular implementation of the MOE 
detector. An adaptive realization of the GSC has been proposed 
using least mean squares (LMS) and recursive least squares (RLS) 
techniques.        

The RLS algorithm generally converges faster than the LMS 
algorithm but with a high complexity of )( 2NO  (where N  is the 
length of the adaptive filter). The QR-RLS based on the QR 
decomposition (QRD) exhibits better numerical properties due to 
the direct application of QRD to the data matrix [5]. The QRD-
based algorithms usually consist of two parts: 1) recursive 
updating of the triangular factor of the data matrix and 2) back-
solving of the filter parameters. Since the back-solving step 
requires )( 2NO  operations, the entire algorithm still needs at 

least )( 2NO  arithmetic operations. In order to reduce the 
complexity of the back-solving step in the QRD, Liu proposed an 
approximate QR-LS algorithm (A-QR-LS) [6], which combines 
the recursive updating of the triangular matrix and the back-
solving of the parameters. In this paper, we propose a new QR-
based GSC implementation of the MOE receiver.  It is based on a 
new adaptive filtering algorithm called the p-A-QR-LS algorithm 

[7]. By retaining a different number of diagonal plus 1−p  off-
diagonals ( Np ≤≤1 ) during the QRD, the triangular factor of 
the data matrix can be approximated to different levels according 
to the value of p . Coupling with the back-solving step as in [8], 
the new QR-LS algorithms of complexity )(NpO  present a 
different complexity/performance tradeoff with various values of 
p .  For 1=p  and Np = , it reduces respectively to the A-QR-

LS and the QR-RLS algorithms.  Other values of  p  generate a 
series of new QR-based algorithms with complexity-performance 
tradeoff between the two well-known families of algorithms.  
Therefore, it improves the design freedom in practical receiver 
design by choosing different values of p .  

The rest of this paper is organized as follows: Section II 
briefly describes the CDMA system model and the MOE 
detection. The proposed p-A-QR-LS algorithm is presented in 
Section III. In Section IV, experimental results are given. Finally, 
conclusions are drawn in Section V. 

II. MOE DETECTION FOR DS-CDMA SYSTEMS 

A. System Model 
Consider a Kth  user asynchronous DS-CDMA system over 

a frequency-selective fading channel. The channel impulse 
response of the kth  user is expressed as   

∑ −=
=

L

l
lklkk tttg

1
,, )()()( τδα , (1) 

where L  is the number of taps, )(, tlkα  is the lth  path gain 
which is an independent zero-mean, complex Gaussian random 
process, and lk ,τ  is the propagation delay for the lth  path. The 
received baseband signal can be modeled as 
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where )(txk  is the transmitted signal of the kth  user, and )(tv   
represents a complex additive white Gaussian noise with zero 
mean and variance 2

vσ . The transmitted signal )(txk  is given as 

∑ −=
∞

−∞=i
skkkk iTtcibEtx )()()( , (3) 

where kE  is the chip energy, )(ibk  denotes the ith  data symbol, 
and )(tck  is the code waveform for the kth  user, respectively; 

sT  is the symbol interval with ccs TLT = , where cT  is the chip 
interval, and cL  is the spreading gain.  
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The received signal is sampled at the chip rate. Due to the 
delay spread of the multipath channel, the data vector of length  

1−+= LLN c  is collected from the output samples of the chip-
matched filter. Assuming a coarse synchronization between the 
transmitter and receiver, only two adjacent symbols contribute to 
the data vector )(iy . Also for simplicity, it is assumed that the 
propagation delay lk ,τ  is a multiple of the sampling rate, i.e., 

ckk Tp=1,τ , where }1,,1,0{ −∈ ck Lp " . Then the vector 
1)( ×∈ Ni Cy  can be expressed as  
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where LN
kk

×ℜ∈CC
~

/  include the right/left shift of the kth  
user’s code sequence, whose lth  ( Ll ,,1…= ) column is  

):1(),1:(
~

;)(:,
~

):1(),1:(;)(:,

1

1

ckckkkNk

kckckkNk

LpLlplll

pLlLlpll

+−=−+=

−=−++=

×

×

cC0C

cC0C
; 

T
kLkkkk ibiibii )]()(,),()([)( ,1, αα …=s , ⋅=− )([)1( , ii Lkk αs  

T
kLkk ibiib )]1()(,),1( , −− α… ; and )(iv  is the noise vector. 

Let User 1 be the desired user, and its synchronization to the 
first multipath component has been obtained, i.e., 01,1 =τ . The 

vector )(iy  can be rewritten as  
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=
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B. MOE Detection 
The basic idea of the MOE detector is to minimize the overall 

variance of the receiver output, while preserving the components 
of the desired signal. The MOE detector can be formulated as the 
following constrained optimization problem      

fwDyw =∑
=

− )(..,)()(min
2

0
ntsin Hn

i

Hin
w

λ , (6) 

where 10 << λ  is the forgetting factor, w  is the multiuser 
detector to be determined, D  is a ( dN × ) matrix whose d  
columns specify the constraints, and f  is a ( 1×d ) vector of 

constraint values. Denoting }{ H
y E yyR = , the optimal solution 

w  to the constrained optimization problem is then given by  

fDRDDRw 111 )( −−−= y
H

yo . (7) 

This MOE detector can also be implemented as a GSC [5] shown 
in Fig. 1. Here, ow  is decomposed into two orthogonal 
components as follows 

ac Bwww −= , (8) 

where fDDDw 1)( −= H
c  is the fixed constraint weight vector, 

while cy
H

y
H

a wRBBRBw 1)( −=  is an adaptive filter 
orthogonal to cw  in order to mitigate the interference. The  

blocking matrix )( dNN −×ℜ∈B   satisfies 0DB =H , and blocks 
the desired user’s signal from entering the adaptive filter. 
Otherwise, signal cancellation will occur. There are different  

 

H
cw

H
aw

Adaptive
Algorithm

)(iy )(iz+

-

HB

)(iyc

)(iya)(iyb

 
Fig. 1. The generalized sidelobe canceller. 

ways of choosing the linear constrains to handle multipath 
channels. If we choose 1CD = , the optimal f  is given as 

11
1

1 gCRCf −= y
H , where 1g  is the channel state information. In 

this paper, we use the algorithm proposed in [9] to develop the 
MOE detector. In [9], the first multipath component is preserved 
while the 1−d  delayed copies of the signal of interest are forced 
to zero, i.e., 1CD =  and T]001[ "=f . Hence, the output of the 
MOE receiver is expressed as 

)()()()()( 11,1 nenbnnnz H +== αyw , (9) 

where 1,1α  denotes the desired user’s channel gain of the first 

path, and )(ne  is the overall interference and noise after filtering. 
Assume the channel information is available. Using the equal gain 
combiner (EGC), the symbol estimation is given by  

)()/()(ˆ 2
1,1

*
1,11 nznb αα= . (10) 

Next, we shall consider the recursive adaptation of the adaptive 
part aw . 

III. THE p-A-QR-LS ALGORITHM 
Consider a least-squares adaptive filter design problem. A set 

of desired signal )(iz  and the input signals 1)( ×∈ Ni Cy  have 
been taken for ni <<0  . In least-squares estimation, the optimal 
linear filter ow  is chosen to minimize the cost function   

∑ −=∑=
=

−
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− n
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2
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2 )()()()()( ywλλξ . (11) 

Eq. (11) can be written more compactly in matrix form as  
22 )()()()()()( nnnnnn H

N eΛeΛe ==ξ , (12) 

where Hneeen )](,),1(),0([)( "=e , and ,,{)( 12 −= nndiagn λλΛ  
}1,"  is a diagonal matrix.. Defining Hnzzzn )](,),1(),0([)( "=z  

and )](,),1(),0([)( nnH yyyY "= , we have )()()()( nnnn wYze −= . 
The QR-RLS method [5] is summarized below in Table 1.  

1. Given the augmented data matrix  
)]1()1()[1()1( −−−=− nnnn zYΛD  

and its QRD at time (n-1): 



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× )1(~
)1(

~
)1(

)1()1()1(
*

1

*

ne
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k
DQD  

where )1( −nQ and  )1( −ℜ n are unitary and  upper triangular 
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matrices, respectively. *)(⋅  denotes the complex conjugate. 

2. (QRD) Form the new augmented data matrix 



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)(

)1()]()()[()(
n
nnnnn

ψ
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where )]()([)( * nznn Hy=ψ .  Get the new QRD by Givens 
rotations or Householder reflections as 
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3.  (Back-solving) Solve the triangular system )(
~

)()( nnnN kw =ℜ  for 
the LS estimate )(nw  at time n by back-substitution: 

       )()()( ,1, nrnrnw NNNNN += , 

       1,,1),(/])()()([)( ,
1

,1, "−=∑−=
+=

+ Ninrnwnrnrnw ii
N

ij
jjiNii            

    where jir ,  and 1, +Nir  are the corresponding elements in )(nℜ  and 

)(
~

nk . )(nwi  is the i-th element of )(nw . 

Table 1. QR-RLS algorithm. 

In [6], Liu proposed an approximate QR-LS (A-QR-LS) 
algorithm with a complexity of )(NO  by approximating the upper 
triangular matrix as a diagonal matrix, which simplifies the QRD 
and the back substitution. More precisely, the quantities inside the 
square bracket in Step 3 of Table 1 are computed from )1( −nwi  
and are denoted by  

)1()1( 1, −=− + nrns NNN , 

])1()1()1([)1(
1

,1, ∑ −−−−=−
+=

+
N

ij
jjiNii nwnrnrns , 

1,,2,1 "−−= NNi ,              (13)     
or     Ninsnwnr iiii ,,1),1()1()1(, "=−=−− . (14) 

Given the values of )1( −nsi  and )1(, −nr ii , the combination of 

(14) and the approximation )()()( nnnz H yw=  forms linear 
equations in the variable )(nw  

      Ninsnwnr iiii ,,1),1()1()1(, "=−=−− λλ , 

)()()( nznnH =yw . 
(15) 

Equation (15) can also be written in matrix form as the following 
)()()( nnn bw =Φ , (16) 

where 
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)}1(,),1({)1(~
,1,1 −−=− nrnrdiagn NN"R .Therefore, (16) can be 

solved by computing the QRD of )(nΦ , which works with the 
following appended matrix: 
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From (17), we can see that the A-QR-LS algorithm retains an 
approximate triangular factor of the augmented data matrix so as 
to reduce the arithmetic complexity to )(NO .  It is therefore 
natural to expect that better performance can be achieved by 
retaining more off diagonal elements of this factor.  Obviously, 
when the whole upper triangular matrix is retained, we obtain the 
QR-RLS algorithm but the back-solving step has a complexity of 

)( 2NO .  In this paper, we proposed to retain the main diagonal 
and 1−p  nearby off-diagonals of the triangular factor, hence the 
name p-A-QR-LS algorithms. We shall show later that the p-A-
QR-LS algorithm with a given positive integer p  has a 
complexity of order )(NpO  and a performance that generally 
improves as p increases. Therefore, the family not only provides a 
link between the QR-LMS-type and QR-RLS-type algorithms, but 
also a practical tradeoff between performance and complexity 
when 1−p  is varied from 1 to N .  

In the proposed p-A-QR-LS algorithm, the diagonal as well as 
nearby (p-1) off-diagonals are retained. It yields,  
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The items of (16) are now modified as 
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The QRD is then applied to solve for (19) by eliminating )(nHy  
sequentially using Givens rotations. Since the elements of both the 
diagonal and the ( 1−p ) off-diagonals are retained, the back 
substitution consists of two parts. The first part, for the nonzero 
diagonal and off-diagonal entries, is similar to the conventional 
back-substitution of the QR-RLS algorithm. It has a complexity 
of )(NpO . The second part consists of the approximation resulting 
from the zero off-diagonal entries, and it can be updated at a 
complexity of )(NO . The p-TA-QR-LS algorithm is summarized 
in Table 2. It can be seen that when 1=p  and Np = , the 
proposed algorithm reduces respectively to the A-QR-LS and the 
QR-RLS algorithms. With this additional flexibility, the new 
algorithm can be tailored for various applications with different 
performance and complexity requirements. It is also possible to 
select a p  that yields an algorithm with low complexity while the 
performance remains comparable to that of the QR-RLS algorithm. 
Due to page limitation, the mean convergence analysis of the p-A-
QR-LS algorithm is omitted here.  Interested readers are referred 
to [7] for more details.     

IV. NUMERICAL RESULTS 
In this section, numerical results are presented to illustrate 

the performance of the blind MOE receiver, where the p-A-QR-
LS algorithms are used to recursively update the adaptive weight 
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vector aw . Consider an asynchronous DS-CDMA system in the 
frequency-selective fading channel. Assume that the multipath 
channel has 4=L  paths, and the multipath intensity profile 
decays exponentially. There are 10=K  users with 31=cL  Gold 
code spreading sequences. The interference-to-signal ratio of the 
interferers is 5-dB, i.e., 5)/(10log10 1 =⋅ EEk . A set of p  is 
tested with the same forgetting factor 995.0=λ . The results are 
averaged over 600 Monte-Carlo trials. Fig. 2 depicts the output 

power of the MOE detector, 
2

)()( nnH yw , versus the data 

samples. The MSE performance, })(ˆ)({
2

11 nbnbE − , is 

illustrated in Fig. 3. It shows that the algorithm with larger value 
of p  has faster initial convergence, which complies well with our 
previous analyses.  
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       End of Loop  
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End of Loop  

0ˆ 1 =+− pNγ  

For  1,2,,1, "−−−= pNpNi  Loop    
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               )(~~ ''
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         End of Loop 
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End of Loop  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

8N  Multiplications 
         3N  Additions 
 
 
 
 
     
    

 (3/2)*(2N-p)(p-1)  Multiplications 
        (2N-p)(p-1)  Additions 
 
 
 
 
 
 
 
 

 p(p-1)/2  Multiplications 
          p(p-1) /2  Additions 
  
 
 
 
 
 
 
  
 
         (N-p)(p+1)  Multiplications 
         (N-p)(p+1)  Additions 

Table 2. Square root free Givens rotation-based p-A-QR-LS algorithm. 

V. CONCLUSIONS 
A new family of approximate QR-based LS adaptive 

algorithms, called p-A-QR-LS algorithms, is presented for MOE 
detection in DS-CDMA communications systems. It retains a 
different number of diagonal plus off-diagonals in the triangular 
factor of the augmented data matrix and generates a series of new 
QR-based algorithms with different complexity-performance 

tradeoffs. Simulation results were presented to illustrate the 
performance of the algorithm.   
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Fig. 2. The averaged output power of the MOE detection. 
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