The HKU Scholars Hub 香港大學學術庫 The University of Hong Kong

DESIGN OF PERMANENT MAGNETS TO **CHAOIZE** PM SYNCHRONOUS MOTORS FOR INDUSTRIAL MIXERS

Shuang Ye, K. T. Chau Dcpt ofElecuica1 and Elechonic Engineeing, **The University of** Hong **Kong, Hong** Kong, **China**

Purpose

Industrial mixers are among the most expensive and ineffective equipments. The industrialists and academics in the **USA** have estimated that the cost of' ineffective industrial mixing is of the order of **US\$** I to 10 billion per annum [I]. Thus, the improvement of **mixing** is highly desirable and justifiable.

In **recent** years, chaotic mixing has been proposed to improve the energy efficiency and the degree of homogeneity by using either mechanical [2] or electrical means **[3].** Compared with **those** mechanical means which **are** essentially **based** on geometrically asymmetric design of the mixer to produce a practical chaotic motion, the electrical means not only produces the desired chaotic mixing, but aIso offers the advantages of high flexibility and high controllability. **A** chaotic DC motor has ever been adopted as the agitator in [3]. However, the indispensable commutator and brushes cause **many** shortcomings, limiting its widespread application to industrial mixers. In this paper, the permanent magnet synchronous motor (PMSM) will be used **as** the agitator because of its inherent advantages of high **power** density, high efficiency and maintenance-free operation. The effect of PM sizing on the performance of the chaotic motion of PMSM will be discussed. Simulation **as** well as experimental results of the proposed **mixer** will **be** presented to verify the effectiveness. Dept of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, Chian
 Purpose

Industrial mixers are among the most expensive and ineffective equipments. The

industrial initials and academics in

Based on field orientation control, a surface mounted PMSM can be represented by
$$
J\frac{d\omega}{dt} = -B\omega + K_r i_q - T_l
$$
 (1)

$$
L \frac{d}{dt} = -Rt_x - K_E \omega + u_g
$$

where *B* is the viscous damping coefficient, i_g is the *q*-axis current, *J* is the load inertia, K_A

is the EMF constant, K_r is the torque constant, *L* is the armature inductance, *R* is the armature resistance, \bar{r} , is the load torque, \bar{u} is the q -axis voltage, ω is the rotor speed. The key to chaoize the motor is to employ time-delay feedback control based on the feedback law

$$
T_{\epsilon} = \mu \xi B \int \left(\frac{\omega(t - \tau)}{\xi} \right) \tag{3}
$$

where T^* is the electromagnetic torque command, μ is the torque parameter, ξ is the speed parameter, τ is the time-delay parameter, and a sine function is chosen as the integrable bounded Function *f(.)* that serves to limit the required torque to the motor torque capability.

Realistic system parameters **are** adopted, which will be presented in full paper. The speed bifurcation diagram with respect to PM sizing is presented **in** Fig. **1,** which illustrates how the system behavior is affected by varying the **PM** sizing, namely the PM flux. It can be seen that the motor initially operates at a fixed point with a large value of **PM** sizing. With the decrease of **PM** sizing, the motor **bifurcates** to chaotic motion. Fig. 2 shows the corresponding speed when the motor runs in the chaotic mode at its manufactured flux.

Experimental Results

The **mixing** apparatus consists **of** a tank and **an** impeller spun by a digitally-controlled drive mounted verticafly on a **stand.** The task **is** to mix thc acidic mixture (200 **ml** light corn syrup; 5 ml **pH** indicator; *5* **ml** 1 N HCI) with the basic mixture **(100** ml light corn syrup; *2.5* ml **pH** indicator; 2.5 **ml** I N **NaOH).** Although the overall solution is acidic (red in color) **as** there is twice **as** much acid **as** base, there are basic regions (green **in** color) due to diffusion limitations caused by the highly viscous solvent (light corn syrup). Fig. 3 shows the system colorations after 0 s, 30 s and 90 **s** of chaotic mixing, respectively, *A* segregated region, which exists in **constant** speed mixing and costs **a** lot of energy to be destioyed, is not visible **in** chaotic mixing.

Reference

 $[1]$ N. Harnby, M.F. Edwards, A.W. Nicnow, Mixing in the Process Industries, $2nd$ ed., Oxford, Butterworth-Heinemann, 1 **(2992).**

121 F. Raynal, J.N. Gence, "Energy saving in chaotic laminar mixing," Joumal of Heat and Mass Transfer 40, 3267 **(1997).**

[3] K.T. Chau, *5.* Ye, Y. Gao, J H. Chen, "Application of chaotic-motion motors to industrial mixing processes," IEEE Industry Applications Society Annual Meeting 3, I874 **(2004).**