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Performance Guarantee for Online Deadline Scheduling in the 
Presence of Overload 

Tak-Wah Lam Kar -Keung  To 
Department of Computer Science, University of Hong Kong, Hong Kong 

A b s t r a c t  

Earliest deadline first (EDF) is a widely-used online 
algorithm for scheduling jobs with deadlines in real- 
time systems. Yet, existing results on the perfor- 
mance guarantee of EDF are limited to underloaded 
systems [6, 12, 14]. This paper initiates the study of 
EDF for overloaded systems, attaining similar per- 
formance guarantees as in the underloaded setting. 
Specifically, we show that EDF with a simple form 
of admission control is optimal for scheduling on 
both uniprocessor and multiprocessors when mod- 
erately faster processors are available (our analysis 
actually admits a tradeoff between speed and extra 
processors). This is the first result attaining op- 
timality under overload. Another contribution of 
this paper is an improved analysis of the competi- 
tiveness for weighted deadline scheduling. 

1 I n t r o d u c t i o n  

This paper is concerned with online algorithms for 
deadline scheduling. A typical example is the earli- 
est deadline first (EDF) algorithm, which is widely 
used in many real-time systems (see [15] for a sur- 
vey). Yet, from a theoretical viewpoint, EDF ex- 
cept in some simple settings has no performance 
guarantee, i.e., its performance cannot match or 
even be competitive against the of[line adversary. 
It is indeed known that in many settings of dead- 
line scheduling, no online algorithm has this sort 
of performance guarantee [2, 7]. In recent years, a 
plausible approach to studying performance guar- 
antee is to allow the online scheduler to use faster 
processors than the offline adversary [1, 3, 5, 8, 9, 12, 
14]. Intuitively, using faster processors compen- 
sates the online scheduler for the lack of future in- 
formation. In particular, for deadline scheduling 
on multiprocessors, Phillips et al. [14] were able to 
show that EDF using speed-2 processors is opti- 
mal for hard-deadline systems. This means that if 

the system is underloaded, allowing the offiine ad- 
versary to schedule all the jobs to meet the dead- 
lines, then EDF can always do so with double- 
speed processors. This result extends the only op- 
timality result of EDF in the literature--For hard- 
deadline scheduling on a single processor, EDF us- 
ing a speed-1 processor is already optimal [6]. 

In this paper we study deadline scheduling for 
overloaded systems, in which the offline adversary 
may not be able to schedule all the jobs, and 
job deadlines are firm in the sense that there is 
no credit to completing a job after its deadline. 
Our aim is again to attain "optimality" with the 
general meaning of matching the total work of 
jobs completed by the adversary. Scheduling under 
overload is more difficult as the online algorithm 
has to be smart in selecting the right jobs to 
schedule. Even for the single processor setting, no 
online algorithm using a speed-1 or faster processor 
is known to be optimal, let alone the multiprocessor 
setting. In fact, it has been shown that if the 
processor speed is less than 1.5, any algorithm is 
not optimal [13]. This result should be contrasted 
with the fact that  in the underloaded setting, EDF 
using a speed-1 processor is already optimal [6]. In 
this paper we resolve in the affirmative the following 
open questions about deadline scheduling under 
overload: 

For scheduling on a single processor, can EDF 
(or any other online algorithm) using a faster 
(say, speed-2) processor be optimal? 

For scheduling on multiprocessors, is EDF 
a good policy? Are speed-O(1) processors 
sufficient to guarantee optimality? 

Can we reduce the speed requirement by using 
more processors? Such a tradeoff result is 
known in the underloaded setting; e.g., let m 
be the number of processors available to the 
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of[line adversary, then EDF using 2m speed- 
1.5 processors is also optimal [12]. 

• Suppose that  jobs have arbitrary values (or 
weights) and the aim is to maximize the total 
value of the jobs meeting the deadlines. The 
scheduling becomes more complicated. Can 
we exploit faster processors to ensure that  the 
total value at tained is competitive or even 
optimal with respect to the off/line adversary? 

P r o b l e m  a n d  de f in i t ions :  We are given a 
pool of m > 1 processors and a stream of jobs 
which are released at arbitrary times, with varying 
work (processing time) requirements and deadlines. 
Every job is sequential in nature and is processed 
by at most one processor at a time. Preemption 
is allowed. For a hard deadline (or equivalently, 
an underloaded) system, we aim at obtaining a 
schedule in which all jobs are completed before 
their deadlines, assuming that  can be done by the 
offtine adversary. In general, the system may be 
overloaded, i.e., even the offline adversary may not 
be able to meet all the deadlines. In this case, 
our aim is to maximize the total work of jobs 
completed before the deadlines. There is no credit 
to completing a job after its deadline. An online 
algorithm is said to be optimal if it can match 
the total work of jobs completed by the offline 
adversary. Note that  an online algorithm that  
is optimal for overloaded systems is also optimal 
for underloaded systems. We consider settings 
in which the on-line algorithm is equiped with 
processors that  are faster than those available to 
the off-line adversary. A processor is speed-s if it 
can process s times the work that  can be processed 
by a processor of the off-line adversay in the same 
amount of time. 

E D F  w i t h  a d m i s s i o n  con t ro l :  The way EDF 
schedules jobs on m > 1 processors is as follows: 
Whenever a job is released or completed, EDF ex- 
amines the remaining jobs to be completed. If there 
are at most rn such jobs, each job is scheduled to 
run in one processor; otherwise, EDF chooses m 
jobs with earliest deadlines for execution. When 
the system is overload, EDF may be too aggres- 
sive in preempting jobs; thus, in practice, EDF is 
often supplemented with some kind of admission 

control. We consider the following simple form 
of admission control (Figure 1). At release, every 
job has to go through a feasibility test in order to 
get admit ted for EDF scheduling. The test simply 
checks whether the new job together with the pre- 
viously admit ted jobs can all be completed before 
their deadlines using a EDF schedule. 1 We call this 
algorithm EDF-AC. Our first result on scheduling 
under overload is that  for a single processor sys- 
tem, EDF-AC using speed-2 processor is optimal. 
(We can easily show that  EDF-AC cannot attain 
optimality if the speed increase is less than a fac- 
tor of two.) When we are scheduling with rn > 2 
processors, we find that  speed-3 processors suffice 
to guarantee EDF-AC to be optimal, no mat ter  how 
big m is. To our knowledge, this is the first result 
attaining optimality for scheduling under overload. 

T r a d e o f f  b e t w e e n  s p e e d  a n d  p r o c e s s o r :  
Other than using faster processors, another way 
to facilitate the online scheduler is to use more 
processors. As jobs are assumed to be sequential 
in nature, just  increasing the number of processors 
by even a constant factor cannot lead to optimality. 
Nevertheless, we find that  the speed requirement 
for EDF-AC can be reduced if more processors are 
available. In particular, we show that  EDF-AC is 

(v/~-t-1) 2 optimal when given M > m speed-(1 + M+I ) 
processors. For example, when m : 4, EDF-AC can 
attain optimality if using four speed-3 processors, 
or five speed-2.5 processors, or seventeen speed-l.5 
processors. 

S c h e d u l i n g  j o b s  w i t h  va lues :  In general, the 
credit awarded to complete a job before its deadline 
may not be related to its processing time. Jobs 
may be given arbitrary values, and the objective 
becomes to maximize the total value of the jobs 
completed before their deadlines. For this more 
general setting, there are several online algorithms 
in the literature. These algorithms are not optimal, 
though. Define the value density of a job to be the 
ratio of its value to its required work. An online 
algorithm A is said to be c-competitive for some 
c > 0 if, for any job sequence, the total value of 
jobs completed by the offline adversary is at most 

For implementat ion purpose, it suffices to check jobs admit ted 
and not completed. 
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Incoming ~ u ~  Admitted jobs l EDF 

~ Rejected jobs 

Figure 1: T h e  schedu l ing  of EDF-AC. A job is scheduled using EDF only if it passes a feasibility test. 

c times of that of A. [4] In the single processor 
setting, Koren and Shasha [10] generalized the work 
of Koren et al. [2] to give an (1 + vfk)2-competitive 
algorithm, where jobs are assumed to have value 
density in the range [1,k]. KMyanasundaram and 
Pruhs [9] gave another algorithm called SLACKER, 
which is O(1)-competitive when a faster processor 
is used. Specifically, for any 5 > 0, SLACKER is 
(1 + 5-1)(1 + 5-1/2)(1 + 5 -1/2 + 5-1)-competitive 
when given a speed-(1 + 25) processor. This paper 
gives a simpler analysis of SLACKER, showing that 
it is (1 + 25 -1 + 45-2)-competitive. For example, 
given a speed-2 processor, our analysis reveals that 
SLACKER is actually 21-competitive instead of 31.9- 
competitive. 

In the multiprocessor setting, Koren et al. [11] 
gave a (1 + m(k 1/¢ - 1))-competitive algorithm 2, 
where ¢ = mlnk /2( lnk  + 1); yet no result has 
been heard on using faster processors to improve 
the competitiveness. In fact, SLACKER admits a 
natural extension to the multiprocessor setting, but 
it is non-trivial to extend the analysis of SLACKER 
in [9]. Based on our new analytical tool, we 
show that the multiprocessor version of SLACKER 
is (1 + 25 -1 + 45-2)-competitive when it is given 
speed-(1 +25) processors. Table 1 gives a summary 
of these results. 

Note that none of the above algorithms achieves 
optimality. We can actually show that EDF-AC 
achieves optimality even if jobs have different val- 
ues. For the single processor setting, it suffices to 
use a speed-(k + 1) processor to achieve optimality; 
for the multiprocessor setting, speed-(k + 2) proces- 
sors are required. Moreover, a simple adaptation 

- - - ~ - m ( k  1/¢ - 1) approaches  2 In k + 3 when m is large. 

of EDF-AC reduces the speed factor to O(logk). 
The idea is to divide the m processors into [log k] 
groups such that group i handles jobs with density 
in the range [k (i- 1)/[log kl, ki/[log kl ]. 

Organ iza t ion  of the  paper :  The remainder 
of the paper is organized as follows. Section 2 shows 
the optimality of EDF-AC in the single processor 
setting. It serves as a warm-up to Section 3, which 
extends this result to the multiprocessor setting. 
In Section 4, we adapt EDF-AC defined in Section 3 
to reduce the speed factor to O(logk). Section 5 
discusses how to use extra processors to reduce 
the speed requirement. Finally, Section 6 presents 
the multiprocessor extension of SLACKER, which 
schedules jobs with different value densities. Due 
to space limitation, details of the optimality of 
EDF-AC for scheduling jobs with different value 
densities are left in the full paper. 

In the rest of the paper, whenever we refer 
to a sequence of jobs, we assume that the first 
job is released at time 0. The release time, work 
request and deadline of a job J are denoted by 
r( J), p( J) and d( J) respectively. We measure p( J) 
in terms of the time required to process J on a 
speed-1 processor. We only consider jobs satisfying 
p(J) > d(J) - r ( J ) .  Recall that completing a job 
after its deadline gives no credit. Below, whenever 
we say a job is completed, it is meant that the job 
is completed before its deadline. 

2 Op t ima l i t y  of EDF-AC for un i -processor  
schedu l ing  

This section shows that for scheduling on a single 
processor, increasing the processor speed by a 
factor of two makes EDF-AC optimal, i.e., matching 
the total work of jobs completed by the offiine 
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Processor speed 

Single processor 

Multiprocessor 

l + 2 5 f o r a n y S > 0  

(1 + x/k) 2 [21 

1 m(k - -  1) [11] 

( i  + c~-i)(l + 5-½)(i + c~-½ + 5-1) [9] 
1 + 25- '  + 45 -2 [*] 

1 + 26-' + 4~ -2 [*] 

Table 1: Competitive ratios of algorithms for scheduling jobs with arbitrary values. In the result of [11], 
¢ = m In k/2(ln k + 1). Results in this paper are denoted with asterisks. 

adversary. 
Notation: For any sequence L of jobs, let EL 

be the subset of jobs in L that can be completed 
by EDF-AC (using a speed-2 processor), and (.0 L for 
the offiine adversary (using a speed-1 processor); 
let IIL]] be the total work of the jobs in L. 

THEOREM 2.1. For any sequence L of jobs, 
IIELll >_ IIOLI). 

We prove Theorem 2.1 by contradiction. Sup- 
pose there exists a job sequence L such that II COL I] > 
IIEL I1" Let us consider L to be the job sequence con- 
taining fewest jobs. 

If jobs in EL are scheduled to run in two or more 
continuous periods, we can immediately derive a 
contradiction since one of such periods contains a 
smaller job sequence violating Theorem 2.1. Be- 
low, we assume that  all jobs in ~'L are scheduled in 
one continuous period, say, of length 6. The con- 
tradiction stems from a property of the jobs admit- 
ted by EDF-AC, which is stated in the Lemma 2.1. 
Roughly speaking, any late-dead job (with deadline 
after 26), if present in L, must be admitted into EL, 
and would not affect the admittance of any early- 
dead jobs (with deadline at or before 26) released 
subsequently. The latter means that  even if we re- 
move all late-dead jobs from L, we cannot schedule 
more early-dead jobs. 

LEMMA 2.1. Let Le and Lt be the sets of early-dead 
and late-dead jobs in L, respectively. Then Lt C EL 
and EL~ = EL -- Lt. 

With Lemma 2.1, we can prove Theorem 2.1 
by deriving a contradiction as follows: Recall that 
jobs in EL are scheduled in one continuous period 
of length g. Since ItOLII > I]ELtl, the offline 

adversary using a speed-1 processor takes more 
than 26 time to complete OL, and some jobs in O L 
have deadlines after 26. In other words, L contains 
some late jobs. By Lemma 2.1, IIELo II = ]]ELII-IILtll 
< IIOLII- IILtll. Note that  ll(OLell > II(OL- Ltll 
>_ IIOLII- IILtll. In summary, Le contains fewer 
jobs than L, yet IIEL~II < IIOL ll; this contradicts 
the definition of L. The proof of Theorem 2.1 is 
completed. 

Proof. [Lemma 2.1] To see Lt C_ £L, it suffices 
to observe that  it is always feasible to schedule 
a late-dead job J within the period [g, d(J)] since 
e <_ d(J)/2 and the processing time of J on a speed- 
2 processor is p(J) /2  < d(J)/2. Since EDF can 
complete any feasible job sets [6], this guarantees 
that  J always passes the feasibility test of EDF-AC. 

We prove ELe -~ E L -  Lt by contradiction. 
Suppose the equality does not hold. Then Ene and 
EL do not contain the same set of early-dead jobs. 
Let t < t~ be the release time of the first early-dead 
job J on which ELe and EL disagree. Denote by 
(EL) t the set of jobs in E L released before t, and 
similarly for (ELe) t. Note that  (EL) t comprises all 
the jobs in (EL~)t plus possibly some late-dead jobs. 
At time t, the only possible scenario for ELe and EL 
to disagree on J is that  J is admitted into ELe but 
rejected from EL. That  means ,  (ELe) t t..J {J} can be 
completed using a EDF schedule, but (EL) t U {J} 
cannot be. This can only happen when admitting 
J causes some late-dead job J' C (EL) t to miss its 
deadline. By definition of 6, all jobs in EL including 
J '  can be completed before time 6. To cause J '  to 
miss the deadline which is after 26, J must request 
more than e units of time on a speed-2 processor, or 
equivalently, p(J) > 26. This is impossible because 
J is an early-dead job and p(J) < d(J) _< 26. Thus, 
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J cannot exist and ELe = EL -- Lt. [] 

3 O p t i m a l i t y  of EDF-AC for mu l t ip roces so r  
schedul ing  

We extend the result of Section 2 to the multipro- 
cessor setting. Specifically, we show that for dead- 
line scheduling on m > 2 processors, EDF-AC using 
speed-3 processors is optimal. 

Consider any sequence L of jobs. Denote by 
EL the set of jobs in L completed by EDF-AC 
using m speed-3 processors. With respect to the 
schedule of EL, a period is said to be busy if 
all the m processors are working throughout this 
period. Similar to Section 2, the core of the proof 
of optimality is on analyzing the case when the 
schedule of EL contains only one busy period, say, 
[0, g], and all jobs in L are released within this 
period. We say that a job in L is early-dead 
if its deadline is at or before 3~, and late-dead 
otherwise. We will show that the early-dead and 
late-dead jobs in L satisfy the same properties as in 
the single-processor setting (see Lemma 3.2 below); 
the proof is slightly more complicated due to the 
multiprocessor setting. First of all, we make a more 
basic observation, which reveals the need of speed-3 
processors. 

LEMMA 3.1. Assume that the schedule of EL con- 
tains only one busy period. Consider any job J E L. 
Let X be the set of jobs in EL released before J. Let 
X' = X U { J }  and let Xe ~ C X U { J }  comprise 
all the early-dead jobs. Then, using an EDF sched- 
ule, X ~ can be completed if and only if X~e can be 
completed. 

Proof. The "only if" direction is obvious. It remains 
to prove the "if" direction. For the sake of contra- 
diction, suppose that using an EDF schedule, Xe ~ 
can be completed but not X p. Among the jobs in 
X p not meeting the deadlines, let J0 be the one 
with the earliest deadline. Since Xe ~ can be com- 
pleted, J0 must be a late-dead job, i.e., d(Jo) > 3~, 
or equivalently, l < d(Jo)/3. On the other hand, as 
X, a subset of EL, can be completed using an EDF 
schedule, we have d( Jo ) > d( J). 

Let us have a close look of the EDF schedules of 
X and X ~ = XU{J} .  Recall that the EDF schedule 
of EL contains only one busy period. Thus, the 

schedule of X also contains a single busy period, 
say, ending at h. A basic property of EDF is that 
at any particular time, the schedule of X U {J} 
uses at least as many processors as the schedule 
of X. Therefore, the EDF schedule of X U {J} 
contains a busy period ending at h > h. Moreover, 
the schedule of X U {J} outperforms the schedule 
of X by at least 3(h - h) units of work. Since the 
EDF schedule of X completes all jobs in X, we 
havep(J )  > 3 ( h - h ) .  Thus, £ < h + p(J) /3  < 
e + p(g)/3 < d(Jo)/3 + d(J)/3. Using EDF to 
schedule X t2 {J}, we will complete J0 if d(Jo) > 
h+p(Jo)/3. The latter is true because h+p(Jo)/3 < 
d(Jo)/3 + d(J)/3 + d(Jo)/3 < d(Jo). Thus, J0 
should have met its deadline in the EDF schedule 
of X'. A contradiction occurs. [] 

With Lemma 3.1, we can easily show the key 
properties of the late-dead jobs in L. 

LEMMA 3.2. Let Le and Lt be the sets of the early- 
dead jobs and late-dead jobs in L. Then Lt _C EL 
and ELe = EL -- Lt. 

Proof. Since EDF schedules jobs in the order of 
their deadlines, admitting a late-dead job J does 
not cause any early-dead jobs previously admitted 
to miss the deadline. By Lemma 3.1, J is always 
admitted by EDF-AC into gL- Thus, Lt C_ EL. 

Suppose ELe ~ E L -  Lt and consider the 
first job J in Le which is scheduled differently 
when EDF-AC schedules L and Le. J must be 
admitted when EDF-AC schedules Le and rejected 
when EDF-AC schedules L. This implies that, 
when using EDF-AC to schedule L, we should find 
that J together with the early-dead jobs admitted 
before J can be completed using an EDF schedule. 
By Lemma 3.1, J should be admitted when using 
EDF-AC to schedule L. A contradiction occurs. [] 

It remains to prove a theorem, in the spirit 
of Theorem 2.1, to show that for scheduling on 
m > 2 processors, EDF-AC is optimal when given 
speed-3 processors. Unlike Theorem 2.1, the case 
when the schedule of EDF-AC contains more than 
one busy periods is complicated to analyze. The 
problem is that the execution of a job can span 
more than one busy period, making it difficult to 
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split L for contradiction purpose. To deal with this, 
we prove a stronger version of Theorem 2.1; roughly 
speaking, 113LII not only matches IIOLII, but is in 
excess by a significant amount: Suppose O is any 
subset of L that  is feasible for scheduling. Define a 
function f (L,  0)  to be the portion of the work of 
the jobs in gL -- O scheduled by EDF-AC after its 
last busy period. We show that  IICLII is in excess 
of 11(911 by at least f(L,(9). Technically speaking, 
this allows us to, in the case when there are more 
than one busy periods, split L into two parts both 
containing those jobs spanning two busy periods. 
Intuitively, the overlapping is compensated by the 
increased f(L,(9) after the split. Details are as 
follows: 

THEOREM 3.1. For any job set L, [[gLll- 
f (L,  O) _> IIOll b r  all 0 C_ L that is feasible for 
the offline adversary. 

Proof. Suppose, for the sake of contradiction, there 
exists a job sequence L such that  the theorem is 
violated. Tha t  is, there exists O _C L that  causes 
ItCLII - f (L,  (.9) < 11(.911. Without  loss of generality, 
we consider L to be the job sequence containing the 
fewest jobs. 

Consider the schedule of EL defined by EDF-AC. 
Some jobs may be released outside a busy period. 
For each of such jobs, we can delay its release 
time until the next busy period while reducing the 
required work. This results in another sequence of 
jobs with the same busy periods and the same set 
of jobs admit ted by EDF-AC. [I~L[[ is reduced by 
exactly the total amount of work reduced, while 
IIOII is reduced by at most that  amount. On the 
other hand f (L ,O)  is not affected. As a result, 
the modified L and ((.9 still cause the theorem to be 
violated. Thus, without loss of generality, we can 
assume that  jobs are always released when EDF-AC 
is busy. 

A s s u m e  EL o c c u p i e s  one  s ing le  p e r i o d ,  say, 
of length  e. Then the otfline adversary using 
speed-1 processors must take more than 36 time 
to complete O. L thus contains some late-dead 
jobs. Define the follow subsets of jobs: Le C L 
and Oe C O contain early-dead jobs; Lt C L 
contains late-dead jobs; and L1 and L2, subsets of 
Lt, contain jobs in O and not in O, respectively. 

By Lemma 3.2, IIELell = IICLII- IILtll. It is clear 
that  ltOelt = IlOll- IILIlI. Since the scheduling 
of jobs in $Le is not affected by the removal of 
the late-dead jobs, f(Le, Oe) >_ f(L,(9) -ILL211. 
Therefore, II LoIi- f(Le, Oe)is smaller than lIOell. 
In summary, Oe causes Le to violate the theorem, 
contradicting the definition of L. 

A s s u m e  EL are s c h e d u l e d  to  r u n  in two 
or more  cont inuous  per iods.  We construct two 
smaller job sets La and Lb as follows. Let t denote 
the starting time of the second busy period. La 
contains all jobs in L that  are released earlier than 
t. L b contains all other jobs plus some new jobs 
derived from La as follows. For each job J in 
~L n La, if J has not yet completed at time t by 
EDF-AC, leaving w > 0 units of work, we add to L b 
a new job with release time t, deadline d(J) ,  and 
required work w. Denote by N the set of new jobs 
added to Lb. It is easy to see that  ~La = ~L CI La, 
while CLb contains exactly those jobs in L b that  are 
either in CL or derived from jobs in £L. The sum 
of ]t~La I[ and [[$LbII is exactly the sum of ]ISL[] and 
IINII. 

It remains to show that  La or Lb must violate 
the theorem. Consider the following sets: Oa C 
La contains those jobs also in O, and Ob ~_ Lb 
contains those jobs also in O or derived from jobs 

in O. The sum of IIOoll and IIObll is exactly the 
sum of Iloll and IIg n Obll. Note that  f (L ,O)  is 
exactly f(Lb, Oh), while f(La, Oa) is no less than 
IIX-Obtt. We conclude that  IIELoll + IIgLbll- 
f(La, Oa) - f(Lb, Ob) is smaller than IIO~tl + IIObll, 
so either Oa causes La to violate the theorem, or Ob 
causes Lb to violate the theorem. Since both La and 
Lb contain less jobs than L, this again contradicts 
the definition of L. [] 

The analysis can be extended to cover the case 
when jobs have arbitrary values, and the objective 
is to maximize the value obtained by completing 
jobs within deadlines. We have the following 
theorem, which shows that  EDF-AC using speed- 
(2 + k) processors is optimal in this case. Due to 
space limitation, the proof is left to the full paper. 

THEOREM 3.2. Suppose EDF-AC using speed-(2 + 
k) processors is used for any job set L that contains 
jobs of value densities in [1, k]. Let gL be the set of 

760 



jobs completed by EDF-AC. Then ]]gLII - f (L ,  (_9) > 
IIOl[ for all 0 C L that is feasible for the offline 
adversary. 

4 I m p r o v i n g  EDF-AC w i t h  value d e n s i t y  
groups 

When k is large, EDF-AC does not give a good per- 
formance guarantee since EDF-AC is optimal only 
when using a lot of extra speed, namely when us- 
ing speed-(2 + k) processors. In this section, we use 
EDF-AC as a black box and derive another algo- 
rithm A-EDF-AC for any integer A > 1. By group- 
ing jobs with vastly different value densities into 
different group of processors, the algorithm needs 
only Am speed-(2 + k 1/~) processors to achieve op- 
timality (Theorem 4.1). Put t ing A = [log2 k], this 
implies [log 2 k]-EDF-AC is optimal using [log~ k]rn 
speed-4 processors. Using time sharing, we can sim- 
ulate [log 2 k]-EDF-AC using rn speed-(4[log 2 k]) 
processors and thus obtain an optimal algorithm 
under such situation. This provides a much better 
guarantee than that provided by EDF-AC. 

The algorithm is defined as follows: 

A-EDF-AC: Divide Am processors into A 
clusters, each with m processors. For each 
1 < i < A, only jobs with value density 
between k (~-0/~ and k ~/~ will run in a 
processor of the i-th cluster. When a job is 
released, the cluster of processors that can 
serve the job is identified, and EDF-AC is 
used to schedule the jobs in that cluster. 

THEOREM 4.1. A-EDF-AC is optimal using Am 
speed-(2 + k 1/~ ) processors. 

Proof. Consider an input job sequence L. Let L(i) 
be the set of jobs that  are allowed to use the i-th 
cluster. For a set of jobs X _C L, let O(X) be the 
set of jobs that  meet deadlines when the optimal 
off-line algorithm schedules X using m speed-s 
processors. Note that  HO(L(1)) U . . .  U O(L(A))II 
is no less than IIO(L)II, since the optimal off- 
line algorithm can always choose to run jobs in 
O(L)NL(1 ) , . . . ,  O(L)NL(A) when scheduling L(1), 
. . . ,  L(A) respectively. 

The value obtained by A-EDF-AC is the sum 
of values obtained by each cluster, i.e. IIEL(1)II + 

• "" + []gL(~)ll- Jobs in the same cluster have 
value densities which differ by at most a factor 
of k I = k 1/)~. For scheduling L(i), EDF-AC uses m 
speed-(2+kU~) processors. Applying Theorem 3.2, 
we have IIgL(i)l[ _> IIO(L(i))ll. This results in 
that the value obtained by A-EDF-AC is at least 

IIO(L(1))l[ + . . .  + IIO(L(m))ll _> [lO(L)ll • [] 

5 Trading processors for speed 

We extend the result in Section 3 to the case 
when EDF-AC has more processors, apart from 
that its processors are faster than those of the 
offiine adversary. Our result shows that when the 
number of processors increases, the speed required 
for EDF-AC to achieve optimality can be reduced 
arbitrarily close to 1. In particular, we have the 
following lemma. 

THEOREM 5.1. Suppose M > m processors are 
available to EDF-AC. For each integer Mo from m 
to M, EDF-AC using speed-s processors is optimal, 
where s = l + m 1 

~ o  @ M - M o + i  " 

By choosing Me to be the integer closest to 
v'~+i v ~  (M + 1), the speed requirement for EDF-AC 

(,,/~+1)2 
to be optimal is about (1 + M+i )" 

We can prove Theorem 5.1 based on the frame- 
work in Section 3 (i.e., Lemma 3.1, Lemma 3.2, and 
Theorem 3.1). However, several notions have to be 
generalized. Instead of keeping track of continuous 
time periods when EDF-AC is busy, we keep track 
of continuous time periods when EDF-AC is M0- 
busy, defined as follows. Consider the scheduling of 
a set of jobs L. At any time, we say EDF-AC is M0- 
busy (m < M0 < M) if at least M0 processors are 
working throughout this period. Again, we focus 
on the case when the schedule of EDF-AC contains 
only one M0-busy period, say, [0, if, and all jobs 
are released within this period. A job is said to be 
early-dead if its deadline is at or before Mm~sl , and 
late-dead if otherwise. 

In proving EDF-AC to be optimal when given 
more but not so fast processors, the most non- 
trivial part is why Lemma 3.1 still holds in this 
modified setting. The new proof of Lemma 3.1 re- 
quires a relationship between busy periods and Mo- 
busy periods. It is quite straightforward to show 
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that the properties in Lemma 3.2 continues to hold. 
Adapting Theorem 3.1 is however slightly more 
complicated. In particular, we redefine f (L ,O)  to 
be the portion of work of the jobs in E L --  O sched- 
uled by EDF-AC after the last M0-busy period. De- 
tails will appear in the full paper. 

6 S c h e d u l i n g  j obs  w i t h  d i f fe rent  va lue  
dens i t i e s  

In general, the value v(J) obtained by completing 
a job J may not be proportional to the amount 
of work p(J) required to complete the job, and the 
jobs may have varying value density (the value den- 
sity of J, denoted by p(J), is the ratio v( J) /p( J) ). 
The aim of the scheduler is to maximize the total 
value instead of the total work. For scheduling jobs 
with varying value densities on a single processor, 
the algorithm SLACKER given by Kalyanasundaram 
and Pruhs [9] is (i +5-1)(I +5-U2)(I +5-1/2 +5-1)- 
competitive when using a speed-(1 + 25) processor 
for any 5 > 0. In this section, we give an extension 
of SLACKER, denoted MSLACKER, for scheduling 
jobs on rn > 1 processors, and show that this ex- 
tension is (1 + 25 -1 + 45-2)-competitive when given 
speed-(1 + 25) processors. Since SLACKER is a spe- 
cial case of MSLACKER, our result also improves 
the competitive ratio of SLACKER given by [9]. 
This improvement is mainly resulted from a new 
upper bound on the total value of jobs that  can be 
completed by the adversary. 

MSLACKER is parameterized by two real values 
5 > 0 and c > 1. MSLACKER is equipped with rn 
speed-s processors where s = 1 + 25, and keeps 
an initially empty set of privileged jobs M. At 
any time, MSLACKER runs all jobs in M if M has 
at most rn jobs; otherwise, it runs the m highest- 
value-density jobs in M. When a job J is released, 
J is added to M if M contains less than rn jobs, 
or p(J) _> cp(Jo) where Jo is the m-th highest- 
value-density job in M. If J cannot be immediately 
added to M, the same checking will be done again 
whenever a job is completed, until the remaining 
slack (i.e., d(J) - p(J) - t, where t is the current 

8 

time) is less than 5 P@. A job is removed from M 
if either it is completed, or its remaining slack 
becomes negative. Figure 2 shows how MSLACKER 
considers a job for execution. 

Below we analyze the performance of 
MSLACKER, showing that  MSLACKER, when 
given speed-(1 + 25) processors and when c is cho- 
sen as 1 + 25 -1, is (1 + 25 -1 + 45-2)-competitive. 
Let A, C, and R denote the sets of jobs completed 
by the adversary, completed by MSLACKER, and 
ever added into M, respectively. Let IICII be 
the total value of jobs in C, and similar for IIAII 
and IIRII. By definition, IICII <_ IIRII. A released 
job J is said to be fresh at any time before 
d(J) - (1 + 5)P(sg). 

To show the competitive ratio of MSLACKER, 
we need a lower bound of IICII, as well as an upper 
bound of IIAII. Intuitively, MSLACKER is very 
conservative and can complete most of jobs added 
into M; specifically, we show that IICH is at least 
a significant fraction of IIRII (see Lemma 6.1). On 
the other hand, the adversary may be able to pick 
some more valuable jobs to execute, but the way 
MSLACKER selects the jobs guarantees that  IIAII 
cannot exceed IIRII too much (see Lemma 6.3). 

LEMMA 6.1. IICll >_  llRII $ 

Proof. The proof is essentially a generalization of 
the technique for analyzing SLACKER in the single- 
processor setting [9]. Details are left in the full 
paper. [] 

Unlike the proof given in [9], we derive the lower 
bound of ItAII by analyzing separately the jobs that  
are completed by MSLACKER and jobs that  are not. 
This leads to a simpler and tighter analysis. First of 
all, let us observe a simple property of MSLACKER. 

LEMMA 6.2. At any time t when a job J has not 
yet completed by SLACKER and J is still fresh, then 
e i ther  MSLACKER is executing J, or MSLACKER 
is executing rn other jobs each with value density at 
least p(J)/c.  

Proof. At time t, J may or may not be in M. 
If J is in M and not being executed, then the 
value density of any job S L A C K E R  is executing is 
at least p(J). Next, we consider J not in M. 
Throughout  the period [r(J),t] ,  J is not qualified 
to get into M, i.e., M contains at least rn jobs, 
and p(J) < cp(Jo) where Jo is the m-th highest- 
value-density job in M. At time t, MSLACKER is 
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J is released 

Some other job 
completes ~ v 

U n p n v ~  Y 

Meet 
Deadline 

l J completes 

Slack of J 
is reduced to 
less than 5p(J)/s 

• . Miss 9 
Deadline 

Some job is released, Some job 
and J becomes completes, and J 

the m + 1-st becomes the m-th 
most dense job most dense job 

Privileged 
Slack of J and waiting 
becomes -ve 

Figure 2: T h e  life-cycle o f  a j o b  J as s c h e d u l e d  by  MSLACKER. After J is released, it tries 
to become a privileged job by going through the two tests. It may run in a processor only after it is 
privileged. However, since there are only m processors, some privileged jobs may have to wait. Jobs 
that wait for too long to be privileged or to run in a processor will miss deadlines. 

executing m other jobs each with value density at 
least p( J)/c.  [] 

We are now ready to show the upper bound of 

IIAII. 

LEMMA 6.3. IIAII _< IICII +  IIRII • 

Proof. Partition A into A c = A M C and A u = 
A - C .  Since A c _C C, ]IAI[ < IICll+liAU]l . For 
any job J in A u, define al(J)  (resp. a2(J)) to 
be the total amount of time when the adversary 
executes J while J is fresh (resp. J is no longer 
fresh). Obviously, al(J)  + a2(J) = p(J).  For any 

job J E A u, a2(J) _< (1 + ~ ) P s  ~ ,  and al(J)  > 

v(J) = ~p(J)p(J)  < a](J)p(J),  5Ps ~ .  Thus, ; 

and  llAUll < EJEA  al(J)p(J). 
To derive an upper bound of ItA]I, we consider 

al(J)  for each job J E A u. By definition, every 
job J E A u is not completed by MSLACKER. 
At any time when the adversary executes a job 
J E A u while J is fresh, Lemma 6.2 tells us that 

MSLACKER either executes J,  or executes m jobs 
each of value density at least p(J)/c.  In general, 
at any time t, let Xt be the set of fresh jobs in A u 
currently executed by the adversary; then for e ~ h  
job J E Xt, we can identity a distinct job currently 
executed by MSLACKER with job density at least 
p(J)/c.  In other words, the total value density 
of jobs in Xt is at most c times the total value 
density of jobs currently executed by MSLACKER. 
To bound ~jEA u al(J)p(J) ,  it suffices to consider 
the sum over all time t of the totaJ value density 
of jobs in Xt, which is at most c times of the sum 
over all time t of the total value density of jobs 
executed by MSLACKER at time t. Note that each 
job J E R can contribute a quantity of at most 
p(j)Ps ~ to the latter sum. Thus, the latter sum 

can be expressed as ~JER P(J)P~s J , which is equal 
to ~lIRll. In summary, ~g~A~al (J )p (J )  < ~]]RII. 
Therefore, ~llAUll < cllRtl , and IIAI[ < [ICII + 
IIAUll <_ IlCll + ~IIRII. [] 

THEOREM 6.1. MSLACKER, when given speed-(1+ 

'763 



25) processors and when c is chosen as 1 + 25 -1, is 
(1 + 25 -1 + 45-2)-competitive. 

Proof. It follows from Lemmas 6.1 and 6.3. [] 
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