
Title Performance guarantee for online deadline scheduling in the
presence of overload

Author(s) Lam, TW; To, KK

Citation

The 12th Annual ACM - SIAM Symposium on Discrete
Algorithms, Washington, DC., 7-9 January 2001. In The Annual
ACM - SIAM Symposium on Discrete Algorithms Proceedings,
2001, p. 755-764

Issued Date 2001

URL http://hdl.handle.net/10722/45631

Rights Creative Commons: Attribution 3.0 Hong Kong License

Performance Guarantee for Online Deadline Scheduling in the
Presence of Overload

Tak-Wah Lam Kar -Keung To
Department of Computer Science, University of Hong Kong, Hong Kong

A b s t r a c t

Earliest deadline first (EDF) is a widely-used online
algorithm for scheduling jobs with deadlines in real-
time systems. Yet, existing results on the perfor-
mance guarantee of EDF are limited to underloaded
systems [6, 12, 14]. This paper initiates the study of
EDF for overloaded systems, attaining similar per-
formance guarantees as in the underloaded setting.
Specifically, we show that EDF with a simple form
of admission control is optimal for scheduling on
both uniprocessor and multiprocessors when mod-
erately faster processors are available (our analysis
actually admits a tradeoff between speed and extra
processors). This is the first result attaining op-
timality under overload. Another contribution of
this paper is an improved analysis of the competi-
tiveness for weighted deadline scheduling.

1 I n t r o d u c t i o n

This paper is concerned with online algorithms for
deadline scheduling. A typical example is the earli-
est deadline first (EDF) algorithm, which is widely
used in many real-time systems (see [15] for a sur-
vey). Yet, from a theoretical viewpoint, EDF ex-
cept in some simple settings has no performance
guarantee, i.e., its performance cannot match or
even be competitive against the of[line adversary.
It is indeed known that in many settings of dead-
line scheduling, no online algorithm has this sort
of performance guarantee [2, 7]. In recent years, a
plausible approach to studying performance guar-
antee is to allow the online scheduler to use faster
processors than the offline adversary [1, 3, 5, 8, 9, 12,
14]. Intuitively, using faster processors compen-
sates the online scheduler for the lack of future in-
formation. In particular, for deadline scheduling
on multiprocessors, Phillips et al. [14] were able to
show that EDF using speed-2 processors is opti-
mal for hard-deadline systems. This means that if

the system is underloaded, allowing the offiine ad-
versary to schedule all the jobs to meet the dead-
lines, then EDF can always do so with double-
speed processors. This result extends the only op-
timality result of EDF in the literature--For hard-
deadline scheduling on a single processor, EDF us-
ing a speed-1 processor is already optimal [6].

In this paper we study deadline scheduling for
overloaded systems, in which the offline adversary
may not be able to schedule all the jobs, and
job deadlines are firm in the sense that there is
no credit to completing a job after its deadline.
Our aim is again to attain "optimality" with the
general meaning of matching the total work of
jobs completed by the adversary. Scheduling under
overload is more difficult as the online algorithm
has to be smart in selecting the right jobs to
schedule. Even for the single processor setting, no
online algorithm using a speed-1 or faster processor
is known to be optimal, let alone the multiprocessor
setting. In fact, it has been shown that if the
processor speed is less than 1.5, any algorithm is
not optimal [13]. This result should be contrasted
with the fact that in the underloaded setting, EDF
using a speed-1 processor is already optimal [6]. In
this paper we resolve in the affirmative the following
open questions about deadline scheduling under
overload:

For scheduling on a single processor, can EDF
(or any other online algorithm) using a faster
(say, speed-2) processor be optimal?

For scheduling on multiprocessors, is EDF
a good policy? Are speed-O(1) processors
sufficient to guarantee optimality?

Can we reduce the speed requirement by using
more processors? Such a tradeoff result is
known in the underloaded setting; e.g., let m
be the number of processors available to the

755

of[line adversary, then EDF using 2m speed-
1.5 processors is also optimal [12].

• Suppose that jobs have arbitrary values (or
weights) and the aim is to maximize the total
value of the jobs meeting the deadlines. The
scheduling becomes more complicated. Can
we exploit faster processors to ensure that the
total value at tained is competitive or even
optimal with respect to the off/line adversary?

P r o b l e m a n d de f in i t ions : We are given a
pool of m > 1 processors and a stream of jobs
which are released at arbitrary times, with varying
work (processing time) requirements and deadlines.
Every job is sequential in nature and is processed
by at most one processor at a time. Preemption
is allowed. For a hard deadline (or equivalently,
an underloaded) system, we aim at obtaining a
schedule in which all jobs are completed before
their deadlines, assuming that can be done by the
offtine adversary. In general, the system may be
overloaded, i.e., even the offline adversary may not
be able to meet all the deadlines. In this case,
our aim is to maximize the total work of jobs
completed before the deadlines. There is no credit
to completing a job after its deadline. An online
algorithm is said to be optimal if it can match
the total work of jobs completed by the offline
adversary. Note that an online algorithm that
is optimal for overloaded systems is also optimal
for underloaded systems. We consider settings
in which the on-line algorithm is equiped with
processors that are faster than those available to
the off-line adversary. A processor is speed-s if it
can process s times the work that can be processed
by a processor of the off-line adversay in the same
amount of time.

E D F w i t h a d m i s s i o n con t ro l : The way EDF
schedules jobs on m > 1 processors is as follows:
Whenever a job is released or completed, EDF ex-
amines the remaining jobs to be completed. If there
are at most rn such jobs, each job is scheduled to
run in one processor; otherwise, EDF chooses m
jobs with earliest deadlines for execution. When
the system is overload, EDF may be too aggres-
sive in preempting jobs; thus, in practice, EDF is
often supplemented with some kind of admission

control. We consider the following simple form
of admission control (Figure 1). At release, every
job has to go through a feasibility test in order to
get admit ted for EDF scheduling. The test simply
checks whether the new job together with the pre-
viously admit ted jobs can all be completed before
their deadlines using a EDF schedule. 1 We call this
algorithm EDF-AC. Our first result on scheduling
under overload is that for a single processor sys-
tem, EDF-AC using speed-2 processor is optimal.
(We can easily show that EDF-AC cannot attain
optimality if the speed increase is less than a fac-
tor of two.) When we are scheduling with rn > 2
processors, we find that speed-3 processors suffice
to guarantee EDF-AC to be optimal, no mat ter how
big m is. To our knowledge, this is the first result
attaining optimality for scheduling under overload.

T r a d e o f f b e t w e e n s p e e d a n d p r o c e s s o r :
Other than using faster processors, another way
to facilitate the online scheduler is to use more
processors. As jobs are assumed to be sequential
in nature, just increasing the number of processors
by even a constant factor cannot lead to optimality.
Nevertheless, we find that the speed requirement
for EDF-AC can be reduced if more processors are
available. In particular, we show that EDF-AC is

(v/~-t-1) 2 optimal when given M > m speed-(1 + M+I)
processors. For example, when m : 4, EDF-AC can
attain optimality if using four speed-3 processors,
or five speed-2.5 processors, or seventeen speed-l.5
processors.

S c h e d u l i n g j o b s w i t h va lues : In general, the
credit awarded to complete a job before its deadline
may not be related to its processing time. Jobs
may be given arbitrary values, and the objective
becomes to maximize the total value of the jobs
completed before their deadlines. For this more
general setting, there are several online algorithms
in the literature. These algorithms are not optimal,
though. Define the value density of a job to be the
ratio of its value to its required work. An online
algorithm A is said to be c-competitive for some
c > 0 if, for any job sequence, the total value of
jobs completed by the offline adversary is at most

For implementat ion purpose, it suffices to check jobs admit ted
and not completed.

756

Incoming ~ u ~ Admitted jobs l EDF

~ Rejected jobs

Figure 1: T h e schedu l ing of EDF-AC. A job is scheduled using EDF only if it passes a feasibility test.

c times of that of A. [4] In the single processor
setting, Koren and Shasha [10] generalized the work
of Koren et al. [2] to give an (1 + vfk)2-competitive
algorithm, where jobs are assumed to have value
density in the range [1,k]. KMyanasundaram and
Pruhs [9] gave another algorithm called SLACKER,
which is O(1)-competitive when a faster processor
is used. Specifically, for any 5 > 0, SLACKER is
(1 + 5-1)(1 + 5-1/2)(1 + 5 -1/2 + 5-1)-competitive
when given a speed-(1 + 25) processor. This paper
gives a simpler analysis of SLACKER, showing that
it is (1 + 25 -1 + 45-2)-competitive. For example,
given a speed-2 processor, our analysis reveals that
SLACKER is actually 21-competitive instead of 31.9-
competitive.

In the multiprocessor setting, Koren et al. [11]
gave a (1 + m(k 1/¢ - 1))-competitive algorithm 2,
where ¢ = mlnk /2(lnk + 1); yet no result has
been heard on using faster processors to improve
the competitiveness. In fact, SLACKER admits a
natural extension to the multiprocessor setting, but
it is non-trivial to extend the analysis of SLACKER
in [9]. Based on our new analytical tool, we
show that the multiprocessor version of SLACKER
is (1 + 25 -1 + 45-2)-competitive when it is given
speed-(1 +25) processors. Table 1 gives a summary
of these results.

Note that none of the above algorithms achieves
optimality. We can actually show that EDF-AC
achieves optimality even if jobs have different val-
ues. For the single processor setting, it suffices to
use a speed-(k + 1) processor to achieve optimality;
for the multiprocessor setting, speed-(k + 2) proces-
sors are required. Moreover, a simple adaptation

- - - ~ - m (k 1/¢ - 1) approaches 2 In k + 3 when m is large.

of EDF-AC reduces the speed factor to O(logk).
The idea is to divide the m processors into [log k]
groups such that group i handles jobs with density
in the range [k (i- 1)/[log kl, ki/[log kl].

Organ iza t ion of the paper : The remainder
of the paper is organized as follows. Section 2 shows
the optimality of EDF-AC in the single processor
setting. It serves as a warm-up to Section 3, which
extends this result to the multiprocessor setting.
In Section 4, we adapt EDF-AC defined in Section 3
to reduce the speed factor to O(logk). Section 5
discusses how to use extra processors to reduce
the speed requirement. Finally, Section 6 presents
the multiprocessor extension of SLACKER, which
schedules jobs with different value densities. Due
to space limitation, details of the optimality of
EDF-AC for scheduling jobs with different value
densities are left in the full paper.

In the rest of the paper, whenever we refer
to a sequence of jobs, we assume that the first
job is released at time 0. The release time, work
request and deadline of a job J are denoted by
r(J), p(J) and d(J) respectively. We measure p(J)
in terms of the time required to process J on a
speed-1 processor. We only consider jobs satisfying
p(J) > d(J) - r (J) . Recall that completing a job
after its deadline gives no credit. Below, whenever
we say a job is completed, it is meant that the job
is completed before its deadline.

2 Op t ima l i t y of EDF-AC for un i -processor
schedu l ing

This section shows that for scheduling on a single
processor, increasing the processor speed by a
factor of two makes EDF-AC optimal, i.e., matching
the total work of jobs completed by the offiine

757

Processor speed

Single processor

Multiprocessor

l + 2 5 f o r a n y S > 0

(1 + x/k) 2 [21

1 m(k - - 1) [11]

(i + c~-i)(l + 5-½)(i + c~-½ + 5-1) [9]
1 + 25- ' + 45 -2 [*]

1 + 26-' + 4~ -2 [*]

Table 1: Competitive ratios of algorithms for scheduling jobs with arbitrary values. In the result of [11],
¢ = m In k/2(ln k + 1). Results in this paper are denoted with asterisks.

adversary.
Notation: For any sequence L of jobs, let EL

be the subset of jobs in L that can be completed
by EDF-AC (using a speed-2 processor), and (.0 L for
the offiine adversary (using a speed-1 processor);
let IIL]] be the total work of the jobs in L.

THEOREM 2.1. For any sequence L of jobs,
IIELll >_ IIOLI).

We prove Theorem 2.1 by contradiction. Sup-
pose there exists a job sequence L such that II COL I] >
IIEL I1" Let us consider L to be the job sequence con-
taining fewest jobs.

If jobs in EL are scheduled to run in two or more
continuous periods, we can immediately derive a
contradiction since one of such periods contains a
smaller job sequence violating Theorem 2.1. Be-
low, we assume that all jobs in ~'L are scheduled in
one continuous period, say, of length 6. The con-
tradiction stems from a property of the jobs admit-
ted by EDF-AC, which is stated in the Lemma 2.1.
Roughly speaking, any late-dead job (with deadline
after 26), if present in L, must be admitted into EL,
and would not affect the admittance of any early-
dead jobs (with deadline at or before 26) released
subsequently. The latter means that even if we re-
move all late-dead jobs from L, we cannot schedule
more early-dead jobs.

LEMMA 2.1. Let Le and Lt be the sets of early-dead
and late-dead jobs in L, respectively. Then Lt C EL
and EL~ = EL -- Lt.

With Lemma 2.1, we can prove Theorem 2.1
by deriving a contradiction as follows: Recall that
jobs in EL are scheduled in one continuous period
of length g. Since ItOLII > I]ELtl, the offline

adversary using a speed-1 processor takes more
than 26 time to complete OL, and some jobs in O L
have deadlines after 26. In other words, L contains
some late jobs. By Lemma 2.1, IIELo II =]]ELII-IILtll
< IIOLII- IILtll. Note that ll(OLell > II(OL- Ltll
>_ IIOLII- IILtll. In summary, Le contains fewer
jobs than L, yet IIEL~II < IIOL ll; this contradicts
the definition of L. The proof of Theorem 2.1 is
completed.

Proof. [Lemma 2.1] To see Lt C_ £L, it suffices
to observe that it is always feasible to schedule
a late-dead job J within the period [g, d(J)] since
e <_ d(J)/2 and the processing time of J on a speed-
2 processor is p(J) /2 < d(J)/2. Since EDF can
complete any feasible job sets [6], this guarantees
that J always passes the feasibility test of EDF-AC.

We prove ELe -~ E L - Lt by contradiction.
Suppose the equality does not hold. Then Ene and
EL do not contain the same set of early-dead jobs.
Let t < t~ be the release time of the first early-dead
job J on which ELe and EL disagree. Denote by
(EL) t the set of jobs in E L released before t, and
similarly for (ELe) t. Note that (EL) t comprises all
the jobs in (EL~)t plus possibly some late-dead jobs.
At time t, the only possible scenario for ELe and EL
to disagree on J is that J is admitted into ELe but
rejected from EL. That means , (ELe) t t..J {J} can be
completed using a EDF schedule, but (EL) t U {J}
cannot be. This can only happen when admitting
J causes some late-dead job J' C (EL) t to miss its
deadline. By definition of 6, all jobs in EL including
J ' can be completed before time 6. To cause J ' to
miss the deadline which is after 26, J must request
more than e units of time on a speed-2 processor, or
equivalently, p(J) > 26. This is impossible because
J is an early-dead job and p(J) < d(J) _< 26. Thus,

758

J cannot exist and ELe = EL -- Lt. []

3 O p t i m a l i t y of EDF-AC for mu l t ip roces so r
schedul ing

We extend the result of Section 2 to the multipro-
cessor setting. Specifically, we show that for dead-
line scheduling on m > 2 processors, EDF-AC using
speed-3 processors is optimal.

Consider any sequence L of jobs. Denote by
EL the set of jobs in L completed by EDF-AC
using m speed-3 processors. With respect to the
schedule of EL, a period is said to be busy if
all the m processors are working throughout this
period. Similar to Section 2, the core of the proof
of optimality is on analyzing the case when the
schedule of EL contains only one busy period, say,
[0, g], and all jobs in L are released within this
period. We say that a job in L is early-dead
if its deadline is at or before 3~, and late-dead
otherwise. We will show that the early-dead and
late-dead jobs in L satisfy the same properties as in
the single-processor setting (see Lemma 3.2 below);
the proof is slightly more complicated due to the
multiprocessor setting. First of all, we make a more
basic observation, which reveals the need of speed-3
processors.

LEMMA 3.1. Assume that the schedule of EL con-
tains only one busy period. Consider any job J E L.
Let X be the set of jobs in EL released before J. Let
X' = X U { J } and let Xe ~ C X U { J } comprise
all the early-dead jobs. Then, using an EDF sched-
ule, X ~ can be completed if and only if X~e can be
completed.

Proof. The "only if" direction is obvious. It remains
to prove the "if" direction. For the sake of contra-
diction, suppose that using an EDF schedule, Xe ~
can be completed but not X p. Among the jobs in
X p not meeting the deadlines, let J0 be the one
with the earliest deadline. Since Xe ~ can be com-
pleted, J0 must be a late-dead job, i.e., d(Jo) > 3~,
or equivalently, l < d(Jo)/3. On the other hand, as
X, a subset of EL, can be completed using an EDF
schedule, we have d(Jo) > d(J).

Let us have a close look of the EDF schedules of
X and X ~ = XU{J} . Recall that the EDF schedule
of EL contains only one busy period. Thus, the

schedule of X also contains a single busy period,
say, ending at h. A basic property of EDF is that
at any particular time, the schedule of X U {J}
uses at least as many processors as the schedule
of X. Therefore, the EDF schedule of X U {J}
contains a busy period ending at h > h. Moreover,
the schedule of X U {J} outperforms the schedule
of X by at least 3(h - h) units of work. Since the
EDF schedule of X completes all jobs in X, we
havep(J) > 3 (h - h) . Thus, £ < h + p(J) /3 <
e + p(g)/3 < d(Jo)/3 + d(J)/3. Using EDF to
schedule X t2 {J}, we will complete J0 if d(Jo) >
h+p(Jo)/3. The latter is true because h+p(Jo)/3 <
d(Jo)/3 + d(J)/3 + d(Jo)/3 < d(Jo). Thus, J0
should have met its deadline in the EDF schedule
of X'. A contradiction occurs. []

With Lemma 3.1, we can easily show the key
properties of the late-dead jobs in L.

LEMMA 3.2. Let Le and Lt be the sets of the early-
dead jobs and late-dead jobs in L. Then Lt _C EL
and ELe = EL -- Lt.

Proof. Since EDF schedules jobs in the order of
their deadlines, admitting a late-dead job J does
not cause any early-dead jobs previously admitted
to miss the deadline. By Lemma 3.1, J is always
admitted by EDF-AC into gL- Thus, Lt C_ EL.

Suppose ELe ~ E L - Lt and consider the
first job J in Le which is scheduled differently
when EDF-AC schedules L and Le. J must be
admitted when EDF-AC schedules Le and rejected
when EDF-AC schedules L. This implies that,
when using EDF-AC to schedule L, we should find
that J together with the early-dead jobs admitted
before J can be completed using an EDF schedule.
By Lemma 3.1, J should be admitted when using
EDF-AC to schedule L. A contradiction occurs. []

It remains to prove a theorem, in the spirit
of Theorem 2.1, to show that for scheduling on
m > 2 processors, EDF-AC is optimal when given
speed-3 processors. Unlike Theorem 2.1, the case
when the schedule of EDF-AC contains more than
one busy periods is complicated to analyze. The
problem is that the execution of a job can span
more than one busy period, making it difficult to

759

split L for contradiction purpose. To deal with this,
we prove a stronger version of Theorem 2.1; roughly
speaking, 113LII not only matches IIOLII, but is in
excess by a significant amount: Suppose O is any
subset of L that is feasible for scheduling. Define a
function f (L, 0) to be the portion of the work of
the jobs in gL -- O scheduled by EDF-AC after its
last busy period. We show that IICLII is in excess
of 11(911 by at least f(L,(9). Technically speaking,
this allows us to, in the case when there are more
than one busy periods, split L into two parts both
containing those jobs spanning two busy periods.
Intuitively, the overlapping is compensated by the
increased f(L,(9) after the split. Details are as
follows:

THEOREM 3.1. For any job set L, [[gLll-
f (L, O) _> IIOll b r all 0 C_ L that is feasible for
the offline adversary.

Proof. Suppose, for the sake of contradiction, there
exists a job sequence L such that the theorem is
violated. Tha t is, there exists O _C L that causes
ItCLII - f (L, (.9) < 11(.911. Without loss of generality,
we consider L to be the job sequence containing the
fewest jobs.

Consider the schedule of EL defined by EDF-AC.
Some jobs may be released outside a busy period.
For each of such jobs, we can delay its release
time until the next busy period while reducing the
required work. This results in another sequence of
jobs with the same busy periods and the same set
of jobs admit ted by EDF-AC. [I~L[[is reduced by
exactly the total amount of work reduced, while
IIOII is reduced by at most that amount. On the
other hand f (L ,O) is not affected. As a result,
the modified L and ((.9 still cause the theorem to be
violated. Thus, without loss of generality, we can
assume that jobs are always released when EDF-AC
is busy.

A s s u m e EL o c c u p i e s one s ing le p e r i o d , say,
of length e. Then the otfline adversary using
speed-1 processors must take more than 36 time
to complete O. L thus contains some late-dead
jobs. Define the follow subsets of jobs: Le C L
and Oe C O contain early-dead jobs; Lt C L
contains late-dead jobs; and L1 and L2, subsets of
Lt, contain jobs in O and not in O, respectively.

By Lemma 3.2, IIELell = IICLII- IILtll. It is clear
that ltOelt = IlOll- IILIlI. Since the scheduling
of jobs in $Le is not affected by the removal of
the late-dead jobs, f(Le, Oe) >_ f(L,(9) -ILL211.
Therefore, II LoIi- f(Le, Oe)is smaller than lIOell.
In summary, Oe causes Le to violate the theorem,
contradicting the definition of L.

A s s u m e EL are s c h e d u l e d to r u n in two
or more cont inuous per iods. We construct two
smaller job sets La and Lb as follows. Let t denote
the starting time of the second busy period. La
contains all jobs in L that are released earlier than
t. L b contains all other jobs plus some new jobs
derived from La as follows. For each job J in
~L n La, if J has not yet completed at time t by
EDF-AC, leaving w > 0 units of work, we add to L b
a new job with release time t, deadline d(J) , and
required work w. Denote by N the set of new jobs
added to Lb. It is easy to see that ~La = ~L CI La,
while CLb contains exactly those jobs in L b that are
either in CL or derived from jobs in £L. The sum
of]t~La I[and [[$LbII is exactly the sum of]ISL[] and
IINII.

It remains to show that La or Lb must violate
the theorem. Consider the following sets: Oa C
La contains those jobs also in O, and Ob ~_ Lb
contains those jobs also in O or derived from jobs

in O. The sum of IIOoll and IIObll is exactly the
sum of Iloll and IIg n Obll. Note that f (L ,O) is
exactly f(Lb, Oh), while f(La, Oa) is no less than
IIX-Obtt. We conclude that IIELoll + IIgLbll-
f(La, Oa) - f(Lb, Ob) is smaller than IIO~tl + IIObll,
so either Oa causes La to violate the theorem, or Ob
causes Lb to violate the theorem. Since both La and
Lb contain less jobs than L, this again contradicts
the definition of L. []

The analysis can be extended to cover the case
when jobs have arbitrary values, and the objective
is to maximize the value obtained by completing
jobs within deadlines. We have the following
theorem, which shows that EDF-AC using speed-
(2 + k) processors is optimal in this case. Due to
space limitation, the proof is left to the full paper.

THEOREM 3.2. Suppose EDF-AC using speed-(2 +
k) processors is used for any job set L that contains
jobs of value densities in [1, k]. Let gL be the set of

760

jobs completed by EDF-AC. Then]]gLII - f (L , (_9) >
IIOl[for all 0 C L that is feasible for the offline
adversary.

4 I m p r o v i n g EDF-AC w i t h value d e n s i t y
groups

When k is large, EDF-AC does not give a good per-
formance guarantee since EDF-AC is optimal only
when using a lot of extra speed, namely when us-
ing speed-(2 + k) processors. In this section, we use
EDF-AC as a black box and derive another algo-
rithm A-EDF-AC for any integer A > 1. By group-
ing jobs with vastly different value densities into
different group of processors, the algorithm needs
only Am speed-(2 + k 1/~) processors to achieve op-
timality (Theorem 4.1). Put t ing A = [log2 k], this
implies [log 2 k]-EDF-AC is optimal using [log~ k]rn
speed-4 processors. Using time sharing, we can sim-
ulate [log 2 k]-EDF-AC using rn speed-(4[log 2 k])
processors and thus obtain an optimal algorithm
under such situation. This provides a much better
guarantee than that provided by EDF-AC.

The algorithm is defined as follows:

A-EDF-AC: Divide Am processors into A
clusters, each with m processors. For each
1 < i < A, only jobs with value density
between k (~-0/~ and k ~/~ will run in a
processor of the i-th cluster. When a job is
released, the cluster of processors that can
serve the job is identified, and EDF-AC is
used to schedule the jobs in that cluster.

THEOREM 4.1. A-EDF-AC is optimal using Am
speed-(2 + k 1/~) processors.

Proof. Consider an input job sequence L. Let L(i)
be the set of jobs that are allowed to use the i-th
cluster. For a set of jobs X _C L, let O(X) be the
set of jobs that meet deadlines when the optimal
off-line algorithm schedules X using m speed-s
processors. Note that HO(L(1)) U . . . U O(L(A))II
is no less than IIO(L)II, since the optimal off-
line algorithm can always choose to run jobs in
O(L)NL(1) , . . . , O(L)NL(A) when scheduling L(1),
. . . , L(A) respectively.

The value obtained by A-EDF-AC is the sum
of values obtained by each cluster, i.e. IIEL(1)II +

• "" + []gL(~)ll- Jobs in the same cluster have
value densities which differ by at most a factor
of k I = k 1/)~. For scheduling L(i), EDF-AC uses m
speed-(2+kU~) processors. Applying Theorem 3.2,
we have IIgL(i)l[_> IIO(L(i))ll. This results in
that the value obtained by A-EDF-AC is at least

IIO(L(1))l[+ . . . + IIO(L(m))ll _> [lO(L)ll • []

5 Trading processors for speed

We extend the result in Section 3 to the case
when EDF-AC has more processors, apart from
that its processors are faster than those of the
offiine adversary. Our result shows that when the
number of processors increases, the speed required
for EDF-AC to achieve optimality can be reduced
arbitrarily close to 1. In particular, we have the
following lemma.

THEOREM 5.1. Suppose M > m processors are
available to EDF-AC. For each integer Mo from m
to M, EDF-AC using speed-s processors is optimal,
where s = l + m 1

~ o @ M - M o + i "

By choosing Me to be the integer closest to
v'~+i v ~ (M + 1), the speed requirement for EDF-AC

(,,/~+1)2
to be optimal is about (1 + M+i)"

We can prove Theorem 5.1 based on the frame-
work in Section 3 (i.e., Lemma 3.1, Lemma 3.2, and
Theorem 3.1). However, several notions have to be
generalized. Instead of keeping track of continuous
time periods when EDF-AC is busy, we keep track
of continuous time periods when EDF-AC is M0-
busy, defined as follows. Consider the scheduling of
a set of jobs L. At any time, we say EDF-AC is M0-
busy (m < M0 < M) if at least M0 processors are
working throughout this period. Again, we focus
on the case when the schedule of EDF-AC contains
only one M0-busy period, say, [0, if, and all jobs
are released within this period. A job is said to be
early-dead if its deadline is at or before Mm~sl , and
late-dead if otherwise.

In proving EDF-AC to be optimal when given
more but not so fast processors, the most non-
trivial part is why Lemma 3.1 still holds in this
modified setting. The new proof of Lemma 3.1 re-
quires a relationship between busy periods and Mo-
busy periods. It is quite straightforward to show

761

that the properties in Lemma 3.2 continues to hold.
Adapting Theorem 3.1 is however slightly more
complicated. In particular, we redefine f (L ,O) to
be the portion of work of the jobs in E L -- O sched-
uled by EDF-AC after the last M0-busy period. De-
tails will appear in the full paper.

6 S c h e d u l i n g j obs w i t h d i f fe rent va lue
dens i t i e s

In general, the value v(J) obtained by completing
a job J may not be proportional to the amount
of work p(J) required to complete the job, and the
jobs may have varying value density (the value den-
sity of J, denoted by p(J), is the ratio v(J) /p(J)).
The aim of the scheduler is to maximize the total
value instead of the total work. For scheduling jobs
with varying value densities on a single processor,
the algorithm SLACKER given by Kalyanasundaram
and Pruhs [9] is (i +5-1)(I +5-U2)(I +5-1/2 +5-1)-
competitive when using a speed-(1 + 25) processor
for any 5 > 0. In this section, we give an extension
of SLACKER, denoted MSLACKER, for scheduling
jobs on rn > 1 processors, and show that this ex-
tension is (1 + 25 -1 + 45-2)-competitive when given
speed-(1 + 25) processors. Since SLACKER is a spe-
cial case of MSLACKER, our result also improves
the competitive ratio of SLACKER given by [9].
This improvement is mainly resulted from a new
upper bound on the total value of jobs that can be
completed by the adversary.

MSLACKER is parameterized by two real values
5 > 0 and c > 1. MSLACKER is equipped with rn
speed-s processors where s = 1 + 25, and keeps
an initially empty set of privileged jobs M. At
any time, MSLACKER runs all jobs in M if M has
at most rn jobs; otherwise, it runs the m highest-
value-density jobs in M. When a job J is released,
J is added to M if M contains less than rn jobs,
or p(J) _> cp(Jo) where Jo is the m-th highest-
value-density job in M. If J cannot be immediately
added to M, the same checking will be done again
whenever a job is completed, until the remaining
slack (i.e., d(J) - p(J) - t, where t is the current

8

time) is less than 5 P@. A job is removed from M
if either it is completed, or its remaining slack
becomes negative. Figure 2 shows how MSLACKER
considers a job for execution.

Below we analyze the performance of
MSLACKER, showing that MSLACKER, when
given speed-(1 + 25) processors and when c is cho-
sen as 1 + 25 -1, is (1 + 25 -1 + 45-2)-competitive.
Let A, C, and R denote the sets of jobs completed
by the adversary, completed by MSLACKER, and
ever added into M, respectively. Let IICII be
the total value of jobs in C, and similar for IIAII
and IIRII. By definition, IICII <_ IIRII. A released
job J is said to be fresh at any time before
d(J) - (1 + 5)P(sg).

To show the competitive ratio of MSLACKER,
we need a lower bound of IICII, as well as an upper
bound of IIAII. Intuitively, MSLACKER is very
conservative and can complete most of jobs added
into M; specifically, we show that IICH is at least
a significant fraction of IIRII (see Lemma 6.1). On
the other hand, the adversary may be able to pick
some more valuable jobs to execute, but the way
MSLACKER selects the jobs guarantees that IIAII
cannot exceed IIRII too much (see Lemma 6.3).

LEMMA 6.1. IICll >_ llRII $

Proof. The proof is essentially a generalization of
the technique for analyzing SLACKER in the single-
processor setting [9]. Details are left in the full
paper. []

Unlike the proof given in [9], we derive the lower
bound of ItAII by analyzing separately the jobs that
are completed by MSLACKER and jobs that are not.
This leads to a simpler and tighter analysis. First of
all, let us observe a simple property of MSLACKER.

LEMMA 6.2. At any time t when a job J has not
yet completed by SLACKER and J is still fresh, then
e i ther MSLACKER is executing J, or MSLACKER
is executing rn other jobs each with value density at
least p(J)/c.

Proof. At time t, J may or may not be in M.
If J is in M and not being executed, then the
value density of any job S L A C K E R is executing is
at least p(J). Next, we consider J not in M.
Throughout the period [r(J),t] , J is not qualified
to get into M, i.e., M contains at least rn jobs,
and p(J) < cp(Jo) where Jo is the m-th highest-
value-density job in M. At time t, MSLACKER is

762

J is released

Some other job
completes ~ v

U n p n v ~ Y

Meet
Deadline

l J completes

Slack of J
is reduced to
less than 5p(J)/s

• . Miss 9
Deadline

Some job is released, Some job
and J becomes completes, and J

the m + 1-st becomes the m-th
most dense job most dense job

Privileged
Slack of J and waiting
becomes -ve

Figure 2: T h e life-cycle o f a j o b J as s c h e d u l e d by MSLACKER. After J is released, it tries
to become a privileged job by going through the two tests. It may run in a processor only after it is
privileged. However, since there are only m processors, some privileged jobs may have to wait. Jobs
that wait for too long to be privileged or to run in a processor will miss deadlines.

executing m other jobs each with value density at
least p(J)/c. []

We are now ready to show the upper bound of

IIAII.

LEMMA 6.3. IIAII _< IICII + IIRII •

Proof. Partition A into A c = A M C and A u =
A - C . Since A c _C C,]IAI[< IICll+liAU]l . For
any job J in A u, define al(J) (resp. a2(J)) to
be the total amount of time when the adversary
executes J while J is fresh (resp. J is no longer
fresh). Obviously, al(J) + a2(J) = p(J). For any

job J E A u, a2(J) _< (1 + ~) P s ~ , and al(J) >

v(J) = ~p(J)p(J) < a](J)p(J), 5Ps ~ . Thus, ;

and llAUll < EJEA al(J)p(J).
To derive an upper bound of ItA]I, we consider

al(J) for each job J E A u. By definition, every
job J E A u is not completed by MSLACKER.
At any time when the adversary executes a job
J E A u while J is fresh, Lemma 6.2 tells us that

MSLACKER either executes J, or executes m jobs
each of value density at least p(J)/c. In general,
at any time t, let Xt be the set of fresh jobs in A u
currently executed by the adversary; then for e ~ h
job J E Xt, we can identity a distinct job currently
executed by MSLACKER with job density at least
p(J)/c. In other words, the total value density
of jobs in Xt is at most c times the total value
density of jobs currently executed by MSLACKER.
To bound ~jEA u al(J)p(J) , it suffices to consider
the sum over all time t of the totaJ value density
of jobs in Xt, which is at most c times of the sum
over all time t of the total value density of jobs
executed by MSLACKER at time t. Note that each
job J E R can contribute a quantity of at most
p(j)Ps ~ to the latter sum. Thus, the latter sum

can be expressed as ~JER P(J)P~s J , which is equal
to ~lIRll. In summary, ~g~A~al (J)p (J) < ~]]RII.
Therefore, ~llAUll < cllRtl , and IIAI[< [ICII +
IIAUll <_ IlCll + ~IIRII. []

THEOREM 6.1. MSLACKER, when given speed-(1+

'763

25) processors and when c is chosen as 1 + 25 -1, is
(1 + 25 -1 + 45-2)-competitive.

Proof. It follows from Lemmas 6.1 and 6.3. []

R e f e r e n c e s

[1] S. Baruah. Overload tolerance for single-processor
workloads. In IEEE Symposium on Real time
technology and application, pages 2-11, 1998.

[2] S. Baruah, G. Koren, B. Mishra, A. Raghunathan,
L. Rosier, and D. Shasha. On-line scheduling in
the presence of overload, In Proc. 1991 IEEE Real-
Time Systems Symposium, pages 101-110, 1991.

[3] P. Berman and C. Coulston. Speed is more power-
ful than clairvoyance. In Proc. 6th SWAT, pages
255-263, 1998.

[4] A. Borodin and R. E1-Yaniv. Online Computation
and Competitive Analysis. Cambridge University
Press, 1998.

[5] M. Brehob, E. Torng, and P. Uthaisombut. Ap-
plying extra-resource analysis to load balancing.
In Proc. l l th ACM-SIAM SODA, pages 560-561,
2000.

[6] M. L. Dertouzos. Control robotics: the procedu-
ral control off physical processes. In Proc. IFIP
Congress, pages 807-813, 1974.

[7] M. L. Dertouzos and A. K. L. Mok. Mul-
tiprocessor on-line scheduling of hard-real-time
tasks. IEEE Transactions on Software Engineer-
ing, 15(12):1497-1506, 1989.

[8] J. Edmonds. Scheduling in the dark. In Proc. 31st
ACM STOC, pages 179-188, 1999.

[9] B. Kalyanasundaram and K. R. Pruhs. Speed is
as powerful as clairvoyance. 3. ACM, 2000. To
appear. Preliminary version appeared in Proc. 27th
FOGS (1995), pp. 214-221.

[10] G. Koren and D. Shasha. D°Wr: An opti-
mal on-line scheduling algorithm for overloaded
uniproeessor real-time systems. SIAM J. Comput.,
24(2):318-339, 1995.

[11] G. Koren, D. Shasha, and S. C. Huang. MOCA:
A multiprocessor on-line competitive algorithm for
real-time system scheduling. In Proc. 14th Real-
Time Systems Symposium, pages 172-181, 1993.

[12] T. W. Lam and K. K. To. Trade-offs between speed
and processor in hard-deadline scheduling. In Proc.
10th ACM-SIAM SODA, pages 623-632, 1999.

[13] T. W. Ngan. Private communication.
[14] C. A. Phillips, C. Stein, E. Torng, and J. Wein.

Optimal time-critical scheduling via resource aug-
mentation. In Proc. 29th ACM STOC, pages 140-
149, 1997.

[15] J. A. Stankovic, M. Spuri, K. Ramamritham, and
G. C. Buttazzo. Deadline scheduling for real-time
systems: EDF and related algorithms. Kluwer
Academic Publishers, 1998.

764

