
Title Document distribution algorithm for load balancing on an
extensible Web server architecture

Author(s) Ng, CP; Wang, CL

Citation
The 1st IEEE / ACM International Symposium on Cluster
Computing and the Grid Proceedings, Brisbane, Australia, 15-18
May 2001, p. 140-147

Issued Date 2001

URL http://hdl.handle.net/10722/45627

Rights

©2001 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

Document Distribution Algorithm for Load Balancing on an Extensible Web
Server Architecture*

Ben Chung-Pun Ng and Cho-Li Wang
Department of Computer Science and Information Systems

The University of Hong Kong
Pokfulam Road, Hong Kong
{ cpng+clwang} @csis.hku.hk

Abstract

Access latency and load balancing are the two main
issues in the design of clustered Web server architecture for
achieving high pegormance. In this paper; we propose a
new document distribution algorithm for load balancing
on a cluster of distributed Web servers. We group Web
pages that are 1ikel.v to be accessed during a request
session into a migrating unit, which is used as the basic
unit of document placement. A modified binning algorithm
is developed to distribute the migrating units among the
Web servers to fulfill the load balancing. We also present a
redirection mechanism, which make use of migrating unit’s
property, to reduce the cost of request redirections. The
distribution of Web documents would be recomputed
periodically to adapt to the changes in client request
patterns and system configuration. Sirn~ilation results show
that our solution can reduce the amount of request
redirection ctrid document migration, and it can distribute
workload properly among Web servers.

1 Introduction

The Internet’s ever-increasing popularity demands the
Web sites to handle large amount of requests. This has
created an urgent need for a more powerful Web server
architecture to handle this problem. Distributed Web server
(DWS) consists of multiple Web servers, which are
connected by LAN or WAN, and work together to handle
the Web requests. It is one of the solutions to improve
response time and reduce the resulting traffic congestion.

Distributed Web server systems can be classified by the
degree of document duplication among Web server nodes.
One type of DWS duplicates all tiles in every Web server
nodes. This approach would waste large amount of storage

for replicating files that are not frequently requested by
Web clients. In addition, full duplication may generate
heavy traffic in the network and load in the servers to
maintain Web content consistency.

On the other hand, for Web server system without
document duplication, it is impossible to achieve load
balance if there exists some hot spots (popular Web pages
with very high request rates) in the Web site [4]. For other
type of BWS, only subset of files is duplicated in each Web
server nodes. Some content-aware distributor [8,9] is
adapted to dispatch HTTP requests to the Web server that
consists of the requested document. Duplication of
frequently requested documents can balance the workload
of the servers and improve the storage utilization.
However, this approach may lead to a performance
bottleneck at the distributor since redirection overhead is
charged for every HTTP request, which results in longer
access latency.

In this paper, a distributed Web server architecture,
called Extensible Web Server (EWS), is proposed. The
EWS allows server nodes to be added or removed at any
time. The dynamic nature of system configuration has
added the challenges in the design of efficient document
distribution algorithms to achieve high-performance Web
services with minimum storage consumption and
redirection overheads. Main features of EWS discussed in
this paper are as follows:

(1) Avoid storing unnecessary c0p.v of document - It
has been observed that 10% of files in a Web site
accounts for 90% of server requests and 90% of the
bytes transferred [7] . To improve the storage
utilization without scarifying performance, we
propose new policies for document replication,
which reduce the number of copies for documents
with low request rate or those with large file size.

(2) Reduce the number of HTTP redirections - As each

*The research was supported by H K U University Research
Grant 10203009.

0-7695-1010-8/01 $10.00 0 2001 IEEE 140

(3)

server only hosts a portion of the Web contents,
redirection is always needed to route the client
request to a server node that stores the requested
Web page [SI. We proposed a new redirection
mechanism and a Web document distribution
algorithm, which can reduce the average number of
request redirections encountered by a client. Thus
the average access latency can be shortened.
Load Balancing - Each document in the Web
server is associated with a weight based on some
criteria, such as access frequency and document
size. I t is desirable that the Web document
distribution results in balanced workload among
the Web servers for future client requests. This is
important when there are a large number of
concurrent client requests towards the servers.

The rest of the paper is organized as follows. In section
2, the architecture of EWS would be shown in detail. In
section 3, the Web content partitioning and distribution
algorithms would be presented. Section 4 mentions the
experiment and the simulation results. Related works are
discussed in Section 5. Finally, the conclusions are given in
Section 6.

2. Architecture of EWS

The Extensible Web Server (EWS) [151 consists of
multiple distributed Web servers that function cohesively
as a single logical Web server. The main feature of EWS is
that i t allows server nodes to be added or removed at any
time.

In EWS, there is one redirection server installed in the
central site. I t would handle the first request of a visitor’s
request session. I t is responsible to select a suitable web
server for the client and redirects the client to the selected
server using HTTP redirection function. The redirection
server serves as a single point of entry in the view of
clients.

In EWS, documents of a Web site are stored in the
master server (which can be hosted by the same machine
as the redirection server) in the beginning stage.
Periodically, the documents of the Web site would be
partitioned and copied to the rest of server nodes based on
Web request logs to adapt to the changes of client access
patterns. Replication of popular documents among
different server nodes is permitted for load sharing.

To enable the transparent redirection, all the hyperlinks
of HTTP documents, which reference to the documents
within the same Web site, are shown in a relative URL
form. For example a hyperlink would be modified to <.4
HREF=”a.html”>. Through the modification of the
hyperlink, we can force the visitor to send the subsequent
HTTP requests to the Web server that serves its previous
requests. As each Web server only keeps a subset of

documents, the server has to deal with three cases: (1) If
the requested document is locally available, the visitor’s
request is served. (2) If the requested document is not
available locally but the server is aware of the location of
the requested document, it will redirect the visitor’s
request to the suitable Web server node. (3) If the Web
server cannot serve the document request and has no
information about which Web server(s) can serve the
request, i t would redirect the visitor’s request to the master
server since the master server keeps ai1 Web documents.

For example, there are 5 html files A, B, C, D and E in
the Web site. Web server 1 stores file A, B and Web server
2 stores C, D and E. Firstly, the visitor requests A, it would
redirect the visitor to Web server 1. After that, the visitor
requests tile B by following a hyperlink in A. The visitor
would send the request to Web server 1 directly. If the
visitor then requests file C. The request would be sent to
Web server 1 . However, as Web server 1 does not have file
C. It would redirect the visitor to Web server 2.

Ideally, if the files are partitioned and distributed
properly among the Web servers, no further redirection is
required after the visitor’s first HTTP request is redirected
to one of the server node. For example, visitors always
request file A, B and C in the same session. If we put the 3
files in the same Web server, visitor would encounter only
one HTTP request redirection. This is better than
redirection-based hierarchical server architecture [4],
which requires one HTTP redirection for every HTTP
request, which results in longer access latency. Using our
approach, both the redirection server and Web servers
share the workload of redirecting HTTP requests. This
avoids the redirection server become the bottleneck of the
system. Benefits of using this redirection mechanism are as
follows:

Avoid redirection server becoming a bottleneck.
Redirection can be taken place at the redirection
server and all server nodes. Thus, the redirection
cost can be shared by all servers.
Load balancing on document retrieval. With
duplicated Web documents, load balancing can be
embedded in the selection of nodes for handling
HTTP requests. The redirector can choose a less
loaded server to process the request.
The redirecting structure can be changed easily by
updating the document location information in the
master server and other server nodes. There is no
need to modify any Web documents during
runtime.
This approach can be implemented on system with
Web server nodes connected by LAN or WAN.

3. Web Documents Distribution

In some large Web site, the Web site administrator
would partition the whole Web site into multiple subsets
based on the hierarchical structure of the local file system

141

or topics of special interests. They would assign a distinct
Web server to host each subset in order to distribute the
workload. This approach can avoid full replication of all
documents. However, it is not easy to achieve load
balancing since some popular Web pages will be requested
intensively during certain period while others are not. In
addition, the “topics of interests” are always changed by
time.

Our document distribution policy intends to distribute
the workload generated by the future client requests evenly
among the server nodes. This is carried out by two steps:
migrating unit grouping and migrating unit distribution.

3.1 Migrating Unit Grouping

We partition the documents of a Web site that are
closely related to each other to form a migrating unit.
Documents that are closely related imply that visitors are
likely to request them during the same session. Migrating
unit is the basic unit of document distribution. The effect of
migration unit grouping is that the Web server can process
the subsequent requests generated by the same visitor
without further redirection. Ideally, the visitor would only
encounter request redirection for the first HTTP request.
This can minimize the number of HTTP redirections and
shorten the access latency.

Let W= (o,, 02. . .o ,) be the set of all documents in the
Web site and S = (S,,,,,,,,e,, SI, S2...Sn) be the set of all Web
server nodes in the system. For simplicity, we assume there
is only one master server denoted as s,,,,,.,,~,. This Web
server contains all the documents in the Web site. For large
Web sites, multiple master servers can be employed. A
Round Robin DNS server can be used to select one of the
master servers for redirecting the client’s first request.

In the migrating unil grouping step, firstly, we need to
measure the closeness between documents i n W. The
closeness between any 2 documents (o,, and ob) is
measured using P,,ln. P,,,,, is the probability of requests for
tile a that are followed by a request for file b within [0, T)
seconds (i.e., during the past T seconds). If Phi,, between
two documents is high, the two documents should be
placed within the same migrating unit. The Web server log
is scanned to calculate P/,l,, for all documents i n W. P/,l,r can
be calculated using the simple formula. Similar grouping
algorithms have been used in proxy server systems
[10,11,12], which are used as hints for pre-fetching
documents in proxy server to improve the cache hit rates.

where c, is the total number of
client requests for file a and qln is the number of times a
request to file a followed by a request to file b within [O,
T) . The request logs would be collected from the master
server in the beginning stage or all participating server
nodes after the initial stage. The collected server logs are
reorganized into a number of sorted request lists such that
each request list contains request records from the same

Let f,llcJ = ql,, / c (,

client’. The request records within a list are sorted in
ascending order based on their request time.

We then compute the values of the counters c,, and c/,~,,
by scanning through each request list. For each request
record for file a i n the request list, we would increase the
value of c,, by 1. Besides, we also need to find the value of
each counter chh. Special treatment is taken when there are
multiple requests to the same file within the same period [0,
T). When file b is requested consecutively multiple times
after an access to tile a (e.g. abbb), c/,ll, would be increased
by one only (avoid P/ll,r > 1) since it is not reasonable to
update the Chll, multiple times as there is at most one
prediction in this case. For aaab, c/,l,, would be updated (i.e.
add I to c,,lrJ) for each occurrence of a. If we need to
calculate P,,I,,for all pairs ofdocuments, it would need O(n2)
c/,~(, counter. In order to reduce the space requirement, we
only calculate PI),,, where file b is an HTTP file.

After all request lists are processed, we calculate the
closeness between two documents using the equation PhlJ =
chi, / c,. Then we group the documents into migrating units
based on the input parameter minjrob . The parameter
m i n j r o b is a threshold value within the range of [O,I]. I t
is used to separate documents to different grouping units.
We would add a file b to a migrating unit mu, if there exists
a file a in nzu and PIIl~, greater than the threshold value
m i n j r o b . The value of m i n j r o b may affect the
granularity of document grouping and the amount of
request redirections. For example, assigning 0.2 to
m i n j r o b implies that there may be a hyperlink between
documents (e.g. A, B) in two migrating units with a
measured closeness of 0.2. Thus i f user requests A after B,
a request redirection may be required. When nzinjroh is 0,
there would be no hyperlink with measured closeness
greater than zero between any two migrating units. In this
case, one or more migrating uni t s would be formed but
they are independent from one another.

The accuracy of prediction for the migrating unit
grouping would be higher than that in cache proxy server.
The EWS computes smaller problem space as compared
with proxy server since the request logs of EWS contain
information for requests in a single Web site only. On the
other hand, cache proxy server computes request logs
generated by client requests for all documents from various
Web sites that are cached by it. Hence in EWS, more client
access patterns over a smaller set of documents are
collected and analyzed. This would make more accurate
prediction. Interested readers can refer to [I O , I I , I21 for
various grouping algorithms.

3.2 Migrating Unit Distribution

The migrating unit distribution regards the placement
of migrating units among the Web servers i n EWS to
achieve load balancing. Each migrating unit would be

’ We use the IP address to distinguish different clients.

142

associated with a weight based on number of requests on
its member documents and also the file size. The total
weight contributed by the migrating units assigned to each
Web server should be proportional to the performance of
the server, in order to balance the workload.

Let MU = {mu,, mu2, . . . , mu,,,) be the set of migrating
units generated after the migrating unit grouping step.
Initially, all documents appear once in one of the migrating
units. The weight of each file is the estimate of the
expected workload for serving the file. It is defined as a
product of total number of requests on the file and the tile
size, i.e., the total bytes transferred. For all migrating units
appear in M U , their weight is equal to the total weight of all
documents in the migrating unit. During the migrating unit
distribution step, a migrating unit mu; can be replicated
into two migrating unit mu,, and mui2 which

(1) mu,, = mu,, = mu,?, both mu,! and mu,? contain the
same documents as mu,, and

(2) weight(mu,) = weight(mu,,) + weight(mu,2); where
weight(x) denotes the weight of migrating unit x.

Let Wsj be the set of migrating units assigned to server
Sj and R, be the total weight of all migrating units in server
S, A modified version of binning algorithm (see
Algorithm 1) was designed to distribute the migrating units.
Based on the algorithm, we assign migrating units, R,,(S,)
to server Sj which has resource(Sji) processing power.
RC.JSj) is defined as,

R,,,(Sj) = (total weight of all migrating units) *
(resource(.S,,) / (sum of resource(S;) for all
server nodes in the system)

The modified binning algorithm performs as follows.
Firstly, we calculate the workload that should be allocated
to each server node according to the server's computing
power. In general, the computing power is a measurement
of the server's maximum throughput that it can handle.
Each time we pick one under-loaded Web server S, and
allocate one migrating unit to it, then continue the
allocation on the next server until all servers (except the
master server) receive the expected amount of workload
that is equal to Rr.rp. If adding the weight of the selected
migrating unit to a server S, will exceed its expected
weight R,,(Sj) (i.e., case 3), the migrating unit would be
replicated to form two new migrating units. The I"
migrating unit (muA) would be assigned to S,, while the 2"d
migrating unit (mu*) would be returned to MU set and will
be allocated to other server in the next run. After all
non-master Web servers are assigned with migrating units,
all the remaining migrating units in MU would be assigned
to the master Web server (Step 3).

Our modified binning algorithm allows a migrating unit
to be replicated to form multiple migrating units. For
example, a migrating unit mu; can be possibly replicated to
form several migrating units mu,/, mu,r ... muik. such that
weight(mu,) = weight(mu,/) + weight(mu,,) + ... +

Algorithm 1: Modified Binning Algorithm
Step 1: Calculate R,,(S,) for all Sj in S
Step 2: Determine Ws,, for all Si (except Smsslcr) in S

while (RC,JS,) > Rj for some j in 1,2 . .A) {
I* allocate migrating units among tz server

nodes in a round robin manner */

if (Rp.rJ,(S,) > R,) { I/ not fully allocated yet
Step 2.1: Get the migrating unit mu, from
MU with maximum value of weight(mu,)/
(total file size of all documents i n mu;)
Step 2.2: if (Rcxp(S,) - RI >= weight(mui))

(Wsl = WS,+ { m u ;) ;
MU = MU - { m u ;) ;) / / c a s e 1

else if (R<,/,(S,J - R, <
weighr(mu;)) (11 case 2

1. Duplicate mu, to form two
migrating units ml(A and mug
weight (~ u A) = R,,(S,) - R, ,
weight (mue) = weight(nzu,)

- weight(");

for (i = 1 ton) {

2. w,,= WS,+ {"A);
3. MU = MU - [mi,)+ { ~ z u B) ;

1)))
Step 3: Ws,,,,,,,, = MU;

weighr(mulk). These replicated migrating units keep the
same set of documents but assigned with different weight.
Thus, if a client is requesting a file in mu,, i t can be found in
k different servers. A weighted redirection mechanism can
be employed to select one among the k servers to handle
the request. We would select one server among the k
servers randomly with a probability proportional to the
assigned weight. For example, mu={file A, file B) with
weight 20 is assigned to server SI and mu' = {file A, tile B)
with weight 80 is assigned to server Sr. The probability to
redirect request of tile A to SI and S2 should be 0.2 and 0.8
respectively. The weight assignment scheme enhances the
load balancing when the migrating unit contains hot Web
objects.

While allocating the migrating units to each server SI,
the migrating unit with the largest weight-to-size ratio will
be selected first (Step 2.1). Migrating unit with larger
weight-to-size ratio implies that the migrating unit consists
of documents that are more frequently requested and their
file sizes are smaller. Migrating units with low
weight-to-size ratio is not a good choice for duplication
because either the documents in the migrating units are not
requested frequently, or the tile size is relatively large.
With this allocation policy, we can reduce the cost of
migrating unit duplication and data movement in the
network. Migrating units with low weight-to-size ratio
will be assigned to the master Web server. As master Web
server stores all the documents locally, thus there is no
duplication and distribution cost in allocating those
migrating units. Although master Web server stores all the

143

documents, i t would only serve requests for documents
belong to the migrating units that are assigned to it.
Requests for other documents would be redirected to
server that contains the requested documents.

4. Simulation Details and Results

4.1 Experimental Setting

Simulation was performed to study the performance of
the proposed algorithms. The HOWTO section of the
Linux Document Project (http:Nwww.linux.org) and the
Web server logs collected from the Department of
Computer Science at University of Hong Kong
(http://www.csis.hku.hk) are used for the tests.

Experiment 1 - Using randomly generated data

A Web document graph is built based on the HOWTO
section of the Linux Document Project. Each node in the
graph represents one file. There is a link from node a to
node b if there is a hyperlink in file a to file b. The weight
of the link from node a to node b is defined as the
probability that a visitor would request node b after node a.
The weight of each node (file) is the product of the total
number of requests on the file and size of the file.

Entry point is the I" file requested by a visitor when
they visit the Web site. It is a reasonable assumption that a
Web site only has a few well-known entry points. In this
simulation, we assume that there are two entry points in the
Web document graph.

The HOWTO section consists of groups of html files.
Files belonged to the same group are html files included in
the same tutorial topic. We assumed that the weight of link
between any two files is 0.8. For hyperlinks from the entry
points to each group of html files, we assume that 2% of
them have a weight of 0.5, 13% of them have a weight of
0.3 and 85% of them have a weight of 0.05.

The Web document graph would be used to generate
random sequence of requests using Algorithm 2. The data
generated would be used as input for our simulation
experiment. We assumed that client-side caching is
enabled. Thus the files ever requested by the client would
not be requested again within the same session. Algorithm
2 used to generate the requests

We assume that the inter-arrival time of requests within
the same session is an exponentially distribution with a
mean of 25 seconds. 13 1457 randomly generated requests
from 5000 clients are used as input to perform the
migrating unit grouping. After that, another 264275
randomly generated requests from 10000 clients are used
to evaluate the effectiveness of the document distribution
algorithm. Simulation is carried out with different
combination of mingrob (used in grouping) and number
of Web servers.

Algorithm 2: Random Request Generator
Let link-set is a FIFO that stores the set of links not
used yet for generating the next request.
Let doc-set is a link list that stores the documents to be
requested in this visit session.
Step 1: Select an entry point randomly.
Step 2: Add the document selected in step 1 to doc-set.

Add all the links associated with the document
to link-set

Step 3: while (link-set not empty)
Step 3.1: Get a link from the head of link-set.

Remove the link from the queue.
Step 3.2: If the document referenced by the

link already in doc-set, then goto Step 3
Step 3.3: Generate a random number rand from

a uniform distribution between 0 and 1.

Step 3.3.1: Add the document referenced by
the link to the doc-set.

Step3.3.2: Add all the links associated to the
newly added document to the
head of the link-set.

If rand > weight of the link, then

Experiment 2 -Using real Web server logs

In this experiment, Web server logs collected from
Department of Computer Science at the University of
Hong Kong's Web servers are used.

The first half of the Web server logs is used as input to
perform the migrating unit grouping. The second half of
the Web server logs is used as the input to test the
performance.

4.2 Redirection Overhead Analyses

In EWS, redirection would occur only when: (I) 1"
requests to the system, redirected by the redirection server
(2) When the request cannot be handled by the current
server, as Web document is not stored in that server. Figure
1 and figure 2 show the average number of redirections
encountered per client. In Experiment I , the average
number of Web requests generated by each client is about
26.4. Using our approach, the average number of
redirection encountered by each client is 1.07 for two
servers and 1.75 for 32 servers. For most redirection-based
server architectures, such as the RobustWeb [8], the HTTP
redirection is required for every HTTP request. The
number of request redirection is equal to the number of
requests. This would introduce overheads in serving HTTP
requests and increase the workload for handling request
redirection in the system. We can see that our approach
provides a better request redirection mechanism.

Similarly, in experiment 2, there are a total of 236016
requests from 20970 clients, on average of 11.25 requests
from each client. Based on our approach, the average
number of redirections encountered by each client is 1.14

144

http:Nwww.linux.org
http://www.csis.hku.hk

I

12 22 32
m. of servers

Figure 1 : Average number of redirections encountered
per visitor with different mingrob values in
experiment 1

“ T f

z 4 -0 m

0 -0 m 2 3
2 = 0 loo0

>w2 05oOo
0 --0 m

0 4 4

2 12 22 32
m. of servers

Figure 2: Average number of redirections encountered
per visitor with different min-prob values in
experiment 2

30% I /*

Figure 3: Amount of file distributed (file
distributeoVYotal amount of files in the web site) in
experiment 1

for 2 servers and 2.03 for 32 servers. From the simulation
results, we found that EWS helps to reduce the number of
HTTP redirections effectively. It is likely that our grouping
mechanism can provide good prediction of the future
request patterns.

4.3 Storage Consumption Analyses

Figure 3 shows the total amount of documents stored i n
the web server nodes except master server for different
combinations of min j rob and total number of Web
servers. In our Web document distribution algorithm, we
would always select migrating units with the largest
weight-to-size ratio first. Thus web server nodes, except
master server, are likely to be filled with small-size and
more popular documents. Migrating units with low
weight-to-size ratio, which are usually documents of large
size, will be assigned to the master Web server. As master
Web server keeps all the documents locally, thus there is no
distribution cost i n allocating those migrating units. In
EWS, we would duplicate the migrating unit, if a single
Web server cannot provide enough resource for a
migrating unit. Thus we can reduce the number of
documents need to be distributed to web server nodes in
each Web document distribution process. The simulation
results show that our proposed algorithm is effective in
reducing the document distribution cost.

4.4 Load Balancing Analyses

We study the load balancing effects of the proposed
algorithms bascd on the document distribution generated
in Experiment 2. The Load Balance Metric (LMB) [I] is
used as a performance metric to provide relative
performance studies. To obtain the value of LMB, the
peak-to-mean ratio of server load is measured at different
sampling points (I sampling point every hour) in the
simulation. The server load is defined as the total size of
Web documents transferred by the server. The LBM is
obtained by calculating the weighted average of the
peak-to-mean ratios measured, using the total server load
as the weight at that sampling period. Smaller value
indicates a better load balancing performance. For the
purpose of comparisons, two other document distribution
solutions are included:
1. Round robin: There is a front-end redirection server,

which would redirect each incoming request to one of
the servers in a round-robin manner. Each server keeps
full replication of all the Web documents presented i n
the web site.
Random: Similar to EWS, except that the migrating
units are distributed among the Web server nodes in a
round robin manner without considering the weight of
the migrating units. None of the documents are
duplicated in this case.

2.

In this experiment, two data sets are used as input in
the simulation. Data set 1 consists of 1574781 requests
from 94575 clients (2187 requestshour) and Data set 2
consists of 1403075 requests from 85793 clients (1886
requestshour).

145

Data set I I EWS Random Round Robin
2 servers 1 1.130 1.122 1.009
4 servers 1.092 1.590 1.022
8 servers 1.303 2.890 1.060

3.666 1.093

Table 1: LMB measurement using Data Set 1

Data set 2 I EWS Random Round Robin
2 servers I 1.038 1.303 1.010
4 servers 1.207 I .965 1.028
8 servers 1.425 2.892 1.035

3.787 1.069

Table 2: LMB measurement using Data Set 2

Table 1 and 2 show the LMB measurements using data
set 1 and 2 respectively. From the simulation results, we
found that our approach outperforms the Random po1ic.y
for all cases and its performance is close to the
Round-Robin policy that is with full document replication.
Our approach can achieve good load balancing since we
consider the document size, request rate, and also the
affinity of client accesses while grouping the Web
documents.

5. Related Works

There are two different types of approaches to improve
the performance of HTTP requests in WWW. The
client-side approach tries to reduce the delay of serving
HTTP requests by means of caching copy of Web object in
the client side. Thus if the same Web object is requested in
the future, the request can be satisfied by the local copy.
This approach includes various types of client-side proxy
cache solution, e.g. distributed proxy cache approach [141.
The benefits obtained by this approach depend on the
cache-hit ratio. However, i t is not easy to achieve good
cache hit ratio i n proxy cache server, because: (1 j The
proxy server does not have enough information about the
structure o f a Web site for making cache replacement. I t is
not easy to predict the client access pattem for making
pre-fetch decision accurately. (2) Total cache size of a
proxy cache server is limited. I t cannot cache all the
documents in WWW. (3) It is not easy to ensure document
consistency in proxy cache server.

The server-side approach tries to reduce the delay of
HTTP requests by using multiple machines in the server
side to provide enough computing resource to handle the
HTTP requests. In the past, several server-side approaches
have been proposed. Probability Based Replacement (PBR)
server array [2] consists of multiple server nodes. All the
server nodes are connected to a central node through a
high-speed LAN. The server nodes would get the Web
documents from the central server for service. Some
popular Web documents would be copied and cached in the

server nodes. This architecture makes use of LAN
broadcast mechanism, thus PBR cannot be implemented in
a WAN environment.

Redirection-based hierarchical server architecture [3]
makes up of two types of servers: redirection servers and
normal HTTP server. Initially, system administrator should
partition all the Web contents into groups and distribute
them among different Web servers. Load balancing among
Web servers is achieved by moving a subset of documents
served in congested Web server to another Web server.
This approach requires each document to have a unique
base URL. All HTTP requests would be sent to the
redirection server first. Then the redirection server would
map the base URL, to target URL of the document, and it
returns the target LJRL to the client in an HTTP redirection
message. In this approach, the redirection server may
become a bottleneck easily because all HTTP requests
must be redirected by the redirection server. The paper
does not provide solution for Web document grouping and
distribution.

In [4], a graph-based Web document partitioning
algorithm is proposed. A collection of Web documents
would be viewed as a directed graph. Every Web server
can act as a home server and co-op server at the same time.
All documents originally reside on a home server.
Documents may be migrated from the home server to
co-op servers for load balancing purpose. But document
hyperlinks need to be modified to redirect user requests
from home server to co-op server. In this approach, there is
no duplication of documents in the system. The
performance may be suffered if there are some popular
Web objects. The system can only balance the workload by
migrating document without duplication since one
hyperlink can referenced to one Web document only.

In SWEB [5], the user requests are first evenly routed to
SWEB processors via the DNS rotation to one of the
available logical server, in a round-robin fashion. Each
Web server contains a scheduler and would exchange
system load information with another process. When a
request is routed to a Web server, i t can determine whether
to process this request or assign i t to another Web server.
The use of DNS limits the total number of Web servers in
the system (61. In SWED, each Web server nodes store a
whole set of Web content in each Web servers. This would
cause storing of unnecessary copies of Web documents,
which may result in waste of network and storage resource.

RobustWeb [8] consists of one or more front-end
redirection servers and a set of back-end servers. The
redirection server will then redirect the request to a
document server that maintains the requested document.
Access rates information is used to partition the documents
across the document servers. They try to equalize the sum
of access rates of all the documents stored at servers across
all document servers. In their system, every request must
be redirected by the redirection server. Thus there is heavy
redirection overhead for serving large number of requests.

146

6. Conclusion and Future Work

In this paper, we present a new Web server architecture
EWS that can scale in size to increase the computing
power for handling large volume of user requests and
provide extensible storage space to host large amount of
Web documents. EWS has a good potential to achieve
large throughput and fast response time for serving Web
requests. The proposed grouping algorithm partitions the
documents based on the information obtained from Web
server logs. This grouping mechanism can improve the
access locality and reduce the amount of request
redirection overheads. Our document allocation algorithm
can balance the load among all server nodes according to
the run-time server configuration. In addition, the
algorithm tries to avoid storing unnecessary copies of
documents in the Web server nodes. This approach can
reduce the cost of duplication and maintenance of
document consistency. Our request redirection mechanism
allows all servers to share the redirection overheads. Thus
there is no performance bottleneck incurred by a
centralized redirector.

There are still opportunities for further improvement on
the EWS. We would improve the accuracy of prediction
while grouping Web documents. More aggressive
document duplication policies can be exploited to increase
the hit rate of Web requests. We will also improve our
migrating unit distribution algorithm, such that it can
minimize the amount of documents to be relocated when
the number of Web servers in the system increased or
decreased.

Reference

Bung, R. B.; Eager, D. L.; Oster, G. M.; Williamson, C. L.
“Achieving Load Balance and Effective Caching in
Clustered Web Servers”. The 4“ International Web Caching
Workshop, 1999.
Yeung, K. H. and Suen, K.W. “Probability Based
Replacement Algorithm for WWW Server Arrays”.
Proceedings of the International Conference on IEEE
Parallel and Distributed Systems, 1998, Page(s): 670 - 677
Mourad, A. and Liu, H. “Scalable Web Server

Architectures”. Second IEEE Symposium o n Computers and
Communications, 1997, Page(s): I2 - 16.
Baker, S.M.; Moon, B. “Scalable Web Server Design for
Distributed Data Management”. Proceedings of the 15th
International Conference on Data Engineering. 1999.
Andresen, D.; Yang, T.; Holmedahl, V, Ibarra, 0. H. ,
“SWEB: Towards a Scalable World Wide Web Server on
Multicomputers”. Proceedings of IPPS. 1996, Page(s): 850
-856
Cardellini, V.; Colajanni, M.; Yu, P. S. “Dynamic Load
Balancing on Web-Server Systems”. IEEE Internet
Computing, 1999
Arlitt, M. F.; Williamson, C. L. “Web Server Workload
Characterization: The Search for Invariants”, ACM
Proceedings of the ACM SIGMETRICS conference on
Measurement & Modeling of Crimputer Systems, May 23-26,
I996
Narendran, B.; Rangarajan, S.; Yajnik, S. “Data Distribution
Algorithms for Load Balanced Fault-Tolerant Web Access”.
Proceedings of the I6”’ Symposium on IEEE Reliable
Distributed Systems. 1997 , Page(s): 97 -106.
Yang, C.S. and Luo, M.Y. “A Content Placement and
Management System for Distributed Web-Server Systems”.
Proceedings of2d” International Conference on Distributed
Computing Systems. 2000, Page(s): 691 - 698

[I O] Cohen, E.;. Krishnamurthy,- B; Rexford, J . “Efficient
Algorithms for Predicting Requests to Web Servers”. IEEE
INFOCOM ’99. h lume: I , 1999, Page(s): 284 -293.

[1 I] Cohen, E.; Krishnamurthy, B.; Rexford, J. “Improving
End-to-End Performance of Web Using Server Volumes
and Proxy Filters”. ACM SIGCOMM. September 1998.

1123 Palpanas, T. and Mendelzon, A. “Web Prefectching Using
Partial Match Prediction”. The 4“ Internationol Web
Caching Workshop, 1999.

[I31 Cardellini, V.; Colajanni, M.; Yu, P. S. “Redirection
Algorithms for Load Sharing in Distributed Web-server
Systems”. Proceedings of the 19th IEEE International
Conference on Distributed Computing Systetns, 1999,
Page(s): 528 -535.
Rodriguez, P.; Spanner, C.; Biersack, E.W. “Web Caching
Architectures: Hierarchical and Distributed Caching”. The
4‘” International Web Caching Workshop, 1999.
“Extensible Web Server Project,” The Systems Research
Group, Department of Computer Science and Information
Systems, The University of Hong Kong. URL:
http://www.srg.csis.hku.hkEWS/

[I41

[151

147

http://www.srg.csis.hku.hkEWS

