
Title Realistic communication model for parallel computing on cluster

Author(s) Tam, ACT; Wang, CL

Citation
The 1st IEEE Computer Society International Workshop on
Cluster Computing, Melbourne, VIC., Australia, 2-3 December
1999, p. 92-101

Issued Date 1999

URL http://hdl.handle.net/10722/45614

Rights

©1999 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37884425?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Realistic Communication Model for Parallel Computing on Cluster�

Anthony T.C. Tam and Cho-Li Wang
The Systems Research Group

Department of Computer Science and Information Systems
University of Hong Kong

{atctam, clwang} @csis.hku.hk

Abstract
In this paper, we present a model for parallel computa-

tion on commodity cluster. Our cluster model is targeted
as a tool for performance analysis and algorithm design.
We abstract the communication event by means of local
and remote data movements, and explicitly expose the con-
tention problems by capturing them in our parameters. To
validate our model, we compare the prediction accuracy
of our model with the Postal model for the popular tree-
based broadcast algorithm. Our model provides good pre-
diction accuracy and answers to some performance issues
that are missing in existing models. We examine the gather
collective operation, in which contention delay dominates
its overall execution time. Based on the model, we design
a communication schedule for the gather operation that
based on the upper and lower bounds, in which the con-
gestion behavior could be under our control and achieve
optimal results by avoiding data loss.

1. Introduction

Using cluster as the alternate mean of supercomputing is
the current trend in high-performance computing. Its sell-
ing point is their cost-effectiveness as compared to tradi-
tional parallel machines. Besides, its performance is go-
ing along with the advances in commodity hardware, e.g.
microprocessors and high-speed networks. Such a feature
is an attractive point for parallel computing, but also be a
problem in parallel algorithm design. Cluster computing is
facing the same dilemma as traditional parallel computing
- to design high-level, architectural independent algorithms
that execute efficiently on a wide range of current and future
cluster platforms. However, rapid advances in hardware
technology could hinder the portability and efficiency issues
of the parallel algorithms. Since change of some hardware

�This research was supported by Hong Kong Research Grants Council
grant HKU 7030/97E.

components may affect the performance ratio of the orig-
inal design, which in turn may affect the efficiency of the
programs. For example, migration of the network from Fast
Ethernet to Gigabit Ethernet or even higher standards, the
quantum leap in network performance could revoke many
existing designs, as the network performance is catching up
with the local data movement capability. The solution to
the above challenge relies on the computation model that
supports performance analysis and algorithm design.

In this paper, we introduce a simple model for parallel
computing on the cluster platform. The aim of our model
is for performance analysis, together with the ability to be
an algorithm design tool, i.e. feasible for complexity anal-
ysis. Our model provides a rich set of performance pa-
rameters, which capture the crucial performance character-
istics of the cluster, and the methodology to derive those
parameters. Due to the dynamic nature of the cluster archi-
tecture, change of cluster components may seriously affect
the application’s run-time behavior. Therefore, we need to
select appropriate parameters to analyze our parallel algo-
rithm with respect to the architecture-application pairs. In
our model, communication events are abstracted as some
means of local and remote data movements, and each move-
ment should have an associated cost. Unlike previous mod-
els, we expose the contention problems explicitly and cap-
ture them in our parameters, thus enhance the ability to han-
dle with contention issues.

The rest of the paper is organized as follows. In sec-
tion 2, we briefly discuss on the strengths and weaknesses
of the existing models. Section 3 describes the architectural
background and assumptions of our model, together with a
layout of all model parameters. In section 4, we validate
our model on a small cluster by comparing the prediction
accuracy of our model with the Postal model for the pop-
ular tree-based broadcast algorithm. In section 5, we ex-
amine the gather operation, in which contention situation
dominates its performance. A solution for this problem that
captures the congestion behavior is also discussed. Finally,
section 6 summarizes our work and concludes.

2. Parallel Models

In general, models have tended towards undesirable ex-
tremes. On one extreme, they are of highly theoretical qual-
ities but be unrealistic or difficult to map onto real ma-
chines. At the other extreme, models may be too machine-
oriented or complex which inhibit portability. The proposal
of the bridging model [11] could not settle the issue easily,
as the classification of being a bridging model is itself a de-
batable topic. As the definition of the model is “simply an
abstract view of a system or a part of a system, obtained by
removing details in order to allow one to discover and work
with the basic principles” [4]. However, the complexity of
designing and analyzing parallel systems requires that mod-
els be used at various levels of abstraction that are highly
related to the application characteristics. Such that models
should be developed for the relevant characteristics of the
application together with the characteristics of the architec-
ture. Hence, with such a diverge domain of applications
designated for parallel computing, e.g. regular and irregu-
lar problems, a simple, rigid model could not serve for our
needs.

The idea of setting up a model is for parallel algorithm
designer to develop efficient algorithms for realizable, cost-
effective architectures. If everyone has a common archi-
tecture insight, we can have a common ground for the de-
velopment. We agree that the architectural trend of paral-
lel computers is converging toward the following scenario
- Most modern large-scale machines are constructed from
general-purpose nodes with a complete local memory hier-
archy augmented by a communication assist, interfacing to
a scalable network [3][8]. Existing models, including both
abstract architecture models (e.g. LogP [3], BSP [11]) and
communication models (e.g. Postal [1]), which targeting at
the above architectural abstraction, have the following sim-
ilarities:

� Emphasized on the importance of communication costs
in parallel algorithm design.

� Assume reliable network, such that they treat sending a
message as a send-and-forget [1] event.

� Assume fully connected network and the exact structure
of the underlying communication network is ignored.

� Communication is based on point-to-point semantics,
with the latency between any pair of processors roughly
the same time for all cases.

� Performance characteristics of the communication net-
works are abstracted by a small set of parameters.

Under BSP Model, parallel algorithm is a sequence of
parallel supersteps. Each superstep consists of a sequence
of local computations plus any message exchange, followed
by a global synchronization. For the LogP Model, it tends
to be more network-oriented and simple. It uses four pa-

rameters to capture the cost associated with the communi-
cation events without limits to any programming style. An
interesting feature of LogP model is the idea of finite capac-
ity of the network, such that no more than certain amount
of messages can be in transit from any processor or to any
processor at any time. Any attempts to exceed the limit will
stall the processor. However, the model does not provide
any clear idea on how to quantify, avoid and take advantage
of this information in algorithm design. The Postal Model is
similar to LogP model with the exception of more abstractly
express the network. The system is characterized by two pa-
rameters only, and this effectively reduces the dimension of
analysis. Therefore, it facilitates communication analysis
rather than for performance studies.

These models provide an abstract ground for develop-
ment, however, they have the some drawbacks. First, in
realistic environment, sending a message is not as simple
as send-and-forget event. Although including this assump-
tion simplifies the analysis, but this could affect the overall
prediction accuracy in performance analysis. Second, they
assume simultaneously send and receive operations in unit
time step. This assumption has significant impact on the
performance of some communication operations, as in re-
ality, interference exists between send and receive events.
Third, their parameters neglect factors related to message
size, communication load, and contention issue, which in-
fluence the communication latency in a large degree in real
environment. Forth, too restricted set of performance pa-
rameters reduces their ability to make accurate prediction of
real performance, and also restricts the elucidative power of
the models. Fifth, restricted to certain programming style,
such as the need to have global synchronization between
supersteps, may affect their overall usage. Lastly, their cost
models are better for asymptotic analysis than for predic-
tion. Thus, when porting the resulting algorithm to a partic-
ular platform, significant efforts have to be made for tuning
the algorithm for performance.

Most of the above drawbacks come from the tradeoff be-
tween simplicity and accuracy. To be more realistic, we can
include more parameters to the model. Parameters are not
always important for all situations; the used of those pa-
rameters are subjected to the target level of abstraction that
we are going to work on. For instance, using a simple la-
tency parameter may be good enough to capture the cost of
the point-to-point communication, but is too simple for ex-
plaining the many-to-one or many-to-many issues. There-
fore, under some circumstances, a few performance param-
eters may be adequate for modeling the parallel system. On
other situations, there are other issues that need to be stud-
ied or included for making the correct judgment. As a re-
sult, it is sensible to think that models should provide some
mechanisms to improve theirs expressiveness when needed.

3. Our Performance Model

We believe that the use of the model in algorithm anal-
ysis should be done straightforwardly and easily, whenever
the users are provided with some systematic means of anal-
ysis. Emphasis should be made on the derivation of those
parameters by software approach, which is the key to the
whole analytical process. Based on these measurable pa-
rameters, high-level primitives can be built or analyzed, and
these primitives can also be used as some high-level perfor-
mance parameters in analyzing complicated applications.

3.1. Architectural Viewpoint of Cluster

In our model, a cluster is defined as a collection of au-
tonomous machines that are interconnected by a commodity
network. To reduce the intractability, we have to limit the
analytical space with the following assumptions. All cluster
nodes have the same local characteristics, such as computa-
tion power, memory hierarchy, operation system supports,
and communication hardware - homogeneous clusters. In
general, parallel programs are programmed in SPMD mode,
and follow the compute-interact mode of coarse-grained
synchronization. As for the communication system, it in-
volves a simple router switch, interconnecting all nodes,
and assumes complete graph topology. Hence, the network
diameter between cluster nodes is not relevant to the perfor-
mance studies.

For the switch architecture, we assume it is a packet-
switched, synchronous, pipeline network, with cut-through
feature. The logical unit of communication is a packet,
which is bound by the range [1..MTU1]. Thus, to send long
messages, the system transfers them as sequences of pack-
ets. The switch element has constant delay in routing the
packets from any input ports and output them in the absence
of conflicts, but the overall performance is affected by the
traffic load. Conflicts take place if more than one packet
need to access the same output line. Conflicts are resolved
by always forwarding the first arrival packet, and the rest
are buffered and routed later by the switch. The amount
of buffer memory inside the switch is assumed to be finite.
However, the network can sustain certain level of conges-
tion. At first instance, this global router concept [9] seems
to be a stringent assumption as this limits the scalability
aspect of the cluster systems. However, current network
technology allows us to scale the switching system to sup-
port hundred of machines interconnected by a single router
switch with more or less similar point-to-point latency [5].

1MTU stands for the Maximum Transfer Unit of the communication
system.

3.2. Cost Model

We focus on the costs induced by moving data around,
both locally and remotely. We consider data communication
via the network as an extension to the concept of memory
hierarchy, such as a movement from the remote memory
region to the local memory region. So there are two types
of data movements.

A. Remote Data Transfer We abstract the data move-
ment from sender address space to receiver address space by
three phases. First, data on the sender side traverse through
asend phase, which is initiated by the host processor. Then
the network delivers the messages to the other end during
the transfer phaseof the communication. At remote end,
receive phaseconsumes the data and terminates the transfer
event. We encapsulate these events by the following param-
eters.

Machine size p - the number of processors participate in
the current event.

Send time Os - This phase is viewed as the time used by
the user process to interact with the logical network in-
terface, prepare the message, queue it to the send queue,
and signal the network hardware. The overall cost re-
flects the processing speed of the host CPU, the effi-
ciency of the memory subsystem, and virtual interface
protocol in use. We model this phase by a simple linear
function,Os(m) = �s + �sm, where�s is the startup
cost which is depended on the host processing power,m
is the message length bounded by the range [1..MTU],
and�s is the data transfer rate that depends on the effi-
ciency of the memory subsystem. Subject to the com-
munication protocol, e.g. no memory copy is involved,
this linear function can be reduced to a simple constant,
i.e. Os(m) = �s. We quantify this event by directly
measure the time engaged by the CPU in handling this
activity.

Send gap gs - Owing to the difference in data movement
speeds between the send and transfer phases, two con-
secutive packets cannot be served by the network hard-
ware within certain time interval. This inter-packet gap
has two meanings. First, it reflects the moving capabil-
ity of the network with respect to the host processing
speed. Thus, the difference betweenOs and gs indi-
cates the amount of CPU cycles available for the pro-
cessor to do other useful computation. Second, it rep-
resents the maximum per-processor inter-arrival rate of
the packets to the router. This parameter is delineated
as,gs(m) = g1 + �1m, whereg1 stands for the startup
cost necessary to initiate the transfer and�1reflects the
available per-processor communication bandwidth. Due
to the limited buffers in the send queue, if a sender gener-

ates messages faster than the network can dispatch, new
message can only be accepted if the network has just fin-
ished servicing one. By quantifying this servicing time
with respect to the message size, the required cost func-
tion can be obtained.

Transfer time L - This parameter represents the time used
by the network in delivering data from the source mem-
ory to the destination memory. For example, from the
send queue of local machine to the receive queue of
the remote machine. It is a network-dependent param-
eter, and it encapsulates the transmission speeds of dif-
ferent network components, the diameter between the
communicating entities, the network topology and the
network protocol in use. Since we model the network
as a complete graph with single global routing switch,
both diameter and topology factors can be eliminated. In
a realistic environment, its performance is subjected to
the traffic load at any particular instant. For example,
when routing a packet through the switch, if the out-
going port is engaged, temporary buffering is needed.
This delay affects the overall network performance per-
ceived by the users. We model this phase by the follow-
ing bilinear function under congestion-free condition,
L(m; p) = l(p) + m�1(m; p), wherel(p) is a function
represents the cumulative startup cost of this transfer and
�1(m; p) is the observed network throughput of the peer-
to-peer communication. Bothl and�1 are a function ofp.
Routing a packet involves utilization of some central re-
sources in the switch (e.g. buffer control unit, arbitration
unit). Therefore, contention for resources may occur if
more than one routing request happen concurrently. The
extent of this contention is subjected to the switch in-
ternal architecture, and different routers may behave dif-
ferently. Due to the limitedaggregate bandwidth, the
router cannot support many communicating pairs at a
time and contention arises. So the perceived local band-
width depends on the available aggregate bandwidth to-
gether with the volume of the communication, thus,�1
is a function of bothp andm. To measure it by software
means, we have to calculate it indirectly. Based on the
fact that a pingpong pair involves2�(Os+L+Or+Ur)
time units, if we know all other parameters,L(m; p) can
be calculated. By artificially generate multiple concur-
rent pairs of pingpong nodes, the corresponding bilinear
function could be obtained by using linear regression.

Receive gapgr - This parameter stands for the minimum
gap between two consecutive receptions experienced by
the receiving host. In other words, it is the maximum
inter-arrival rate of the packet delivery by the network.
This parameter has two uses. First, this gap reflects the
CPU cycles available to handle arrived packets, so pro-
tocol design or other computation can utilize this infor-

mation. Second, this gap relates to the minimum service
time of the router in delivering packets, as we cannot
receive more than one packet in that interval. So inclu-
sion of this parameter is crucial for performance analy-
sis. Same as thegs parameter, it is captured by a linear
function,gr(m) = g2+�2m. For simplicity, we can gen-
erally assume�1 = �2, as both are related to the trans-
fer capability of the router. To quantify this parameter,
we can converge multiple streams of data to a single re-
ceiver, and measure the minimum time perceived by the
receiver in detecting the arrival of data packets.

Network buffer BL - Limited resources are the major
cause of congestion, which in turn, affect the delay ex-
perienced by the applications. In reality, congestion is
a fact that we need to face with instead of neglecting
it. This parameter reflects the available buffers in the
global router. By capture the finite capacity of the net-
work buffers, algorithm designer can calculate the net-
work endurance, and avoid contention loss with appro-
priate communication schedule. To quantify this param-
eter, we perform a set of tests which flood the router
under different duration, and record the percentage of
packet arrival at the destination. Then, by mapping the
data with Equation 4 (appeared in section 5), we can es-
timate the buffer capacity of the router switch.

Asynchronous receiveOr - This parameter captures the
software overhead in handling incoming messages. This
phase is handled by kernel thread and does not in-
volve the receiving process, so it is considered to be
an asynchronous event. Likely, the performance is af-
fected by the processing speed of the processor, the algo-
rithm used, the signaling mechanism, and the I/O band-
width. In our model, we express it as a linear equation,
Or(m) = �r+�rm. In which�r represents the minimal
cost of this asynchronous event, such as interrupt cost,
buffer management, and protocol overhead; while�r re-
flects the memory movement between different memory
regions if needed. Observed that during the reception,
system resources are consumed, therefore, other work-
loads would be affected. Under experimental control,
we measure the execution time of a control computation,
and then we measure another runs of this computation
segment with message reception happens in the back-
ground. We then estimate the increase in execution time
due to this message reception. Thence, we have indi-
rectly measured the induced software overhead.

User receiveUr - Due to the asynchronous nature of the re-
ception, the receiving process needs to have some means
to check for data arrival, e.g. polling, block & wake-
up by signal; and consumes the data, e.g. copy to other
memory segment. This parameter reflects the cost spent
by the receiving process after arrival of messages. In

Table 1. Cost formulae of the measured pa-
rameters

Parameters Cost Formulae

m � 40 (in �s) m > 40 (in �s)
Os 0:0291 �m+ 6:308 0:0253 �m+ 6:37

Ts 0:049 �m+ 11:732 0:0776 �m+ 10:88

gs 6.73 0:0796 �m+ 3:027

gr 6.73 0:0788 �m+ 4:986

Or 0:0426 �m+ 12:245 0:0429 �m+ 12:176

Ur 9.93

L
1:556 � p+ 16:684+

0:0826 �m �max

�
1; p�m

90�gs(m)

�
Mctc 0:015 �m+ 0:194

Mctm 0:0149 �m+ 2:07

Mmtm 0:0314 �m+ 1:756

BL 1935 (units)

most of the performance evaluation reports, due to the
artificial nature of the benchmark tests, this phase is of
insignificantly low cost. However, in real parallel com-
putation, this phase can introduce large delay to the com-
munication event if not coordinated properly. For exam-
ple, in a non-dedicated cluster environment, polling is
a user-level event that is affected by the regular CPU
scheduling policy. If the receiving process cannot be
scheduled frequently to poll for its data, the overall per-
formance may degrade a lot.

B. Local Data Transfer

Memory copy overheadsMctc, Mctm & Mmtm - Mem-
ory copy issue has been extensively studied in the past,
and is being classified as high overhead event. To avoid
this overhead, most of the high-performance commu-
nication systems have removed it from their protocol
stacks. However, in reality, memory copy operations
cannot be avoided completely. To quantify these costs,
we provide three memory copy parameters -Mctc,Mctm

& Mmtm to represent the costs induced by data move-
ment between different memory hierarchies, such as
the cache-to-cache, cache-to-memory, and memory-to-
memory data movement.

4. Verification of The Model

We validate our model by comparing the prediction ac-
curacy of our model with the Postal model for the popular
tree-based broadcast algorithm. Our experimental platform
is a cluster consists of 16 standard low-end PCs running
Linux 2.0.36. Each node contains a 200MHz IDT Win-
Chip processor with 256KB external L2 cache and 32MB

0 A A A A B B B B C C C C
1
2 A B C
3
4 A A B B C C
5
6 A B C
7
8 A A A B B B C C C
9
10 A B C
11
12 A A B B C C
13
14 A B C
15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

time

P
ro

c
e
s
s
o

rs

g

L

Figure 1. Broadcast tree constructed on the
normalized LogP model for p = 16, L = 3, gs =
1, Os = 0

of main memory. Our interconnecting network is the com-
modity Fast Ethernet driven by our own Direct Point com-
munication system [7]. Each node includes a DEC21140-
based Fast Ethernet card and is connected by a 24-ports Intel
510T stackable Fast Ethernet switch. The model parameters
for our cluster system are shown in Table 1. These formulae
capture the major performance characteristics of our exper-
imental platform on both hardware and software aspects.

Efficient broadcast algorithms on various architectural
models have been developed, such as in [1][6][10], and they
are claimed to be (sub)optimal under their parallel mod-
els. However, when they are implemented in real plat-
forms, some performance may be lost. There are two rea-
sons. First, the proposed algorithms may be mathematically
achievable, but difficult to be implemented correctly and ef-
ficiently in real world. Second, some characteristics of the
real systems are being simplified, which result in unexpect-
edly increased in overheads and latencies. These minor dis-
turbances may only be surfacing in real situations, but not
appear in their simplified world. Nevertheless, those opti-
mal algorithms are seldom used in traditional parallel pro-
gramming packages such as MPICH, LAM, CHIMP, etc.
Most of these communication libraries use simple algo-
rithms such as linear algorithm or the tree-based algorithm.

One of the attractive points of including more parameters
in the model is that we now have a more powerful meter to
analyze algorithms on the target architecture. We have im-
plemented a broadcast operation on our experimental plat-
form. To broadcast a long message of sizeM (larger than the
MTU), we simply repeat the broadcast algorithmM

MTU
= k

times, each carry a portion of the message. Based on the
Postal/ normalized LogP2 model, we have constructed the
communication tree and is shown in Figure 1, and the cor-

2By normalizing LogP model withg = 1 ando = 0, we have the
Postal model [6].

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time

P
ro

ce
s
s
o

rs

Os1 Os2 Or Ur

L

g

0 A A A A B B B B C C
1
2
3
4 A A B B
5
6
7
8 A A A B B B C
9
10
11
12 A A B B C
13
14
15

Figure 3. The communication schedule of the
broadcast operation on our cluster model
with Os1 = 0:4, L = 1:3, Or = 0:6 and Ur = 0:7,
where Os1 + L + Or + Ur = 3 that corresponds
to the L parameter in Figure 1.

responding cost formula is:

Bk(p) = (k � 1) � log2p � gs +B1(p)
= (k � 1) � log2p � gs + log2p � L
= log2p � (kgs + L� gs) (1)

From the above cost formula, the running time of this
algorithm grows linearly withk, which is not optimal. We
can clearly discover a lot of empty timeslots from the com-
munication schedule, and This explains the non-optimality
of this algorithm. Thus, the theoretical optimal solution to
this multiple broadcast is to fill up those empty time-slots
as much as possible to minimize the overall cost. One of
these optimal algorithms is reported in [6]. Even though
the tree-based algorithm is not optimal, we should expect
to have precise performance prediction returned by Postal
model. To verify this, we have collected the timing results
of this algorithm on our experimental platform for differ-
ent number of nodes and message lengths. The results are
shown in Figure 2 with both measured and predicted times
are displayed.

The results showed that for small size messages, the
LogP model could closely predict the performance. How-
ever, when both the message length and the number of par-
ticipating nodes increase, the prediction error raises remark-
ably. From the cost formula, it cannot explain what is the
cause of the deviation, as it only has limited number of
model parameters. To explain those deviations, we reexam-
ine the communication schedule of this broadcast algorithm
based on our cluster model (Figure 3).

From our model, we identify the bottleneck region of
this broadcast pattern is at thep

2

th processor, but not at
the broadcast root. Of the previous broadcast communi-
cation schedule (Figure 1), we find no interference exists

in successive broadcast, such that for those internal nodes,
the reception of theith message does not overlap with the
transmission of the(i� 1)th message to its subtree. But in
reality, as shown in Figure 3 at processor 8 - thep

2

th pro-
cessor of this broadcast event, the transmission of theith

message is always overlapping with the reception of thejth

message for anyj > i. This observation comes from the
fact that the assumption of simultaneous send and receive
operations have been violated. From the low-level perspec-
tive, both transmission and reception involve data move-
ments between system memory and the network. Within
the data movement path, lots of resources are shared, hence,
contention arises if a node is actively sending and receiving
messages. When the number of successive broadcast (k) is
small, this interference may be of negligible value. So the
normalized LogP/Postal model could predict the behavior
accurately. Whenk becomes large, the user process can-
not handle those arrived messages immediately. As a result,
the delay becomes larger and this is reflected by the large
predicted error depicted in Figure 2.

With the above observation, the new Cost formula of this
broadcast pattern that based on our cluster model becomes:

Bk(p) = (k � 1) �
��
log2

p

2

�
� gs +Or + Ur

�
+Os1 + L+Or + Ur +B1(

p

2
)

= (k � 1) �
��
log2

p

2

�
� gs +Or + Ur

�
+Os1 + L+Or + Ur
+(Os1 + L+Or + Ur) � log2

p

2
= (k � 1) �

��
log2

p

2

�
� gs +Or + Ur

�
+log2p � (Os1 + L+Or + Ur) (2)

When comparing both cost formulae, our cost model un-
covers the overhead induced by the message reception of
each successive broadcast. We show that this hidden over-
head is proportional to the number of broadcast (k). This
explains why the prediction accuracy of the previous cost
formula deteriorates whenk becomes large. In Figure 2,
we have applied the corresponding model parameters to our
cost formula, and shows that our prediction accuracy im-
proves significantly.

5. Application of The Model

5.1. Gather Operation

Gatheroperation is a many-to-one collective operatioin.
All processes (including the root process) send data items
located in their send buffers to the destination buffer located
in the root node. Unlike its counterparts, such asscatterand
reduceoperations, it has not been receiving much attention
in the past. This may be because of amongst all popular col-
lective communications, gather operation has the simplest

4 nodes

0

5 0 0 0 0

1 0 0 0 0 0

1 5 0 0 0 0

2 0 0 0 0 0

2 5 0 0 0 0

0 2 0 0 0 0 0 4 0 0 0 0 0 6 0 0 0 0 0 8 0 0 0 0 0 1 0 0 0 0 0 0 1 2 0 0 0 0 0

Me ssa g e le n g th (b yte s)

Br
oa

dc
as

t t
im

e
(u

s)

Me a s u re d

L o g P p re d ic tio n

O u r p re d ic tio n

8 nodes

0

50000

100000

150000

200000

250000

300000

350000

0 200000 400000 600000 800000 1000000 1200000

Mes s age length (by tes)

Br
oa

dc
as

t t
im

e
(u

s)

Me a s u re d

L o g P p re d ic tio n

O u r p re d ic tio n

16 nodes

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 200000 400000 600000 800000 1000000 1200000

Mes s age length (by tes)

Br
oa

dc
as

t t
im

e
(u

s)

Me a s u re d

L o g P p re d ic tio n

Ou r p re d ic tio n

Figure 2. Measured and estimated execution time of the broadcast operation on our cluster. This
figure compares the prediction accuracy between our cluster model with the LogP model.

communication structure. Essentially, distinct messages of
all participating nodes are worthless to other except the col-
lecting root. No matter how we organize the communication
path, the exact amount of data still have to go through to the
receiver. Thus, the basic bottleneck of this communication
event would be the contention at the receiver end.

The gather problem is defined as finding a schedule of
communication in the shortest possible time amongp pro-
cessors (indexed asP0 to Pp�1), such that initially, each
processorPj , wherep > j � 0, has a collection ofi data
items, all destined for processorP0, with the operation ends
with P0 containsp � i data items in the receive buffer.

The communication pattern of the gather operation looks
as if it is just the reverse of the scatter operation. However,
in reality, we wouldn’t implement it this way. As mentioned
in [2], the major difference is the status of those processors
during the communication. In the case of the scatter oper-
ation, root is active and others are passive, while in gather
operation, they are active and the root is passive. Hence,
the communication schedule of the scatter operation can be
coordinated by a centralized means - the scatter root, and
the schedule would be more structured. On the contrary,
the communication pattern of the gather operation is usually
unstructured, as coordination between processors is usually
not imposed.

At the start of the event, there arep0 = (p � 1) active
senders. The data streams flow from different input ports of
the global router and compete for the same outgoing port.
As only one frame can be served at a time, the rest have to
be buffered in the shared memory of the router. This single
stream of outbound flow is the first bottleneck candidate of
the whole event. Frame by frame, packets are pumping out
through the outgoing port to the receiving NIC, which in
turn delivers the arrived packets to their corresponding des-
tination buffers. For the gather operation, this is not nec-
essary the end of the event. Since data are coming from

different sources, they are most likely being delivered to
different segments of memory. The receiving process upon
reception of message has to move/copy them to their final
destination - a contiguous segment of memory. With this
scenario, the data reception and movement become another
bottleneck candidate.

We observe that there exists a critical bottleneck in the
receiver end, and this is the slowest part of the whole com-
munication event. An apprehensive idea on improving the
performance is by minimizing the cost induced by this crit-
ical bottleneck stage. As we cannot compress the data as if
in the case of the reduce operation, data must be delivered
to the receiver end packet-by-packet till the end. Thus, we
argue that the optimality of the gather operation must let the
gather root receive no redundant packets and the data flow
through the bottleneck stage continuously.

Definition 1 Of the gather operation, the communication
cost is considered to be minimal if and only if it satisfies the
following restrictions:

Restriction 1: The senders only send out their data items
at most once and the receiver receives no duplicated
items.

Restriction 2: The bottleneck stage of the whole commu-
nication event should be full, or, in other words, no bub-
ble exists in this pipeline stage.

Lemma 1 There is an optimal algorithm to achieve mini-
mal communication cost for the gather operation that com-
plies with the above Restrictions.

Proof: Let AlgG be an optimal algorithm for the gather
problem, and it takesTG(p) units time to finish. If Restric-
tion 1 is violated, the gather root may receive a particular
item more than once, so it has to discard those extra copies.
Thus, extra workload induces unnecessary overhead (e.g.

data reception and movement). By removing these extra
copies, such as, the senders only send out their data items
at most once, the new algorithm complies with this Restric-
tion though runs no longer thanTG(p), therefore is opti-
mal. On the other hand, if Restriction 2 is violated, there
exist some gaps within the bottleneck pipeline stage. If we
modify AlgGby ensuring that no bubble appears in the bot-
tleneck stage, the latency induced in the bottleneck stage is
reduced. Thus, the new algorithm complies with Restriction
2 and runs no slower thanTG(p) and therefore is optimal.2

To satisfy Restriction 2, the optimal algorithm should
guarantee that there are enough processors sending out
packets to the root node simultaneously. This is because
of with the many-to-one relationship, packets start to cu-
mulate at the buffer just before the bottleneck stage. Thus,
with sufficient packets available in the buffer together with
the ongoing influx of packets, we can guarantee that the
bottleneck stage remains full till the end of the communi-
cation. To do this, we can simply have all the participating
processors sending out their data items simultaneously and
without delay. This is the traditional approach and is being
used by most of the available parallel programming pack-
ages such as MPICH, LAM, CHIMP, PVM3, etc.

5.2. Bottleneck Stage Phenomenon

In the realistic environment, buffers in the switch and
buffers in the receive queue are scare resources. If too many
processors sending out packets simultaneously, it may con-
sume enormous amount of system resources. Without ap-
propriate coordination, packets will be lost due to the con-
gestion or overflow. Packet loss would trigger higher level
reliable protocol to recover the loss, and hence, induces de-
lays and extra overheads. These delays and overheads may
result in violation of both Restriction 1 and 2, and drift the
whole course away from the optimal. In view of the above
observation, an upper bound and a lower bound number
of the senders are needed to ensure the algorithm satisfies
both Restrictions. The lower bound provides information
on the minimum number of simultaneous senders in order
to maintain a steady stream of packets to fill up the bot-
tleneck pipeline stage, while the upper bound indicates the
maximum number of simultaneous senders are allowed be-
fore the resource limit is reached. Based on the parameters
provided by our cluster model, we can derive the required
upper and lower bounds for this many-to-one collective op-
eration as follows.

Assuming that the communication network is error-free
and no software flow control, the only chance of having data
loss is by dropping of data message due to saturation of the
network resources. We can simplify the bottleneck stage ab-
stractly as a buffer associated with input and output pipes.
Intuitively, the staging buffer starts queuing up data items

when the departure rate is slower than the arrival rate. So
the ratio between the departure rate and arrival rate becomes
an indication of congestion, in other sense, an indicator of
fullness in the departure pipe. Due to the limited size of
the buffer, this bottleneck stage cannot sustain long-term
congestion, and eventually becomes full. This results in un-
conditional disposal of arrival items if no more space is left
behind. We can encapsulate the above scenario by a simple
probability function.

Let the staging buffer be of sizeB units, and the arrival
and departure rates beA and D units per second respec-
tively. When buffer is not full, all incoming items would
be buffered and forwarded later on (assumeA > D). At a
particular instance,t = �, the buffer is full, then

A � � = B +D � �) � =
B

A�D
(3)

Before t =�, incoming items will not be dropped by the
system, the probability of transfer is equal to one. After the
saturation, t >�, newly arrived items can only be accepted
and transferred in a probability ofD

A
. Hence, we would

expect the transfer ratio of the bottleneck stage in long run
becomes:

�
k � A�B

A�D

�
� D
A
+ A�B

A�D

k
)

D

A
+
B

k
(4)

wherek is the total number of incoming data items through
the bottleneck stage. In summary, ifD

A
+ B

k
� 1 then the

transfer ratio is one, else the transfer ratio isD
A
+ B

k
.

Lower BoundGal - When the number of simultaneous
senders is less than this lower bound value, the critical bot-
tleneck stage could not fill up with data. This situation
means that the departure rate is faster than the arrival rate.
Therefore, theD

A
ratio correlates to the lower bound value

for our bubble-free bottleneck stage. More precisely, let’s
analyze the bottleneck stage at the switching hardware, this
lower bound value can be derived as

Gal)
D

A
� 1)

1

gr

p0 � 1

gs

� 1)
gs

gr
� p0)

�
gs

gr

�

(5)

With Gal �
l
gs
gr

m
, we can guarantee thatD

A
< 1 and data

items can be queued up at the buffer which in turn, provides
a full stream of data to fill up the bottleneck pipe.

Upper boundGau - As we have shown that on long run,
to avoid data loss due to saturation, we have to keep the
transfer ratio to be as close as one. Hence we cannot have
unlimited number of simultaneous senders as this would
eventually flood the bottleneck stage and cause overflow. So
the optimal value can be determined at the situation where
the transfer ratio equals to one. With the bottleneck stage

appears at the switching hardware, this upper bound value
can be derived as:

Gau � 1)
D

A
+
B

k
� 1) Gau �

�
gs

gr
+
B

i

�
(6)

This upper bound value, provides us with the insight
on utilizing our network resources. If we have an infinite
buffer, the upper bound value becomes unbound. All in-
coming traffics can be safely buffered and delivered to their
destinations. Or, if we know that the total amount of data
items to be collected (k) is smaller than the available buffer
(B), the upper bound value would then bound byp0 only.

5.3. Our Gather Algorithm

Any valuew lies between the lower and upper bounds
could be a candidate to satisfy our optimality definition of
the gather operation. To search for the best value ofw, we
have the following formula:

w = max (fx :Gal � x � Gau ^ rem(p0; x) � Galg)
(7)

This returned value guarantees that at any particular instant,
the sender windoww is at least greater than or equal to the
lower bound valueGal, such that the bottleneck stage is
bubble-free and no packet loss during the communication.
Our algorithm is just a simple extension of the traditional
gather operation enforces with processors coordination, and
it works by restricting the number of active senders equal
to w at a particular instant. At first, if a cluster node is
within the active sender window, they are free to send all
their data items to the gather root. Or else, they have to wait
for the startup signal before they are allowed to transmit
their data. To send the startup signal, we have two candi-
dates, the gather root and those active senders. We opt to
use those active senders for two reasons. First, it is hard to
detect when an active sender has finished its job at the gather
root, as too late to activate a waiting sender may cause un-
necessary bubble formed in the bottleneck stage. Second,
this relieves the workload of the gather root, as it is already
overloaded by the influx of data packets. Algorithm 1 con-
tains the pseudo-code that summaries our gather algorithm.

5.4. Execution Time Analysis

If this algorithm complies to our optimality Restrictions,
we should expect the lower bound of the execution time be
confined toT (p; i) � (p � 1) � i � D, the time engaged
in transmitting all data items through the critical bottleneck
stage. Hence, the overall execution time of our algorithm
satisfies:

T (p; i) � C1 + (p� 1) � i �D + C2 (8)

Algorithm 1 Our optimal gather algorithm
if my index j > 0

if B > p0 � i

send all my data items toP0 immediately
else

if j � w

sends all my data items toP0 immediately
send a startup signal to processorPj+w if j + w < p

else
wait for startup signal from processorPj�w
sends all my data items toP0 immediately
send a startup signal to processorPj+w if j + w < p

endif
endif

else I am the gather rootP0
receivep0 � i data items fromP1 toPp�1

endif

0.00E+00

2.00E+05

4.00E+05

6.00E+05

8.00E+05

1.00E+06

1.20E+06

1.40E+06

1.60E+06

1.80E+06

2.00E+06

0 250000 500000 750000 1000000 1250000

Mes s age length (by tes)

Ex
ec

uti
on

 tim
e (

us
)

4nodes

pred-4

8nodes

pred-8

16nodes

pred-16

Figure 4. Measured and estimated execution
times with our cluster model for our optimal
gather algorithm.

whereC1 is defined as the arrival time of the first data item
to the critical bottleneck stage, andC2 is the service time
of the last data item from the exit of the critical bottleneck
stage to the final destination buffer.

5.5. Experimental Results

We implemented the above gather algorithm on our ex-
perimental platform, and measured the running time of the
operation forp=4,8,16and message length from 1KB to
1MB. The results are shown in Figure 4 where both mea-
sured and predicted times are plotted. This figure shows
that the prediction closely match the measurement with the
average prediction error of 8%. The maximum error is 35%
which is located atp=4, and message length of 1KB. This is
caused by violation of Restriction 2, as the number of par-
ticipating nodes and the message length is not large enough.

Figure 5 shows the comparison of the measured run-
times of two gather algorithms. The coordinated algorithm

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

0 100000 200000 300000 400000 500000 600000

Mes s age length (by tes)

Ex
ec

uti
on

 Ti
me

 (u
s)

c oordinated-16

s imple-16

pred-16

Figure 5. Comparison on two gather algo-
rithms with optimal prediction.

is the one that we have proposed and the simple algorithm is
the traditional uncoordinated algorithm which used by most
of those available parallel packages. It is clearly shown
that without proper communication scheduling, limited re-
sources are overloaded which results in suffering of unnec-
essary delays. This situation is getting worse when we in-
crease the number of participating nodes or increase the
message length.

6. Conclusions

In this paper, we have introduced a simple communica-
tion model that allows precise prediction of communication
costs on the cluster environment. Our approach exposes all
the crucial performance characteristics of the system by a
set of parameters. Furthermore, instead of using constant
values, we capture these parameters as some cost functions,
in which, both the message length, traffic load, and con-
tention factors are included if appropriate. Simple meth-
ods are included in our discussion for deriving those func-
tions. We believe that based on this set of parameters, we
can perform analysis on any target architecture-application
pair. We used the popular tree-based broadcast operation
to show the delay caused by contention during simultane-
ous send and receive operations, and this delay can only be
explained by our model. To show the analytical power of
our model, we have developed an optimal gather algorithm
with the ability to avoid contention loss. By restricting the
number of active senders within the upper and lower bound,
we have shown that our algorithm can significantly reduce
the communication cost.

References

[1] A. Bar-Noy and S. Kipnis, “Designing Broadcasting Algo-
rithms in the Postal Model for Message-Passing Systems”,
in Proceedings of the ACM Symposium on Parallel Algo-
rithms and Architectures, June 1992, pp. 11-22.

[2] S.N. Bhatt, G. Pucci, A. Ranade, and A.L. Rosenberg, “Scat-
tering and Gathering Messages in Networks of Processors”,
in IEEE Trans. on Computers, C-42, 1993, pp. 938-949.

[3] D.E. Culler, R.M. Karp, D.A. Patterson, A. Sahay, K.E.
Schauser, E. Santos, R. Subramonian and T. von Eicken,
“LogP: Towards a Realistic Model of Parallel Computa-
tion”, in Fourth ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, May 1993.

[4] T. Heywood and C. Leopold, “Models of Parallelism”,Tech-
nical Report CSR-28-93, Department of Computer Science,
University of Edinburgh, 1993.

[5] Intel Corp. Scalable Stacking Technology.
(http://www.intel.com/network/technologies
/scalable_stacking.htm)

[6] R.M. Karp, A. Sahay, E.E. Santos and K.E. Schauser, “Op-
timal Broadcast and Summation in the LogP Model”, in5th
Symp. on Parallel Algorithms and Architectures, June 1993.

[7] C.M. Lee, A. Tam, and C.L. Wang, “Directed Point: An Ef-
ficient Communication Subsystem for Cluster Computing”,
in The International Conference on Parallel and Distributed
Computing Systems (IASTED), October 1998.

[8] W.F. McColl, “The BSP Approach to Architec-
ture Independent Parallel Programming.”, Oxford
University Computing Laboratory, March 1995.
(ftp://ftp.comlab.ox.ac.uk/pub/Documents/techpapers
/Bill.McColl/p7.ps.Z)

[9] J.M. Nash, P.M. Dew, and M.E. Dyer, “Scalable and portable
computing using the WPRAM model”, In Kara, M, Davy, J
R, Goodeve, D M & Nash, J M (editors),Abstract Models
for Parallel and Distributed Computing, IOS Press, 1996,
pp. 47-62.

[10] R. Subramonian and N. Venkatasubramanyan, “Efficient
Multiple-item Broadcast in the LogP Model”, InParallel
Processing Letters, Vol. 3 No. 4, 1993, pp. 407-417.

[11] L.G. Valiant, “A Bridgig Model for Parallel Computation”,
in Communication of the ACM, August 1990, Vol. 33, No.
8, pp. 103-111.

